Separation of D-Limonene and Other Oxygenated Compounds from Orange Essential Oil by Molecular Distillation and Fractional Distillation with a Wiped Film Evaporator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Physicochemical Properties of Orange Essential Oil
2.2.1. Specific Gravity and Refractive Index
2.2.2. Optical Rotation
2.2.3. Aldehyde Percentage
2.2.4. Miscibility in Ethanol
2.3. Identification and Quantification of Compounds by Gas Chromatography–Mass Spectrometry
2.4. Fractionation of Orange Essential Oil
2.4.1. Molecular Distillation
2.4.2. Fractional Distillation with a Wiped Film Evaporator
2.5. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Characterization
Physicochemical Analysis | This Investigation | PRAAN Naturals® | NHR ESSENTIAL OILS ORGANIC | Javed et al., 2014 [29] |
---|---|---|---|---|
Specific gravity | 0.846 ± 0.0005 | 0.845–0.849 | 0.828–0.855 | 0.842 |
Refractive index | 1.468 ± 0.0021 | 1.472–1.474 | 1.460–1.490 | 1.471 |
Optical rotation (°) | +96.93 ± 0.87 | +94–+99 | +90–+100 | +91 |
Aldehyde percentage | 0.857 ± 0.160 | 0.5–2.5% | NR | NR |
Ethanol miscibility | 1:1 (ethanol 95%:OEO) | Soluble | NR | Soluble |
Retention Time (min) | Identified Compound | Relative Percentage |
---|---|---|
6.189 | α-Pinene | 0.444 |
6.573 | Camphene | 0.002 |
7.329 | β-Pinene | 1.130 |
7.809 | Octanal | 0.140 |
7.997 | α- Phellandrene | 0.026 |
8.369 | α-Terpinene | 0.047 |
8.971 | D-Limonene | 92.589 |
9.828 | γ-Terpinene | 0.013 |
10.845 | Terpinolene | 0.022 |
11.14 | Linalool | 0.465 |
11.305 | Nonanal | 0.020 |
13.336 | β-Citronellal | 0.026 |
14.516 | 1-Terpinen-4-ol | 0.001 |
15.082 | α-Terpineol | 0.031 |
15.642 | Decanal | 0.148 |
16.701 | Nerol (cis-geraniol) | 0.001 |
17.313 | Neral (cis-citral) | 0.033 |
17.885 | Geraniol (trans-geraniol) | 0.001 |
18.692 | Geranial (trans-citral) | 0.040 |
20.483 | Undecanal | 0.015 |
25.604 | Dodecanal | 0.024 |
26.687 | Valencene | 0.012 |
- | Other unidentified compounds | 4.77 |
3.2. Orange Essential oil (OEO) Analysis
3.3. Results of Statistical Analysis
3.3.1. Molecular Distillation
3.3.2. Fractional Distillation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USDA Foreign Agricultural Service. Citrus: World Markets and Trade. 2022. Available online: https://www.fas.usda.gov/data/citrus-world-markets-and-trade (accessed on 30 August 2022).
