Multi-Factor Coupling Analysis of Porous Leakage in Underwater Gas Pipelines
Abstract
:1. Introduction
2. Numerical Model
Governing Equations
3. Numerical Model Verification
3.1. Experiment Settings
3.2. Comparative Analysis of Experimental and Simulation Results
4. Results and Discussion
4.1. Orthogonal Test Simulation Using Mathematics
4.2. Factors Influencing Underwater Gas Diffusion
4.3. Analysis of Porous Effect
4.4. Multi-Factor Coupling Analysis
5. Principle of Similitude
5.1. Similitude Theory
5.2. Similitude Experimental Design
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ji, H.; Xu, M.; Huang, W.; Yang, K. The Influence of Oil leaking rate and Ocean Current Velocity on the Migration and Diffusion of Underwater Oil Spill. Sci. Rep. 2020, 10, 9226. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, L.; Rahdar, A.; Bazrafshan, E.; Dahmardeh, H.; Susan, M.A.B.H.; Kyzas, G.Z. Petroleum Hydrocarbon Removal from Wastewaters: A Review. Processes 2020, 8, 447. [Google Scholar] [CrossRef]
- Yuan, F.; Zeng, Y.; Luo, R.; Khoo, B.C. Numerical and experimental study on the generation and propagation of negative wave in high-pressure gas pipeline leakage. J. Loss Prev. Process Ind. 2020, 65, 104129. [Google Scholar] [CrossRef]
- Pan, Y.; Zhai, S.; Meng, X.; Pei, K.; Huo, F. Study on the Fracturing of Rock by High-Speed Water Jet Impact. Processes 2022, 11, 114. [Google Scholar] [CrossRef]
- Yang, Y.; Khan, F.; Thodi, P.; Abbassi, R. Corrosion induced failure analysis of subsea pipelines. Reliab. Eng. Syst. Saf. 2017, 159, 214–222. [Google Scholar] [CrossRef]
- Arzaghi, E.; Abbassi, R.; Garaniya, V.; Binns, J.; Chin, C.; Khakzad, N.; Reniers, G. Developing a dynamic model for pitting and corrosion-fatigue damage of subsea pipelines. Ocean. Eng. 2018, 150, 391–396. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Zhu, H. Quantitative risk analysis on leakage failure of submarine oil and gas pipelines using Bayesian network. Process Saf. Environ. Prot. 2016, 103, 163–173. [Google Scholar] [CrossRef]
- Liang, H.; Li, H.; Hao, X.; Ge, T. Reasons for subsea pipeline failure and ROV-based inspection technology of subsea pipeline. Oil Gas Storage Transp. 2015, 34, 439–441. [Google Scholar]
- Premathilake, L.T.; Yapa, P.D.; Nissanka, I.D.; Kumarage, P. Impact on water surface due to deepwater gas blowouts. Mar. Pollut. Bull. 2016, 112, 365–374. [Google Scholar] [CrossRef]
- Wang, X.; Luo, J.; Yuan, H.; Luo, Z. Hazard analysis on the offshore natural gas pipelines fatigue failure leakage. Fire Sci. Technol. 2018, 37, 729–732. [Google Scholar]
- Yang, D.; Chen, G.; Shi, J.; Li, X. Effect of gas composition on dispersion characteristics of blowout gas on offshore platform. Int. J. Nav. Archit. Ocean. Eng. 2019, 11, 914–922. [Google Scholar] [CrossRef]
- Jia, M.; Li, F.; Zhang, Y.; Wu, M.; Li, Y.; Feng, S.; Wang, H.; Chen, H.; Ju, W.; Lin, J.; et al. The Nord Stream pipeline gas leaks released approximately 220,000 tonnes of methane into the atmosphere. Environ. Sci. Ecotechnol. 2022, 12, 100210. [Google Scholar] [CrossRef] [PubMed]
- Mocellin, P.; Vianello, C.; Maschio, G. Facing Emerging Risks in Carbon Sequestration Networks. A Comprehensive Source Modelling Approach. Chem. Eng. 2018, 67, 295–300. [Google Scholar] [CrossRef]
- Hissong, D.W.; Pomeroy, J.; Norris, H.L. A mechanistic model for hydrocarbon plumes rising through water. J. Loss Prev. Process Ind. 2014, 30, 236–242. [Google Scholar] [CrossRef]
- Hernández-Báez, Á.; Torres, E.S.; Amaya-Gómez, R.; Pradilla, D. Oil Onshore Pipeline Quantitative Risk Assessment under Fire and Explosion Scenarios. Processes 2023, 11, 557. [Google Scholar] [CrossRef]
