Single Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry—A Powerful Tool for the Analysis of Nanoparticles in the Environment
Abstract
:1. Introduction
2. SP-ICP-TOFMS: Instrumentation and Methodology
2.1. TOF Analyser for Single Particle Analysis
2.2. Sample Introduction Systems for Single Particle Analysis
2.3. Identification of NPs from Backgrounds
2.4. Quantification for SP-ICP-TOFMS
3. SP-ICP-TOFMS: Applications
3.1. Simultaneous Quantification of Multiple Elements in a Single Particle
3.2. SP-ICP-TOFMS Isotope Analysis
3.3. Single Cell (SC)-ICP-TOFMS
4. Summary and Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hochella, J.M.F.; Mogk, D.W.; Ranville, J.; Allen, I.C.; Luther, G.W.; Marr, L.C.; McGrail, B.P.; Murayama, M.; Qafoku, N.P.; Rosso, K.M.; et al. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 2019, 363, eaau8299. [Google Scholar] [CrossRef] [PubMed]
- Scott-Fordsmand, J.J.; Peijnenburg, W.J.G.M.; Semenzin, E.; Nowack, B.; Hunt, N.; Hristozov, D.; Marcomini, A.; Irfan, M.-A.; Jiménez, A.S.; Landsiedel, R.; et al. Environmental Risk Assessment Strategy for Nanomaterials. Int. J. Environ. Res. Public Health 2017, 14, 1251. [Google Scholar] [CrossRef] [PubMed]
- Tiede, K.; Hassellöv, M.; Breitbarth, E.; Chaudhry, Q.; Boxall, A.B. Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J. Chromatogr. A 2009, 1216, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Baun, A.; Hartmann, N.B.; Grieger, K.; Kusk, K.O. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: A brief review and recommendations for future toxicity testing. Ecotoxicology 2008, 17, 387–395. [Google Scholar] [CrossRef]
- Laborda, F.; Jiménez-Lamana, J.; Bolea, E.; Castillo, J.R. Critical considerations for the determination of nanoparticle number concentrations, size and number size distributions by single particle ICP-MS. J. Anal. At. Spectrom. 2013, 28, 1220–1232. [Google Scholar] [CrossRef]
- Montaño, M.D.; Olesik, J.W.; Barber, A.G.; Challis, K.; Ranville, J.F. Single Particle ICP-MS: Advances toward routine analysis of nanomaterials. Anal. Bioanal. Chem. 2016, 408, 5053–5074. [Google Scholar] [CrossRef]
- Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale 2018, 10, 12871–12934. [Google Scholar] [CrossRef]
- Meermann, B.; Nischwitz, V. ICP-MS for the analysis at the nanoscale—A tutorial review. J. Anal. At. Spectrom. 2018, 33, 1432–1468. [Google Scholar] [CrossRef]
- Ammann, A.A. Inductively coupled plasma mass spectrometry (ICP MS): A versatile tool. J. Mass. Spectrom. 2007, 42, 419–427. [Google Scholar] [CrossRef]
- Laborda, F.; Bolea, E.; Cepriá, G.; Gómez, M.T.; Jiménez, M.S.; Pérez-Arantegui, J.; Castillo, J.R. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples. Anal. Chim. Acta 2016, 904, 10–32. [Google Scholar] [CrossRef]
- Mitrano, D.M.; Lesher, E.K.; Bednar, A.; Monserud, J.; Higgins, C.P.; Ranville, J.F. Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry. Environ. Toxicol. Chem. 2012, 31, 115–121. [Google Scholar] [CrossRef]
- Kawaguchi, H.; Fukasawa, N.; Mizuike, A. Investigation of airborne particles by inductively coupled plasma emission spectrometry calibrated with monodisperse aerosols. Spectrochim. Acta Part B At. Spectrosc. 1986, 41, 1277–1286. [Google Scholar] [CrossRef]
- Nomizu, T.; Kaneco, S.; Tanaka, T.; Yamamoto, T.; Kawaguchi, H. Determination of Femto-gram Amounts of Zinc and Lead in Individual Airborne Particles by Inductively Coupled Plasma Mass Spectrometry with Direct Air-Sample Introduction. Anal. Sci. 1993, 9, 843–846. [Google Scholar] [CrossRef]
- Degueldre, C.; Favarger, P.Y. Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: A feasibility study. Colloids Surf. A Physicochem. Eng. Asp. 2003, 217, 137–142. [Google Scholar] [CrossRef]
- Degueldre, C.; Favarger, P.Y. Thorium colloid analysis by single particle inductively coupled plasma-mass spectrometry. Talanta 2004, 62, 1051–1054. [Google Scholar] [CrossRef] [PubMed]
- Degueldre, C.; Favarger, P.Y.; Bitea, C. Zirconia colloid analysis by single particle inductively coupled plasma–mass spectrometry. Anal. Chim. Acta 2004, 518, 137–142. [Google Scholar] [CrossRef]
- Degueldre, C.; Favarger, P.Y.; Rossé, R.; Wold, S. Uranium colloid analysis by single particle inductively coupled plasma-mass spectrometry. Talanta 2006, 68, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Eiden, G.C.; Barinaga, C.J.; Koppenaal, D.W. Plasma source ion trap mass spectrometry: Enhanced abundance sensitivity by resonant ejection of atomic ions. J. Am. Soc. Mass Spectrom. 1996, 7, 1161–1171. [Google Scholar] [CrossRef]
- Walder, A.J.; Freedman, P.A. Communication. Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source. J. Anal. At. Spectrom. 1992, 7, 571–575. [Google Scholar] [CrossRef]
- Balcaen, L.; Bolea-Fernandez, E.; Resano, M.; Vanhaecke, F. Inductively coupled plasma—Tandem mass spectrometry (ICP-MS/MS): A powerful and universal tool for the interference-free determination of (ultra)trace elements—A tutorial review. Anal. Chim. Acta 2015, 894, 7–19. [Google Scholar] [CrossRef]
- Diez Fernández, S.; Sugishama, N.; Ruiz Encinar, J.; Sanz-Medel, A. Triple quad ICPMS (ICPQQQ) as a new tool for absolute quantitative proteomics and phosphoproteomics. Anal. Chem. 2012, 84, 5851–5857. [Google Scholar] [CrossRef] [PubMed]
- Mozhayeva, D.; Engelhard, C. A critical review of single particle inductively coupled plasma mass spectrometry—A step towards an ideal method for nanomaterial characterization. J. Anal. At. Spectrom. 2020, 35, 1740–1783. [Google Scholar] [CrossRef]
- Montaño, M.D.; Badiei, H.R.; Bazargan, S.; Ranville, J.F. Improvements in the detection and characterization of engineered nanoparticles using spICP-MS with microsecond dwell times. Environ. Sci. Nano. 2014, 1, 338–346. [Google Scholar] [CrossRef]