- Perini, J.F.; Silvestre, W.P.; Agostini, F.; Toss, D.; Pauletti, G.F. Fractioning of Orange (Citrus sinensis L.) essential oil using vacuum fractional distillation. Sep. Sci. Technol. 2017, 52, 1397–1403. [Google Scholar] [CrossRef]
- Gugo, G.; Di Giocamo, A. The Genus Citrus, 1st ed.; Taylor and Francis Group: London, UK, 2002; pp. 114–148. [Google Scholar]
- Golmohammadi, M.; Borghei, A.; Zenouzi, A.; Zenouzi, A. Optimization of essential oil extraction from orange peels using steam explosion. Heliyon 2018, 4, e00893. [Google Scholar] [CrossRef] [Green Version]
- Razola-Díaz, M.; Guerra-Hernández, E.; García-Villanova, B.; Verardo, V. Recent developments in extraction and encapsulation techniques of orange essential oil. Food Chem. 2021, 354, 129575. [Google Scholar] [CrossRef]
- Sahraoui, N.; Abert, M.; El, M.; Boutekedjiret, C.; Chemat, F. Valorization of citrus by-products using Microwave Steam Distillation (MSD). Innov. Food Sci. Emerg. Technol. 2011, 12, 163–170. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Setzer, W.N. Biological Activities and Safety of Citrus spp. Essential Oils. Int. J. Mol. Sci. 2018, 19, 1966. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Liu, K.; Cao, S.; Sun, J.; Zhong, B.; Chun, J. Chemical Composition, Antimicrobial, Antioxidant, and Antiproliferative Properties of Grapefruit Essential Oil Prepared by Molecular Distillation. Molecules 2020, 25, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; Xu, Y.; Wang, X. Microencapsulation of sweet orange oil terpeneless using the orifice method. J. Food Eng. 2012, 110, 390–394. [Google Scholar] [CrossRef]
- Martinello, M.A.; Pagliero, C.L.; Allevi, C.A. Deterpenation of Orange Essential Oil by Molecular Distillation. Int. J. Eng. Trends Technol. 2016, 30, 161–165. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Ramos-Ibarra, J.; Arriola-Guevara, E.; Toriz, G.; Guatemala-Morales, G.; Corona-Gonzalez, R. Enzymatic extraction of limonene, limonin and other relevant compounds from Citrus sinensis (orange) and Citrus aurantiifolia (lime) by-products. Rev. Mex. Ing. Química 2021, 20, 1–13. [Google Scholar] [CrossRef]
- Ketenoglu, O. Molecular Distillation in the Extraction, Recovery, and Concentration of Food Molecules. In Innovative Food Processing Technologies a Comprehensive Review, 1st ed.; Knoerzer, K., Muthukumarappan, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 3, pp. 122–134. [Google Scholar]
- Mezza, G.N.; Borgarello, A.V.; Daguero, J.D.; Pramparo, M.C. Obtention of Rosemary Essential Oil Concentrates by Molecular Distillation and Free Radical Scavenging Capacity Analysis. Int. J. Food Eng. 2013, 9, 147–153. [Google Scholar] [CrossRef]
- Ruben, O.; Nepote, V.; Nelson, R. Antioxidant activity of fractions from oregano essential oils obtained by molecular distillation. Food Chem. 2014, 156, 212–219. [Google Scholar]
- Yang, F.; Zhang, H.; Tian, G.; Ren, W.; Li, J.; Xiao, H.; Zheng, J. Effects of Molecular Distillation on the Chemical Components, Cleaning, and Antibacterial Abilities of Four Different Citrus Oils. Front. Nutr. 2021, 8, 731724. [Google Scholar] [CrossRef] [PubMed]
- Silvestre, W.P.; Livinalli, N.F.; Baldasso, C.; Tessaro, I. Pervaporation in the separation of essential oil components: A review. Trends Food Sci. Technol. 2019, 93, 42–52. [Google Scholar] [CrossRef]
- Silvestre, W.P.; Rilo, F.; Agostini, F.; Toss, D.; Fernandes, F. Fractionation of rosemary (Rosmarinus officinalis L.) essential oil using vacuum fractional distillation. J. Food Sci. Technol. 2019, 56, 5422–5434. [Google Scholar] [CrossRef] [PubMed]