- Xinhong, L.; Guoming, C.; Renren, Z.; Hongwei, Z.; Jianmin, F. Simulation and assessment of underwater gas release and dispersion from subsea gas pipelines leak. Process Saf. Environ. Prot. 2018, 119, 46–57. [Google Scholar] [CrossRef]
- Johansen, Ø. DeepBlow–a Lagrangian Plume Model for Deep Water Blowouts. Spill Sci. Technol. Bull. 2000, 6, 103–111. [Google Scholar] [CrossRef]
- Bihs, H.; Kamath, A.; Alagan Chella, M.; Arntsen, Ø.A. Breaking-Wave Interaction with Tandem Cylinders under Different Impact Scenarios. J. Waterw. Port Coast. Ocean. Eng. 2016, 142, 343. [Google Scholar] [CrossRef]
- Cozzuto, G.; Dimakopoulos, A.; De Lataillade, T.; Morillas, P.O.; Kees, C.E. Simulating Oscillatory and Sliding Displacements of Caisson Breakwaters Using a Coupled Approach. J. Waterw. Port Coast. Ocean. Eng. 2019, 145, 504. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, S.; Wang, Z. Quantitative risk assessment of explosion rescue by integrating CFD modeling with GRNN. Process Saf. Environ. Prot. 2021, 154, 291–305. [Google Scholar] [CrossRef]
- Paris, C.B.; Henaff, M.L.; Aman, Z.M.; Subramaniam, A.; Helgers, J.; Wang, D.P.; Kourafalou, V.H.; Srinivasan, A. Evolution of the Macondo well blowout: Simulating the effects of the circulation and synthetic dispersants on the subsea oil transport. Environ. Sci. Technol. 2012, 46, 13293–13302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zheng, J.; Jeng, D.-S.; Guo, Y. Numerical Simulation of Solitary-Wave Propagation over a Steady Current. J. Waterw. Port Coast. Ocean. Eng. 2015, 141, 281. [Google Scholar] [CrossRef]
- Liu, R.; Ding, S.; Ju, G. Numerical Study of Leakage and Diffusion of Underwater Oil Spill by Using Volume-of-Fluid (VOF) Technique and Remediation Strategies for Clean-Up. Processes 2022, 10, 2338. [Google Scholar] [CrossRef]
- Cloete, S.; Olsen, J.E.; Skjetne, P. CFD modeling of plume and free surface behavior resulting from a sub-sea gas release. Appl. Ocean. Res. 2009, 31, 220–225. [Google Scholar] [CrossRef]
- Fan, K.; Wang, W.; Yi, Z.; Liu, R.; Yu, S. Numerical Simulation of Submarine Gas Pipeline Leakage. Contemp. Chem. Ind. 2013, 42, 503–506. [Google Scholar]
- Zhu, P.; Wang, X.S.; Li, G.C.; Liu, Y.P.; Kong, X.X.; Huang, Y.Q.; Yuan, J.W. Experimental study on interaction of water mist spray with high-velocity gas jet. Fire Saf. J. 2017, 93, 60–73. [Google Scholar] [CrossRef]
- Olsen, J.E.; Skjetne, P. Modelling of underwater bubble plumes and gas dissolution with an Eulerian-Lagrangian CFD model. Appl. Ocean. Res. 2016, 59, 193–200. [Google Scholar] [CrossRef]
- Zhang, J.; Zang, X.; Zhang, Y.; He, H.; Chen, H. Dynamic characteristics of plume/ jet from underwater pipe downward leakage. CIESC J. 2016, 67, 4969–4975. [Google Scholar]
- Wu, K.; Cunningham, S.; Sivandran, S.; Green, J. Modelling subsea gas releases and resulting gas plumes using Computational Fluid Dynamics. J. Loss Prev. Process Ind. 2017, 49, 411–417. [Google Scholar] [CrossRef]
- Sun, Y.; Cao, X.; Liang, F.; Bian, J. Investigation on underwater gas leakage and dispersion behaviors based on coupled Eulerian-Lagrangian CFD model-ScienceDirect. Process Saf. Environ. Prot. 2020, 136, 268–279. [Google Scholar] [CrossRef]
- Zhu, H.; Lin, P.; Pan, Q. A CFD (computational fluid dynamic) simulation for oil leakage from damaged submarine pipeline. Energy 2014, 64, 887–899. [Google Scholar] [CrossRef]
- Cai, X.; Yu, Y.; Yu, J.; Zhao, S.; Wang, X. Movement Characteristics of Gas Leakage in Shallow Water Pipeline. China Offshore Platf. 2018, 33, 56–64. [Google Scholar]
- Song, J.; Xiao, W.; Li, C.; Chen, H. Simulation and Orthogonal Test Analysis of Leakage Diffusion of Submarine Gas Pipeline. Oil Field Equip. 2018, 47, 49–56. [Google Scholar]