- Loosli, F.; Wang, J.; Rothenberg, S.; Bizimis, M.; Winkler, C.; Borovinskaya, O.; Flamigni, L.; Baalousha, M. Sewage spills are a major source of titanium dioxide engineered (nano)-particle release into the environment. Environ. Sci. Nano. 2019, 6, 763–777. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Nabi, M.D.M.; Erfani, M.; Goharian, E.; Baalousha, M. Identification and quantification of anthropogenic nanomaterials in urban rain and runoff using single particle-inductively coupled plasma-time of flight-mass spectrometry. Environ. Sci. Nano 2022, 9, 714–729. [Google Scholar] [CrossRef]
- Bland, G.D.; Battifarano, M.; Pradas del Real, A.E.; Sarret, G.; Lowry, G.V. Distinguishing Engineered TiO2 Nanomaterials from Natural Ti Nanomaterials in Soil Using spICP-TOFMS and Machine Learning. Environ. Sci. Technol. 2022, 56, 2990–3001. [Google Scholar] [CrossRef]
- Meili-Borovinskaya, O.; Meier, F.; Drexel, R.; Baalousha, M.; Flamigni, L.; Hegetschweiler, A.; Kraus, T. Analysis of complex particle mixtures by asymmetrical flow field-flow fractionation coupled to inductively coupled plasma time-of-flight mass spectrometry. J. Chromatogr. A 2021, 1641, 461981. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, R.; Lv, S.; Wang, A.; Zhao, L.; Dong, S.; Yan, D.; Keller, A.A.; Huang, Y. Evidence of indoor dust acting as carrier for metal-based nanoparticles: A study of exposure and oxidative risks. Environ. Sci. Technol. Lett. 2022, 9, 431–438. [Google Scholar] [CrossRef]
- Borovinskaya, O.; Gschwind, S.; Hattendorf, B.; Tanner, M.; Günther, D. Simultaneous Mass Quantification of Nanoparticles of Different Composition in a Mixture by Microdroplet Generator-ICPTOFMS. Anal. Chem. 2014, 86, 8142–8148. [Google Scholar] [CrossRef] [PubMed]
- Praetorius, A.; Gundlach-Graham, A.; Goldberg, E.; Fabienke, W.; Navratilova, J.; Gondikas, A.; Kaegi, R.; Günther, D.; Hofmann, T.; von der Kammer, F. Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils. Environ. Sci. Nano. 2017, 4, 307–314. [Google Scholar] [CrossRef]
- Naasz, S.; Weigel, S.; Borovinskaya, O.; Serva, A.; Cascio, C.; Undas, A.K.; Simeone, F.C.; Marvin, H.J.P.; Peters, R.J.B. Multi-element analysis of single nanoparticles by ICP-MS using quadrupole and time-of-flight technologies. J. Anal. At. Spectrom. 2018, 33, 835–845. [Google Scholar] [CrossRef]
- Montaño, M.D.; Cuss, C.W.; Holliday, H.M.; Javed, M.B.; Shotyk, W.; Sobocinski, K.L.; Hofmann, T.; Kammer, F.v.d.; Ranville, J.F. Exploring Nanogeochemical Environments: New Insights from Single Particle ICP-TOFMS and AF4-ICPMS. ACS Earth Space Chem. 2022, 6, 943–952. [Google Scholar] [CrossRef]
- Myers, D.P.; Hieftje, G.M. Preliminary Design Considerations and Characteristics of an Inductively Coupled Plasma-Time-of-Flight Mass Spectrometer. Microchem. J. 1993, 48, 259–277. [Google Scholar] [CrossRef]
- Hendriks, L.; Gundlach-Graham, A.; Hattendorf, B.; Günther, D. Characterization of a new ICP-TOFMS instrument with continuous and discrete introduction of solutions. J. Anal. At. Spectrom. 2017, 32, 548–561. [Google Scholar] [CrossRef]
- Borovinskaya, O.; Hattendorf, B.; Tanner, M.; Gschwind, S.; Günther, D. A prototype of a new inductively coupled plasma time-of-flight mass spectrometer providing temporally resolved, multi-element detection of short signals generated by single particles and droplets. J. Anal. At. Spectrom. 2013, 28, 226–233. [Google Scholar] [CrossRef]
- Hong, A.; Tang, Q.; Khan, A.U.; Miao, M.; Xu, Z.; Dang, F.; Liu, Q.; Wang, Y.; Lin, D.; Filser, J.; et al. Identification and Speciation of Nanoscale Silver in Complex Solid Matrices by Sequential Extraction Coupled with Inductively Coupled Plasma Optical Emission Spectrometry. Anal. Chem. 2021, 93, 1962–1968. [Google Scholar] [CrossRef]
- Ji, X.; Yang, L.; Wu, F.; Yao, L.; Yu, B.; Liu, X.; Yin, Y.; Hu, L.; Qu, G.; Fu, J.; et al. Identification of mercury-containing nanoparticles in the liver and muscle of cetaceans. J. Hazard. Mater. 2022, 424, 127759. [Google Scholar] [CrossRef]
- Jiang, M.; Zhou, J.; Xie, X.; Huang, Z.; Liu, R.; Lv, Y. Single nanoparticle counting-based liquid biopsy for cancer diagnosis. Anal. Chem. 2022, 94, 15433–15439. [Google Scholar] [CrossRef]
- Hineman, A.; Stephan, C. Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality. J. Anal. At. Spectrom. 2014, 29, 1252–1257. [Google Scholar] [CrossRef]
- Chun, K.H.; Lum, J.T.; Leung, K.S. Dual-elemental analysis of single particles using quadrupole-based inductively coupled plasma-mass spectrometry. Anal. Chim. Acta 2022, 1192, 339389. [Google Scholar] [CrossRef]
- Su, Y.; Wang, W.; Li, Z.; Deng, H.; Zhou, G.; Xu, J.; Ren, X. Direct detection and isotope analysis of individual particles in suspension by single particle mode MC-ICP-MS for nuclear safety. J. Anal. At. Spectrom. 2015, 30, 1184–1190. [Google Scholar] [CrossRef]
- Yamashita, S.; Ishida, M.; Suzuki, T.; Nakazato, M.; Hirata, T. Isotopic analysis of platinum from single nanoparticles using a high-time resolution multiple collector Inductively Coupled Plasma—Mass Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2020, 169, 105881. [Google Scholar] [CrossRef]
- Gundlach-Graham, A. Multiplexed and Multi-Metal Single-Particle Characterization with ICP-TOFMS; Milačič, R., Ščančar, J., Goenaga-Infante, H., Vidmar, J., Eds.; Elsevier: Cambridge, MA, USA, 2021; Volume 93, pp. 69–101. ISBN 9780323853057. [Google Scholar]
- Chang, P.-P.; Zheng, L.-N.; Wang, B.; Chen, M.-L.; Wang, M.; Wang, J.-H.; Feng, W.-Y. ICP-MS-Based Methodology in Metallomics: Towards Single Particle Analysis, Single Cell Analysis, and Spatial Metallomics. At. Spectrosc. 2022, 43, 255–265. [Google Scholar] [CrossRef]