- Do, D.N.; Nguyen, D.P.; Phung, V.-D.; Le, X.-T.; Le, T.M.; Do, V.M.; Minh, B.Q.; Luu, X.C. Fractionating of Lemongrass (Cymbopogon citratus) Essential Oil by Vacuum Fractional Distillation. Processes 2021, 9, 593. [Google Scholar] [CrossRef]
- Stuart, G.; Lopes, D.; Oliveira, J. Deterpenation of Brazilian Orange Peel Oil by Vacuum Distillation. J. Am. Oil Chem. Soc. 2001, 78, 1041–1044. [Google Scholar] [CrossRef]
- Beneti, S.; Rosset, E.; Corazza, M.; Frizzo, C.; Di Luccio, M.; Oliveira, J.V. Fractionation of citronella (Cymbopogon winterianus) essential oil and concentrated orange oil phase by batch vacuum distillation. J. Food Eng. 2011, 102, 348–354. [Google Scholar] [CrossRef]
- Silvestre, W.P.; Agostini, F.; Muniz, L.A.; Pauletti, G.F. Fractionating of green mandarin (Citrus deliciosa Tenore) essential oil by vacuum fractional distillation. J. Food Eng. 2016, 178, 90–94. [Google Scholar] [CrossRef]
- Torres, L. Evaluación de la Destilación Molecular y un Prototipo Híbrido (Destilación Fraccionada con Evaporador de Película Barrida) para la Purificación y Concentración de Compuestos Terpénicos del Aceite Esencial de Naranja (Citrus sinensis). Master’s Thesis, Universidad de Guadalajara, Guadalajara, Mexico, 2013. [Google Scholar]
- Can, K.; Buchbauer, G. Handbook of Essential Oils Science, Technology and Applications, 2nd ed.; Taylor and Francis Group: Boca Raton, FL, USA, 2016; pp. 165–229. [Google Scholar]
- Fakayode, O.A.; Abobi, K.E. Optimization of oil and pectin extraction from orange (Citrus sinensis) peels: A response surface approach. J. Anal. Sci. Technol. 2018, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Valarezo, E.; Ojeda-Riascos, S.; Cartuche, L.; Andrade-González, N.; González-Sanchez, I.; Meneses, M. Extraction and Study of the Essential Oil of Copal (Dacryodes peruviana), an Amazonian Fruit with the Highest Yield Worldwide. Plants 2020, 9, 1658. [Google Scholar] [CrossRef] [PubMed]
- Torres-Alvarez, C.; Núñez, A.; Rodríguez, J.; Castillo, S.; Leos-Rivas, C.; Báez-González, J. Chemical composition, antimicrobial, and antioxidant activities of orange essential oil and its concentrated oils. CyTA—J. Food 2016, 15, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Clarke, S. Essential Chemistry for Aromatherapy, 2nd ed.; Churchill Livingstone Elsevier: London, UK, 2008; pp. 104–105. [Google Scholar]
- Javed, S.; Javaid, A.; Nawaz, S.; Saeed, M.; Mahmood, Z.; Siddiqui, S.; Ahmad, R. Phytochemistry, GC-MS Analysis, Antioxidant and Antimicrobial Potential of Essential Oil from Five Citrus Species. J. Agric. Sci. 2014, 6, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Sims, C.; Etxeberria, E.; Goodrich Schneider, R. Physicochemical and Sensory Properties of Cold Pressed Oils from Florida Hamlin and Valencia Oranges Affected by Huanglongbing. J. Food Sci. 2017, 82, 2158–2166. [Google Scholar] [CrossRef]
- Muhoho Njoroge, S.; Koaze, H.; Karanja, P.N.; Sawamura, M. Essential oil constituents of three varieties of Kenyan sweet oranges (Citrus sinensis). Flavour Fragance J. 2005, 20, 80–85. [Google Scholar] [CrossRef]
- Natural Sourcing. Organic Sweet Orange Essential Oil. 2022. Available online: http://www.praannaturals.com/downloads/specsheets/SPEC_Organic_Essential_Oil_Orange_CP_OEOORANGECPMXUS291.pdf (accessed on 2 September 2022).
- NHR Organic Oils. Organic Orange Essential Oil Sweet (Citrus sinensis). 2022. Available online: https://www.nhrorganicoils.com/uploads/20170505112247e_Orange_Spec.pdf (accessed on 2 September 2022).