- Ruppel, C.D.; Waite, W.F. Timescales and Processes of Methane Hydrate Formation and Breakdown, With Application to Geologic Systems. J. Geophys. Res. Solid Earth 2020, 125, e2018JB016459. [Google Scholar] [CrossRef]
- Li, C.; Liu, G. Numerical Simulation for Gas Ieakage from Crossing Pineline under River. World Sci.-Tech. R D 2016, 38, 564–568. [Google Scholar]
- Zhang, Y.; Zhu, J.; Peng, Y.; Pan, J.; Li, Y. Experimental research of flow rate and diffusion behavior of nature gas leakage underwater. J. Loss Prev. Process Ind. 2020, 65, 104119. [Google Scholar] [CrossRef]
- Ji, H.; Zhang, G.; Yan, K.; Chen, J.; Huang, W.; Huang, F. Numerical Simulation on Single-hole Leakage Shock Wave of Submarine Natural Gas Pipeline. Saf. Environ. Eng. 2019, 26, 182–186. [Google Scholar]
- Mocellin, P.; Vianello, C.; Maschio, G. A comprehensive multiphase CO2 release model for carbon sequestration QRA purposes. Modeling and conditions for simplifying assumptions and solid CO2 occurrence. Process Saf. Environ. Prot. 2019, 126, 167–181. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Khan, F. Analysis of underwater gas release and dispersion behavior to assess subsea safety risk. J. Hazard. Mater. 2019, 367, 676–685. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Zhu, H.; Chang, Y. Study on release and dispersion behavior of underwater gas based on Eulerian-Lagrangian approach. J. China Univ. Pet. (Ed. Nat. Sci.) 2019, 43, 131–137. [Google Scholar]
- Li, X.; Chen, G.; Zhu, H.; Xu, C. Gas dispersion and deflagration above sea from subsea release and its impact on offshore platform. Ocean. Eng. 2018, 163, 157–168. [Google Scholar] [CrossRef]
- Xiong, J.; Cheng, R.; Lu, C.; Chai, X.; Liu, X.; Cheng, X. CFD simulation of swirling flow induced by twist vanes in a rod bundle. Nucl. Eng. Des. 2018, 338, 52–62. [Google Scholar] [CrossRef]
- Liu, C.; Liao, Y.; Wang, S.; Li, Y. Quantifying leakage and dispersion behaviors for sub-sea natural gas pipelines. Ocean. Eng. 2020, 216, 108107. [Google Scholar] [CrossRef]
Item | Level | ||
---|---|---|---|
1 | 2 | 3 | |
A: Leak rate/(m·s−1) | 180 | 240 | 300 |
B: Leak diameter/(m) | 0.02 | 0.05 | 0.10 |
C: Water velocity/(m·s−1) | 0.20 | 0.35 | 0.50 |
Case | Item | ||
---|---|---|---|
A | B | C | |
1 | 180 | 0.02 | 0.20 |
2 | 180 | 0.05 | 0.35 |
3 | 180 | 0.10 | 0.50 |
4 | 240 | 0.02 | 0.35 |
5 | 240 | 0.05 | 0.50 |
6 | 240 | 0.10 | 0.20 |
7 | 300 | 0.02 | 0.50 |
8 | 300 | 0.05 | 0.20 |
9 | 300 | 0.10 | 0.35 |
Case | Item | Time/s | ||
---|---|---|---|---|
A: Leak Rate | B: Leak Diameter | C: Water Velocity | ||
1 | 1 | 1 | 1 | 11.2 |
2 | 1 | 2 | 2 | 8.2 |
3 | 1 | 3 | 3 | 7.0 |
4 | 2 | 1 | 2 | 10.6 |
5 | 2 | 2 | 3 | 7.8 |
6 | 2 | 3 | 1 | 6.2 |
7 | 3 | 1 | 3 | 9.6 |
8 | 3 | 2 | 1 | 7.2 |
9 | 3 | 3 | 2 | 5.6 |
k1 | 8.80 | 10.47 | 8.20 | |
k2 | 8.20 | 7.73 | 8.13 | |
k3 | 7.47 | 6.27 | 8.13 | |
R | 1.33 | 4.20 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, H.; Guo, J.; Zhang, G.; Yang, K.; Jiang, J.; Wang, Y.; Xing, Z.; Bi, H. Multi-Factor Coupling Analysis of Porous Leakage in Underwater Gas Pipelines. Processes 2023, 11, 1259. https://doi.org/10.3390/pr11041259
Ji H, Guo J, Zhang G, Yang K, Jiang J, Wang Y, Xing Z, Bi H. Multi-Factor Coupling Analysis of Porous Leakage in Underwater Gas Pipelines. Processes. 2023; 11(4):1259. https://doi.org/10.3390/pr11041259
Chicago/Turabian StyleJi, Hong, Jie Guo, Gao Zhang, Ke Yang, Juncheng Jiang, Yaxin Wang, Zhixiang Xing, and Haipu Bi. 2023. "Multi-Factor Coupling Analysis of Porous Leakage in Underwater Gas Pipelines" Processes 11, no. 4: 1259. https://doi.org/10.3390/pr11041259
APA StyleJi, H., Guo, J., Zhang, G., Yang, K., Jiang, J., Wang, Y., Xing, Z., & Bi, H. (2023). Multi-Factor Coupling Analysis of Porous Leakage in Underwater Gas Pipelines. Processes, 11(4), 1259. https://doi.org/10.3390/pr11041259