- Resano, M.; Aramendía, M.; García-Ruiz, E.; Bazo, A.; Bolea-Fernandez, E.; Vanhaecke, F. Living in a transient world: ICP-MS reinvented via time-resolved analysis for monitoring single events. Chem. Sci. 2022, 13, 4436–4473. [Google Scholar] [CrossRef] [PubMed]
- Sharp, B.L. Pneumatic nebulisers and spray chambers for inductively coupled plasma spectrometry. A review. Part 1. Nebulisers. J. Anal. At. Spectrom. 1988, 3, 613–652. [Google Scholar] [CrossRef]
- Lamsal, R.P.; Hineman, A.; Stephan, C.; Tahmasebi, S.; Baranton, S.; Coutanceau, C.; Jerkiewicz, G.; Beauchemin, D. Characterization of platinum nanoparticles for fuel cell applications by single particle inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2020, 1139, 36–41. [Google Scholar] [CrossRef]
- Tharaud, M.; Louvat, P.; Benedetti, M.F. Detection of nanoparticles by single-particle ICP-MS with complete transport efficiency through direct nebulization at few-microlitres-per-minute uptake rates. Anal. Bioanal. Chem. 2021, 413, 923–933. [Google Scholar] [CrossRef]
- Gundlach-Graham, A.; Mehrabi, K. Monodisperse microdroplets: A tool that advances single-particle ICP-MS measurements. J. Anal. At. Spectrom. 2020, 35, 1727–1739. [Google Scholar] [CrossRef]
- Verboket, P.E.; Borovinskaya, O.; Meyer, N.; Günther, D.; Dittrich, P.S. A new microfluidics-based droplet dispenser for ICPMS. Anal. Chem. 2014, 86, 6012–6018. [Google Scholar] [CrossRef]
- Hendriks, L.; Ramkorun-Schmidt, B.; Gundlach-Graham, A.; Koch, J.; Grass, R.N.; Jakubowski, N.; Günther, D. Single-particle ICP-MS with online microdroplet calibration: Toward matrix independent nanoparticle sizing. J. Anal. At. Spectrom. 2019, 34, 716–728. [Google Scholar] [CrossRef]
- Metarapi, D.; van Elteren, J.T.; Šala, M.; Vogel-Mikuš, K.; Arčon, I.; Šelih, V.S.; Kolar, M.; Hočevar, S.B. Laser ablation-single-particle-inductively coupled plasma mass spectrometry as a multimodality bioimaging tool in nano-based omics. Environ. Sci. Nano. 2021, 8, 647–656. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, L.; Wang, B.; Yang, P.; Fang, H.; Liang, S.; Chen, W.; Feng, W. Laser ablation-single particle-inductively coupled plasma mass spectrometry as a sensitive tool for bioimaging of silver nanoparticles in vivo degradation. Chin. Chem. Lett. 2022, 33, 3484–3487. [Google Scholar] [CrossRef]
- Geertsen, V.; Barruet, E.; Gobeaux, F.; Lacour, J.-L.; Taché, O. Contribution to Accurate Spherical Gold Nanoparticle Size Determination by Single-Particle Inductively Coupled Mass Spectrometry: A Comparison with Small-Angle X-ray Scattering. Anal. Chem. 2018, 90, 9742–9750. [Google Scholar] [CrossRef] [PubMed]
- Abad-Alvaro, I.; Pena-Vazquez, E.; Bolea, E.; Bermejo-Barrera, P.; Castillo, J.R.; Laborda, F. Evaluation of number concentration quantification by single-particle inductively coupled plasma mass spectrometry: Microsecond vs. millisecond dwell times. Anal. Bioanal. Chem. 2016, 408, 5089–5097. [Google Scholar] [CrossRef] [PubMed]
- Laborda, F.; Bolea, E.; Jimenez-Lamana, J. Single particle inductively coupled plasma mass spectrometry: A powerful tool for nanoanalysis. Anal. Chem. 2014, 86, 2270–2278. [Google Scholar] [CrossRef] [PubMed]
- Pace, H.E.; Rogers, N.J.; Jarolimek, C.; Coleman, V.A.; Higgins, C.P.; Ranville, J.F. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal. Chem. 2011, 83, 9361–9369. [Google Scholar] [CrossRef]
- Laborda, F.; Gimenez-Ingalaturre, A.C.; Bolea, E.; Castillo, J.R. About detectability and limits of detection in single particle inductively coupled plasma mass spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2020, 169, 105883. [Google Scholar] [CrossRef]
- Lee, S.; Bi, X.; Reed, R.B.; Ranville, J.F.; Herckes, P.; Westerhoff, P. Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ. Sci. Technol. 2014, 48, 10291–10300. [Google Scholar] [CrossRef]
- Vidmar, J.; Milačič, R.; Ščančar, J. Sizing and simultaneous quantification of nanoscale titanium dioxide and a dissolved titanium form by single particle inductively coupled plasma mass spectrometry. Microchem. J. 2017, 132, 391–400. [Google Scholar] [CrossRef]
- Tuoriniemi, J.; Cornelis, G.; Hassellöv, M. A new peak recognition algorithm for detection of ultra-small nano-particles by single particle ICP-MS using rapid time resolved data acquisition on a sector-field mass spectrometer. J. Anal. At. Spectrom. 2015, 30, 1723–1729. [Google Scholar] [CrossRef]
- Laborda, F.; Gimenez-Ingalaturre, A.C.; Bolea, E.; Castillo, J.R. Single particle inductively coupled plasma mass spectrometry as screening tool for detection of particles. Spectrochim. Acta Part B At. Spectrosc. 2019, 159, 105654. [Google Scholar] [CrossRef]
- Currie, L.A. Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal. Chem. 1968, 40, 586–593. [Google Scholar] [CrossRef]
- Currie, L.A. Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC Recommendations 1995). Pure Appl. Chem. 1995, 67, 1699–1723. [Google Scholar] [CrossRef]
- Gundlach-Graham, A.; Hendriks, L.; Mehrabi, K.; Gunther, D. Monte Carlo Simulation of Low-Count Signals in Time-of-Flight Mass Spectrometry and Its Application to Single-Particle Detection. Anal. Chem. 2018, 90, 11847–11855. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, L.; Gundlach-Graham, A.; Günther, D. Performance of sp-ICP-TOFMS with signal distributions fitted to a compound Poisson model. J. Anal. At. Spectrom. 2019, 34, 1900–1909. [Google Scholar] [CrossRef]
- Huang, Y.; Tsz-Shan Lum, J.; Sze-Yin Leung, K. Single particle ICP-MS combined with internal standardization for accurate characterization of polydisperse nanoparticles in complex matrices. J. Anal. At. Spectrom. 2020, 35, 2148–2155. [Google Scholar] [CrossRef]