- Madeiros, P. Gas Chromatography–Mass Spectrometry (GC–MS). In Encyclopedia of Geochemistry a Comprehensive Reference Source on the Chemistry of the Earth, 1st ed.; White, W., Ed.; Springer: Cham, Switzerland, 2018; pp. 530–535. [Google Scholar]
- Ayala, J.; Montero, G.; Campbell, H.; García, C.; Coronado, M.; León, J.; Sagaste, C.; Pérez, L. Extraction and Characterization of Orange Peel Essential Oil from Mexico and United States of America. J. Essent. Oil Bear. Plants 2017, 20, 897–914. [Google Scholar] [CrossRef]
- Farhat, A.; Fabiano-Tixier, A.-S.; El Maataoui, M.; Maingonnat, J.; Romdhane, M.; Chemat, F. Microwave steam diffusion for extraction of essential oil from orange peel: Kinetic data, extract’s global yield and mechanism. Food Chem. 2011, 125, 255–261. [Google Scholar] [CrossRef]
- Mitiku, S.; Sawamura, M.; Itoh, T.; Ukeda, H. Volatile components of peel cold-pressed oils of two cultivars of sweet orange (Citrus sinensis (L.) Osbeck) from Ethiopia. Flavour Fragance J. 2000, 15, 240–244. [Google Scholar] [CrossRef]
- Martins, P.F.; Medeiros, H.H.; Sbaite, P.; Wolf Maciel, M.R. Enrichment of oxyterpenes from orange oil by short path evaporation. Sep. Purif. Technol. 2013, 116, 385–390. [Google Scholar] [CrossRef]
- Qiao, Y.; Xie, B.J.; Zhang, Y.; Fan, G.; Yao, X.L.; Pan, S.Y. Characterization of aroma active compounds in fruit juice and peel oil of Jinchen sweet orange fruit (Citrus sinensis (L.) Osbeck) by GC-MS and GC-O. Molecules 2008, 13, 1333–1344. [Google Scholar] [CrossRef] [Green Version]
- Haypek, E.; Silva, L.; Batista, E.; Marques, D.; Meireles, M.; Meirelles, A. Recovery of aroma compounds from orange. Braz. J. Chem. Eng. 2000, 17, 705–712. [Google Scholar] [CrossRef]
- Gutiérrez, H.; De la Vara, R. Análisis y Diseño de Experimentos, 2nd ed.; McGraw-Hill Companies/Interamericana Editores S.A. de C.V.: Mexico City, Mexico, 2008; pp. 384–420. [Google Scholar]
Run | Feed (g/min) | Pressure (mmHg) | Temperature (°C) | Distillate | Residue |
---|---|---|---|---|---|
D-Limonene (%) | D-Limonene (%) | ||||
1 | 9.5 | 1.5 | 30 | 91.875 | 90.501 |
2 | 11.5 | 1.5 | 30 | 91.124 | 91.285 |
3 | 9.5 | 2 | 30 | 90.882 | 91.754 |
4 | 11.5 | 2 | 30 | 90.130 | 91.805 |
5 | 9.5 | 1.5 | 35 | 92.688 | 47.964 |
6 | 11.5 | 1.5 | 35 | 92.367 | 82.340 |
7 | 9.5 | 2 | 35 | 91.668 | 90.171 |
8 | 11.5 | 2 | 35 | 91.464 | 91.521 |
9 | 10.5 | 1.75 | 32.5 | 91.546 | 90.951 |
10 | 10.5 | 1.75 | 32.5 | 91.488 | 91.151 |
11 | 10.5 | 1.75 | 32.5 | 91.502 | 91.207 |
12 | 10.5 | 1.75 | 32.5 | 91.189 | 90.941 |
13 | 10.5 | 1.75 | 32.5 | 91.747 | 90.790 |
Distillate | Residue | |||||||
---|---|---|---|---|---|---|---|---|
D-Limonene | D-Limonene | |||||||
Source | SS b | MS c | F-Value d | p-Value e | SS b | MS c | F-Value d | p-Value e |