- Gschwind, S.; Flamigni, L.; Koch, J.; Borovinskaya, O.; Groh, S.; Niemax, K.; Gunther, D. Capabilities of inductively coupled plasma mass spectrometry for the detection of nanoparticles carried by monodisperse microdroplets. J. Anal. At. Spectrom. 2011, 26, 1166–1174. [Google Scholar] [CrossRef]
- Koch, J.; Flamigni, L.; Gschwind, S.; Allner, S.; Longerich, H.; Günther, D. Accelerated evaporation of microdroplets at ambient conditions for the on-line analysis of nanoparticles by inductively-coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2013, 28, 1669–1806. [Google Scholar] [CrossRef]
- Mehrabi, K.; Günther, D.; Gundlach-Graham, A. Single-particle ICP-TOFMS with online microdroplet calibration for the simultaneous quantification of diverse nanoparticles in complex matrices. Environ. Sci. Nano. 2019, 6, 3349–3358. [Google Scholar] [CrossRef]
- Hendriks, L.; Gundlach-Graham, A.; Günther, D. Analysis of Inorganic Nanoparticles by Single-particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Chimia 2018, 72, 221–226. [Google Scholar] [CrossRef]
- Harycki, S.; Gundlach-Graham, A. Online microdroplet calibration for accurate nanoparticle quantification in organic matrices. Anal. Bioanal. Chem. 2022, 414, 7543–7551. [Google Scholar] [CrossRef]
- Flores, K.; Turley, R.S.; Valdes, C.; Ye, Y.; Cantu, J.; Hernandez-Viezcas, J.A.; Parsons, J.G.; Gardea-Torresdey, J.L. Environmental applications and recent innovations in single particle inductively coupled plasma mass spectrometry (SP-ICP-MS). Appl. Spectrosc. Rev. 2019, 56, 1–26. [Google Scholar] [CrossRef]
- Klaine, S.J.; Koelmans, A.A.; Horne, N.; Carley, S.; Handy, R.D.; Kapustka, L.; Nowack, B.; von der Kammer, F. Paradigms to assess the environmental impact of manufactured nanomaterials. Environ. Toxicol. Chem. 2012, 31, 3–14. [Google Scholar] [CrossRef]
- Nowack, B.; Boldrin, A.; Caballero, A.; Hansen, S.F.; Gottschalk, F.; Heggelund, L.; Hennig, M.; Mackevica, A.; Maes, H.; Navratilova, J.; et al. Meeting the Needs for Released Nanomaterials Required for Further Testing—The SUN Approach. Environ. Sci. Technol. 2016, 50, 2747–2753. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yang, J.; Cai, Z.; Feng, Y.; Wang, Y.; Zhang, D.; Pan, X. Detection of engineered nanoparticles in aquatic environments: Current status and challenges in enrichment, separation, and analysis. Environ. Sci. Nano. 2019, 6, 709–735. [Google Scholar] [CrossRef]
- Qi, J.; Lai, X.; Wang, J.; Tang, H.; Ren, H.; Yang, Y.; Jin, Q.; Zhang, L.; Yu, R.; Ma, G.; et al. Multi-shelled hollow micro-/nanostructures. Chem. Soc. Rev. 2015, 44, 6749–6773. [Google Scholar] [CrossRef]
- Strobel, R.; Metz, H.; Pratsinis, S. Brilliant Yellow, Transparent Pure, and SiO2-Coated BiVO4 Nanoparticles Made in Flames. Chem. Mater. 2008, 20, 6346–6351. [Google Scholar] [CrossRef]
- Erhardt, T.; Jensen, C.M.; Borovinskaya, O.; Fischer, H. Single Particle Characterization and Total Elemental Concentration Measurements in Polar Ice Using Continuous Flow Analysis-Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Environ. Sci. Technol. 2019, 53, 13275–13283. [Google Scholar] [CrossRef] [PubMed]
- Tou, F.; Nabi, M.M.; Wang, J.; Erfani, M.; Goharian, E.; Chen, J.; Yang, Y.; Baalousha, M. Multi-method approach for analysis of road dust particles: Elemental ratios, SP-ICP-TOF-MS, and TEM. Environ. Sci. Nano. 2022, 9, 3859–3872. [Google Scholar] [CrossRef]
- Jahn, L.G.; Bland, G.D.; Monroe, L.W.; Sullivan, R.C.; Meyer, M.E. Single-particle elemental analysis of vacuum bag dust samples collected from the International Space Station by SEM/EDX and sp-ICP-ToF-MS. Aerosol Sci. Technol. 2021, 55, 571–585. [Google Scholar] [CrossRef]
- Jahn, L.G.; Jahl, L.G.; Bland, G.D.; Bowers, B.B.; Monroe, L.W.; Sullivan, R.C. Metallic and crustal elements in biomass-burning aerosol and ash: Prevalence, significance, and similarity to soil particles. ACS Earth Space Chem. 2021, 5, 136–148. [Google Scholar] [CrossRef]
- Mehrabi, K.; Kaegi, R.; Günther, D.; Gundlach-Graham, A. Quantification and Clustering of Inorganic Nanoparticles in Wastewater Treatment Plants across Switzerland. Chimia 2021, 75, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Nabi, M.M.; Wang, J.; Baalousha, M. Episodic surges in titanium dioxide engineered particle concentrations in surface waters following rainfall events. Chemosphere 2021, 263, 128261. [Google Scholar] [CrossRef] [PubMed]
- Mehrabi, K.; Dengler, M.; Nilsson, I.; Baumgartner, M.; Mora, C.A.; Günther, D.; Gundlach-Graham, A. Detection of magnetic iron nanoparticles by single-particle ICP-TOFMS: Case study for a magnetic filtration medical device. Anal. Bioanal. Chem. 2022, 414, 6743–6751. [Google Scholar] [CrossRef] [PubMed]
- Szakas, S.E.; Lancaster, R.; Kaegi, R.; Gundlach-Graham, A. Quantification and classification of engineered, incidental, and natural cerium-containing particles by spICP-TOFMS. Environ. Sci. Nano. 2022, 9, 1627–1638. [Google Scholar] [CrossRef]
- Hagino, H.; Tonegawa, Y.; Tanner, M.; Borovinskaya, O.; Hikita, T.; Shimono, A. Application of ICP-TOFMS for Real-Time Measurement of Trace Elements in Automotive Exhaust Particulate Matters from Engine Oil Additives. Trans. Soc. Automot. Eng. Jpn. 2017, 48, 1341–1346. [Google Scholar] [CrossRef]
- Baalousha, M.; Wang, J.; Erfani, M.; Goharian, E. Elemental fingerprints in natural nanomaterials determined using SP-ICP-TOF-MS and clustering analysis. Sci. Total Environ. 2021, 792, 148426. [Google Scholar] [CrossRef]
- Goodman, A.J.; Gundlach-Graham, A.; Bevers, S.G.; Ranville, J.F. Characterization of nano-scale mineral dust aerosols in snow by single particle inductively coupled plasma mass spectrometry. Environ. Sci. Nano. 2022, 9, 2638–2652. [Google Scholar] [CrossRef]
- Mehrabi, K.; Kaegi, R.; Günther, D.; Gundlach-Graham, A. Emerging investigator series: Automated single-nanoparticle quantification and classification: A holistic study of particles into and out of wastewater treatment plants in Switzerland. Environ. Sci. Nano. 2021, 8, 1211–1225. [Google Scholar] [CrossRef]
- Holbrook, T.R.; Gallot-Duval, D.; Reemtsma, T.; Wagner, S. Machine learning: Our future spotlight into single-particle ICP-ToF-MS analysis. J. Anal. At. Spectrom. 2021, 36, 2684–2694. [Google Scholar] [CrossRef]
- Gondikas, A.; von der Kammer, F.; Kaegi, R.; Borovinskaya, O.; Neubauer, E.; Navratilova, J.; Praetorius, A.; Cornelis, G.; Hofmann, T. Where is the nano? Analytical approaches for the detection and quantification of TiO2 engineered nanoparticles in surface waters. Environ. Sci. Nano. 2018, 5, 313–326. [Google Scholar] [CrossRef]
- Hegetschweiler, A.; Borovinskaya, O.; Staudt, T.; Kraus, T. Single-Particle Mass Spectrometry of Titanium and Niobium Carbonitride Precipitates in Steels. Anal. Chem. 2019, 91, 943–950. [Google Scholar] [CrossRef]
- Bevers, S.; Montaño, M.D.; Rybicki, L.; Hofmann, T.; von der Kammer, F.; Ranville, J.F. Quantification and Characterization of Nanoparticulate Zinc in an Urban Watershed. Front. Environ. Sci. 2020, 8, 84. [Google Scholar] [CrossRef]
- Azimzada, A.; Farner, J.M.; Jreije, I.; Hadioui, M.; Liu-Kang, C.; Tufenkji, N.; Shaw, P.; Wilkinson, K.J. Single- and Multi-Element Quantification and Characterization of TiO2 Nanoparticles Released From Outdoor Stains and Paints. Front. Environ. Sci. 2020, 8, 91. [Google Scholar] [CrossRef]
- Win, Q.; Stärk, H.-J.; Reemtsma, T. Ruthenium red: A highly efficient and versatile cell staining agent for single-cell analysis using inductively coupled plasma time-of-flight mass spectrometry. Analyst 2021, 146, 6753–6759. [Google Scholar] [CrossRef]
- Azimzada, A.; Jreije, I.; Hadioui, M.; Shaw, P.; Farner, J.M.; Wilkinson, K.J. Quantification and Characterization of Ti-, Ce-, and Ag-Nanoparticles in Global Surface Waters and Precipitation. Environ. Sci. Technol. 2021, 55, 9836–9844. [Google Scholar] [CrossRef] [PubMed]
- von der Au, M.; Faßbender, S.; Chronakis, M.I.; Vogl, J.; Meermann, B. Size determination of nanoparticles by ICP-ToF-MS using isotope dilution in microdroplets. J. Anal. At. Spectrom. 2022, 37, 1203–1207. [Google Scholar] [CrossRef]
- Bland, G.D.; Zhang, P.; Valsami-Jones, E.; Lowry, G.V. Application of Isotopically Labeled Engineered Nanomaterials for Detection and Quantification in Soils via Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Environ. Sci. Technol. 2022, 56, 15584–15593. [Google Scholar] [CrossRef]
- Brünjes, R.; Schüürman, J.; Kammer, F.v.d.; Hofmann, T. Rapid analysis of gunshot residues with single-particle inductively coupled plasma time-of-flight mass spectrometry. Forensic Sci. Int. 2022, 332, 111202. [Google Scholar] [CrossRef]
- Harycki, S.; Gundlach-Graham, A. Characterization of a high-sensitivity ICP-TOFMS instrument for microdroplet, nanoparticle, and microplastic analyses. J. Anal. At. Spectrom. 2023, 38, 111–120. [Google Scholar] [CrossRef]
- Koolen, C.D.; Torrent, L.; Agarwal, A.; Meili-Borovinskaya, O.; Gasilova, N.; Li, M.; Luo, W.; Züttel, A. High-Throughput Sizing, Counting, and Elemental Analysis of Anisotropic Multimetallic Nanoparticles with Single-Particle Inductively Coupled Plasma Mass Spectrometry. ACS Nano 2022, 16, 11968–11978. [Google Scholar] [CrossRef]
- Taskula, S.; Stetten, L.; von der Kammer, F.; Hofmann, T. Platinum Nanoparticle Extraction, Quantification, and Characterization in Sediments by Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Nanomaterials 2022, 12, 3307. [Google Scholar] [CrossRef]
- Tian, X.; Jiang, H.; Wang, M.; Cui, W.; Guo, Y.; Zheng, L.; Hu, L.; Qu, G.; Yin, Y.; Cai, Y.; et al. Exploring the performance of quadrupole, time-of-flight, and multi-collector ICP-MS for dual-isotope detection on single nanoparticles and cells. Anal. Chim. Acta 2023, 1240, 340756. [Google Scholar] [CrossRef] [PubMed]
- Chronakis, M.I.; von der Au, M.; Meermann, B. Single cell-asymmetrical flow field-flow fractionation/ICP-time of flight-mass spectrometry (sc-AF4/ICP-ToF-MS): An efficient alternative for the cleaning and multielemental analysis of individual cells. J. Anal. At. Spectrom. 2022, 37, 2691–2700. [Google Scholar] [CrossRef]
- Yoshida, Y.; Yoshio, S.; Yamazoe, T.; Mori, T.; Tsustui, Y.; Kawai, H.; Yoshikawa, S.; Fukuhara, T.; Okamoto, T.; Ono, Y.; et al. Phenotypic Characterization by Single-Cell Mass Cytometry of Human Intrahepatic and Peripheral NK Cells in Patients with Hepatocellular Carcinoma. Cells 2021, 10, 1495. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, F.J.; Simonds, E.F.; Bendall, S.C. A Universal Live Cell Barcoding-Platform for Multiplexed Human Single Cell Analysis. Sci. Rep. 2018, 8, 10770. [Google Scholar] [CrossRef] [PubMed]
- Keeler, A.B.; Van Deusen, A.L.; Gadani, I.C.; Williams, C.M.; Goggin, S.M.; Hirt, A.K.; Vradenburgh, S.A.; Fread, K.I.; Puleo, E.A.; Jin, L.; et al. A developmental atlas of somatosensory diversification and maturation in the dorsal root ganglia by single-cell mass cytometry. Nat. Neurosci. 2022, 25, 1543–1558. [Google Scholar] [CrossRef]
- Ohata, M.; Hagino, H. Examination on simultaneous multi-element isotope ratio measurement by inductively coupled plasma time of flight mass spectrometry. Int. J. Mass. Spectrom. 2018, 430, 31–36. [Google Scholar] [CrossRef]
- Yamashita, S.; Yamamoto, K.; Takahashi, H.; Hirata, T. Size and isotopic ratio measurements of individual nanoparticles by a continuous ion-monitoring method using Faraday detectors equipped on a multi-collector-ICP-mass spectrometer. J. Anal. At. Spectrom. 2022, 37, 178–184. [Google Scholar] [CrossRef]
- Brandenberger, C.; Clift, M.J.; Vanhecke, D.; Mühlfeld, C.; Stone, V.; Gehr, P.; Rothen-Rutishauser, B. Intracellular imaging of nanoparticles: Is it an elemental mistake to believe what you see? Part. Fibre Toxicol. 2010, 7, 15. [Google Scholar] [CrossRef]
- Jensen, L.H.S.; Skjolding, L.M.; Thit, A.; Sørensen, S.N.; Købler, C.; Mølhave, K.; Baun, A. Not all that glitters is gold-Electron microscopy study on uptake of gold nanoparticles in Daphnia magna and related artifacts. Environ. Toxicol. Chem. 2017, 36, 1503–1509. [Google Scholar] [CrossRef]
- Hendriks, L.; Skjolding, L.M.; Thomas, R. Single-Cell Analysis by Inductively Coupled Plasma–Time-of-Flight Mass Spectrometry to Quantify Algal Cell Interaction with Nanoparticles by Their Elemental Fingerprint. Spectroscopy 2020, 35, 9–16. [Google Scholar]
- von der Au, M.; Borovinskaya, O.; Flamigni, L.; Kuhlmeier, K.; Büchel, C.; Meermann, B. Single cell-inductively coupled plasma-time of flight-mass spectrometry approach for ecotoxicological testing. Algal Res. 2020, 49, 101964. [Google Scholar] [CrossRef]
- Markou, G.; Vandamme, D.; Muylaert, K. Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Res. 2014, 65, 186–202. [Google Scholar] [CrossRef] [PubMed]
- Tracey, L.J.; An, Y.; Justice, M.J. CyTOF: An Emerging Technology for Single-Cell Proteomics in the Mouse. Curr. Protoc. 2021, 1, e118. [Google Scholar] [CrossRef]
- Bandura, D.R.; Baranov, V.I.; Ornatsky, O.I.; Antonov, A.; Kinach, R.; Lou, X.; Pavlov, S.; Vorobiev, S.; Dick, J.E.; Tanner, S.D. Mass Cytometry: Technique for Real Time Single Cell Multitarget Immunoassay Based on Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Anal. Chem. 2009, 81, 6813–6822. [Google Scholar] [CrossRef]
- Bendall, S.C.; Simonds, E.F.; Qiu, P.; Amir, E.-a.D.; Krutzik, P.O.; Finck, R.; Bruggner, R.V.; Melamed, R.; Trejo, A.; Ornatsky, O.I.; et al. Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum. Science 2011, 332, 687–696. [Google Scholar] [CrossRef]
- Hiramatsu, K.; Ideguchi, T.; Yonamine, Y.; Lee, S.; Luo, Y.; Hashimoto, K.; Ito, T.; Hase, M.; Park, J.W.; Kasai, Y.; et al. High-throughput label-free molecular fingerprinting flow cytometry. Sci. Adv. 2019, 5, eaau0241. [Google Scholar] [CrossRef]
- Nassar, A.F.; Wisnewski, A.V.; Raddassi, K. Mass cytometry moving forward in support of clinical research: Advantages and considerations. Bioanalysis 2016, 8, 255–257. [Google Scholar] [CrossRef]
- Bendall, S.C.; Nolan, G.P. From single cells to deep phenotypes in cancer. Nat. Biotechnol. 2012, 30, 639–647. [Google Scholar] [CrossRef]
- Bendall, S.C.; Nolan, G.P.; Roederer, M.; Chattopadhyay, P.K. A deep profiler’s guide to cytometry. Trends Immunol. 2012, 33, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Mueller, L.P.; Traub, H.; Jakubowski, N.; Drescher, D.; Baranov, V.I.; Kneipp, J. Trends in single-cell analysis by use of ICP-MS. Anal. Bioanal. Chem. 2014, 406, 6963–6977. [Google Scholar] [CrossRef] [PubMed]
ICP-TOFMS Instrument | Sample Type | Sample Treatment | Sample Introduction System | Key Elements to Observe | Main Conclusion | Ref. |
---|---|---|---|---|---|---|
Prototype icpTOF | CeO2 ENPs and CeO2 NNPs in soil | Colloid extraction procedure | Pneumatic nebulizer and cyclonic spray chamber | CeO2 ENPs, elemental fingerprint (Ce/La) associated with Ce- containing NNPs | CeO2 ENPs and Ce-NNPs were found to have elemental associations with La, Nd, and Th. CeO2 ENPs could be quantified in the matrix of Ce-NNPs based on multi-element NP element fingerprinting. | [30] |
icpTOF R | TiO2 ENPs and TiO2 NNPs in lake water | Centrifugation to remove large particles, sonication, shaking in vortex, and dialysis | NC | Ti/Al, Ti/Mn, Ti/Fe, Ti/Pb, and Fe/Pb in a single particle | TiO2 ENPs, Ti-containing NPs, and associations with Al, Mn, Fe, and Pb have been proposed as indicators of Ti-NPs. | [92] |
icpTOF R | Polar ice ice-core sample | Combined with Continuous flow analysis, the ice was melted and introduced | Bern CFA system, micro mist, and glass expansion | Element ratio in Fe-containing NPs (Mg/Al, Fe/Al, and Mg/Fe) | ICP-TOFMS improved the resolution of the CFA; the iron-bearing aerosol concentration covaried with atmospheric particulate dust concentration. Further evidence of particle traceability was provided by the isotope. | [79] |
icpTOF R | Steels | Dilution, acid treatment, sonication, centrifugation, and redispersion | Pneumatic nebulizer and cyclonic spray chamber | Ti and Nb | Quantified TiCN, NbCN, and TiNbCN NPs. | [93] |
icpTOF R | NPs in a heavy metal matrix, acid, and PBS matrix | Dilution and sonication | PFA MicroFlow pneumatic nebulizer, double pass cyclonic spray chamber, and microdroplet generator | Cs, Au, and Ag isotope | The study focused on the accurate calibration of NP size in various matrices using an online microdroplet calibration. | [51] |
icpTOF 2R | River and urban runoff | Dilution, and sonication | PFA MicroFlow pneumatic nebulizer and quartz cyclonic spray chamber | Zn, with Fe, Mn, Al, and Si | The multiple elements in each particle were quantified and tracked. It was possible to develop the basis of the field of particle-by-particle geology. | [94] |
Vitesse | Runoff from outdoor stains and paints | Sonication and filtration | NC | TiO2, Al, Si, Fe, Zr, and Ce | TiO2 ENPs and Ti-NNPs associated with Al, Si, Fe, Zr, and Ce were proposed to indicate the assignment of particles as Ti-NNP. | [95] |
icpTOF R | Biomass-burning aerosol and ash | Dilution and filtration | PFA MicroFlow pneumatic nebulizer and cyclonic spray chamber | Zn, Al, Si, Fe | The source of burned biomass was discussed. The source of burned biomass Zn and other crustal elements after biomass burning were more likely to be present in ash than in the biomass burning aerosol. | [82] |
icpTOF R | Topsoil samples from the surface to 15 cm below the surface | Wet sieve (45 μm), freeze-drying, dilution, and extraction by tetrasodium pyrophosphate | MicroFlow PFA pneumatic nebulizer and cyclonic spray chamber | Al, Fe, Ti, Si, Ce, Zr, Zn, Sb, and Sn | The elemental composition and associations of natural nanomaterials were analyzed at the single-particle level. Clustering analysis was used to distinguish NNPs. This study provided a methodology and baseline information on NNPs that can be used to differentiate NNPs from ENPs in environmental systems. | [88] |
icpTOF R | Sedimentation basin, road dust, and tunnel road dust | Cloud point extraction and applied to slide | Microflow PFA pneumatic nebulizer and quartz cyclonic spray chamber | Cu, Zn, Sr, Y, Zr, Nb, Rh, Ru, Pd, Sn, Sb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Lu, Hf, Pt, Au, and Pb | Machine learning was developed to label and classify particle samples, providing a fast and effective method for inter- and intra-sample comparisons based on multi-element particle correlations. | [91] |
icpTOF R | Vacuum bag dust samples collected from the International Space Station (ISS) | Dilution, resting, filtration, cleaning with compressed air, and redispersion | Pneumatic nebulizer and cyclonic spray chamber | Zr, Al, Ti, Fe, Ag, Pb, Mo, Cu, Sn, Ni, and Cr | The particle populations composed of different elements in the ISS and their sources were analyzed. | [81] |
icpTOF 2R | WWTPs in Switzerland | Sonication, stewing, and dilution for the top sample | MicroFlow pneumatic nebulizer and PFA T-piece baffled cyclonic spray chamber/microdroplet generator | All elements | The continued development of elemental fingerprints to achieve the automatic quantification and classification of individual particles. | [83,90] |
icpTOF R | NbCN, TiNbCN extracted by steel, and ENPs in soil | Sonication, dilution in ultrahigh purity water | Pneumatic nebulizer and cyclonic spray chamber | All elements | Total element screening and single particle fingerprinting were found to effectively avoid the false results caused by the complex samples of inorganic particles containing organic compounds. | [27] |
icpTOF R | Surface waters following rainfall | Well-shaking, sonication, and centrifugation to remove large particles | Pneumatic nebulizer and cyclonic spray chamber | Ti, Nb, Ce, and La | TiO2 was used as a tracer to monitor urban runoff. The study found that naturally occurring particles had the same elemental ratios and origin. | [84] |
icpTOF R | Yeast cells and algal cells | Dilution in Milli Q water | NC | Mg, P, Ru, Ca, and Fe | After cells were stained with Ru red, it was found that the Ru content was directly related to cell volume, and cell size could be calculated by combining it with known cell shapes, leading to the calculation of the concentration of the target element in individual cells. | [96] |
Vitesse | Global surface waters and precipitation | Sonication and filtration | Aridus II desolator | Ti, Ce, and Ag | The concentrations of Ti-, Ce-, and Ag-containing NPs were presented for both surface waters and precipitation. The origin was determined from the size and composition of the nanoparticles. | [97] |
icpTOF 2R | Pt NPs | Leached with diluted nitric acid and dilution | Microdroplet generator introduction, control, and autosampler system | Pt isotope and W isotope | Using the online isotope dilution analysis method, particles were characterized with a 194Pt/195Pt ratio while monitoring 182W/183W for mass bias correction, allowing an accurate quantification at a high matrix concentration. | [98] |
icpTOF R | Soil spiked TiO2 | <500 nm particle extraction from soil and sludge, enrichment with cloud point extraction, and dilution for analysis | Concentric borosilicate glass nebulizer and baffled cyclonic, high-purity quartz spray chamber | Ti, Ce, Ba, Rb, Fe, Mg, Mn, Nb, Pb, and other earth-abundant elements | Machine learning models of elemental fingerprinting and mass distribution were used to identify TiO2 ENPs and NNPs in soil; this method effectively reduced the effect of a high matrix. | [26] |
icpTOF R | Soil | Same as the last one | Concentric borosilicate glass nebulizer and baffled cyclonic, high-purity quartz spray chamber | Ti isotope | This study is to evaluate the traceability of isotopically enriched ENPs at the individual particle level in soil and provides guidance on the isotope enrichment requirements for the quantification of ENPs from earth-abundant elements in soils. | [99] |
icpTOF 2R | Gunshot residues | Settling to remove large particles and collecting the suspension’s surface | PFA MicroFlow pneumatic nebulizer and quartz cyclonic spray chamber | Mg-U (65 species) | The GSR particles were classified and their particle size was determined. In addition, the composition of the GSR particles was analyzed. | [100] |
icpTOF S2 | Nano-scale mineral dust aerosols (MDAs) in snow | Sonication and filtration | Micro FAST MC autosampler, PFA pneumatic nebulizer, and cyclonic spray chamber | Al, Ti, Mn, Fe, Cu, Zn, Y, Zr, Nb, La, Ce, Nd, Pb, Th, and U | The particle size and composition of MDAs in wet deposits could be effectively analyzed by SP-ICP-TOFMS, but the quantification of the particle number has a greater uncertainty. The characterization of nanoscale MDAs can be used to better understand particle dynamics in the atmosphere. | [89] |
icpTOF S2 | TiO2 in organic matrices | Sonication and dilution in ultrapure water | PFA MicroFlow pneumatic nebulizer and piezoelectric droplet generator cyclonic spray chamber | Cs and Ti | TiO2 NPs in the organic matrix were accurately quantified by using the online microdroplet calibration method. | [72] |
icpTOF S2 | Microplastic containing metals | Aqueous dispersions | Cyclonic spray chamber, quartz nebulizer with nanoparticle measurement, and pneumatic nebulizer with an autosampler for microplastic measurement and microdroplet introduction | C, Ag, Au, Ce, Eu, Ho, and Lu | Low m/z detection capabilities were explored by analyzing carbon and metals in both microdroplets and uniform polystyrene (PS) beads. | [101] |
icpTOF R | Anisotropic copper crystals | Dilution | Microdroplet introduction | Cu, Au, Ag, and Pd | Bimetallic physical mixtures (CuAg + CuPd) could be distinguished from multi-metallic NPs. Nanoscale structures relevant to bulk phenomena could be easily quantified and characterized with ensemble-representative reliability. | [102] |
icpTOF 2R | C/Fe3C NPs in whole blood | 106× dilution | Pneumatic nebulizer and cyclonic spray chamber | Cr, Fe, and Ce | By analyzing the NP mass distributions, the study showed the effect of NP surface modification on the aggregation of C/Fe3C NPs in whole blood. Magnetic filtration was able to significantly reduce detectable particles in water. | [85] |
icpTOF 2R | River and its surrounding tributaries | Soaking with diluted nitric acid, rinsing with Milli-Q water, and filtration | Quartz cyclonic spray chamber | Si, Al, Fe, Pb, Mn, and Ce | Major element distributions showed diverse mineral populations. The elemental symbiosis of Ce/La and symbiosis of Fe, Mn, and Pb were found. | [32] |
icpTOF 2R | Pb NPs were added to lake sediment (LDSK) samples | Centrifugation and colloid extraction procedure | Concentric pneumatic nebulizer combined with a membrane desolvation unit | Pb, Fe, Mg, Mn, Pb, and Zn | The SP-ICP-TOFMS method was developed to extract Pt NPs from LDSK, and its multi-element analysis was used to analyze the symbiotic elements of Pt in LDSK. | [103] |
icpTOF 2R | Ag NPs and algal cells exposed to Ag NPs | Centrifugation and dilution | PFA MicroFlow pneumatic nebulizer and quartz cyclonic spray chamber | Ag isotope | The ability to monitor AgNPs and intracellular silver isotope ratios was investigated. | [104] |
icpTOF R | Road dust particles | Sieving to remove large particles, well-dispersed with tube rotator, centrifugation, and top suspension collected | MicroFlow PFA pneumatic nebulizer and cyclonic spray chamber | Al, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Sn, Ce, Zr, Pb, and W | Samples were analyzed for total metal concentrations, particle elemental composition and ratios, and clustering. The study provided a reliable comprehensive approach to the characterization of road dust particles. | [80] |
icpTOF 2R | Yeast cells | Any consequent dilutions before the injections | Quartz cyclonic spray chamber and SC-175 nebulizer | P and Pb | Coupling Asymmetric Flow Field Fractionation (AF4) with SC-ICP-TOFMS effectively removes the influence of heavy metal ions in the mass spectrum and simplifies the sample analysis process. | [105] |
CyTOF | Intrahepatic and peripheral natural killer (NK) cells | Enzymatical digestion, filtration, and density gradient centrifugation | NC | 32 species transition-metal elements | Revealed the landscape of NK cell phenotypes in HCC patients to find potential immunotherapy targets by profiling the status of 32 surface markers in individual healthy and hepatocarcinoma cells. | [106] |
CyTOF | Human immune cells, stem cells, and tumor cells | Antibody labeling | NC | 194Pt, 195Pt, 196Pt,198Pt, 115In,113In, and Pd | Metallic antibodies were used to label cells and a live cell barcode was established for the analysis of samples containing heterogeneous populations, such as mixtures of tumor cells and tumor-infiltrating leukocytes. | [107] |
CyTOF | Dorsal root ganglia from C57/BL6 mice of both sexes | All samples were thawed, barcode labeled, and uniformly stained | NC | 50 species transition-metal elements and isotopes | A total of 30 molecularly distinct somatosensory glial and 41 distinct neuronal states across all time points in C57/BL6 mice of both sexes from embryonic day 11.5 to postnatal day 4 were quantified. | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Z.; Zheng, L.; Fang, H.; Yang, P.; Wang, B.; Li, L.; Wang, M.; Feng, W. Single Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry—A Powerful Tool for the Analysis of Nanoparticles in the Environment. Processes 2023, 11, 1237. https://doi.org/10.3390/pr11041237
Meng Z, Zheng L, Fang H, Yang P, Wang B, Li L, Wang M, Feng W. Single Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry—A Powerful Tool for the Analysis of Nanoparticles in the Environment. Processes. 2023; 11(4):1237. https://doi.org/10.3390/pr11041237
Chicago/Turabian StyleMeng, Ziwei, Lingna Zheng, Hao Fang, Pu Yang, Bing Wang, Liang Li, Meng Wang, and Weiyue Feng. 2023. "Single Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry—A Powerful Tool for the Analysis of Nanoparticles in the Environment" Processes 11, no. 4: 1237. https://doi.org/10.3390/pr11041237
APA StyleMeng, Z., Zheng, L., Fang, H., Yang, P., Wang, B., Li, L., Wang, M., & Feng, W. (2023). Single Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry—A Powerful Tool for the Analysis of Nanoparticles in the Environment. Processes, 11(4), 1237. https://doi.org/10.3390/pr11041237