Model | 4.73 | 0.7878 | 28.75 | 0.0004 | 1478.45 | 246.41 | 5.82 | 0.0250 |
X1 a | 0.5141 | 0.5141 | 18.76 | 0.0049 | 167.09 | 167.09 | 3.94 | 0.0942 |
X2 a | 1.91 | 1.91 | 69.74 | 0.0002 | 353.26 | 353.26 | 8.34 | 0.0278 |
X3 a | 2.18 | 2.18 | 79.55 | 0.0001 | 355.76 | 355.76 | 8.40 | 0.0274 |
X1 X2 | 0.0017 | 0.0017 | 0.0614 | 0.8126 | 142.46 | 142.46 | 3.36 | 0.1164 |
X1 X3 | 0.1196 | 0.1196 | 4.36 | 0.0817 | 152.17 | 152.17 | 3.59 | 0.1069 |
X2 X3 | 0.0005 | 0.0005 | 0.0187 | 0.8957 | 307.71 | 307.71 | 7.26 | 0.0358 |
Pure Error | 0.1598 | 0.0400 | 0.1153 | 0.0288 | ||||
Cor Total | 4.89 | 1732.62 |
Distillation | Fractions | Model | Equation | R2 |
---|---|---|---|---|
Molecular | Distillate | D-Limonene | a | 0.9664 |
Residue | D-Limonene | a | 0.8533 |
Run | Temperature (°C) | Feed (g/min) | Reflux | Distillate | Residue |
---|---|---|---|---|---|
D-Limonene (%) | D-Limonene (%) | ||||
1 | 60 | 4 | 0 | 93.021 | 86.779 |
2 | 80 | 4 | 0 | 93.224 | 87.260 |
3 | 60 | 10 | 0 | 91.495 | 93.059 |
4 | 80 | 10 | 0 | 92.995 | 89.789 |
5 | 60 | 4 | 1 | 92.777 | 90.887 |
6 | 80 | 4 | 1 | 93.121 | 88.446 |
7 | 60 | 10 | 1 | 89.602 | 93.587 |
8 | 80 | 10 | 1 | 92.321 | 92.348 |
9 | 70 | 7 | 0.5 | 92.446 | 91.353 |
10 | 70 | 7 | 0.5 | 92.411 | 92.589 |
11 | 70 | 7 | 0.5 | 92.513 | 92.153 |
12 | 70 | 7 | 0.5 | 91.960 | 92.582 |
Distillate | Residue | |||||||
---|---|---|---|---|---|---|---|---|
D-Limonene | D-Limonene | |||||||
Source | SS b | MS c | F-Value d | p-Value e | SS b | MS c | F-Value d | p-Value e |
Model | 10.54 | 1.76 | 26.13 | 0.0013 | 45.22 | 7.54 | 2.75 | 0.1434 |
X1 a | 2.84 | 2.84 | 42.24 | 0.0013 | 5.23 | 5.23 | 1.91 | 0.2257 |
X2 a | 4.10 | 4.10 | 61.06 | 0.0006 | 29.69 | 29.69 | 10.83 | 0.0217 |
X3 a | 1.06 | 1.06 | 15.79 | 0.0106 | 8.78 | 8.78 | 3.20 | 0.1335 |
X1 X2 | 1.69 | 1.69 | 25.07 | 0.0041 | 0.8122 | 0.8122 | 0.2963 | 0.6096 |
X1 X3 | 0.2312 | 0.2312 | 3.44 | 0.1228 | 0.0992 | 0.0992 | 0.0362 | 0.8566 |
X2 X3 | 0.6160 | 0.6160 | 9.16 | 0.0292 | 0.6089 | 0.6089 | 0.2221 | 0.6573 |
Pure Error | 0.1904 | 0.0635 | 1.01 | 0.3377 | ||||
Cor Total | 10.87 | 58.92 |
Distillation | Fractions | Model | Equation | R2 |
---|---|---|---|---|
Fractional | Distillate | D-Limonene | a | 0.9691 |
Residue | D-Limonene | a | 0.7674 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Fajardo, J.A.; Flores-Méndez, D.A.; Suárez-Jacobo, Á.; Torres-Martínez, L.G.; Granados-Vallejo, M.; Corona-González, R.I.; Guatemala-Morales, G.M.; Arriola-Guevara, E. Separation of D-Limonene and Other Oxygenated Compounds from Orange Essential Oil by Molecular Distillation and Fractional Distillation with a Wiped Film Evaporator. Processes 2023, 11, 991. https://doi.org/10.3390/pr11040991
García-Fajardo JA, Flores-Méndez DA, Suárez-Jacobo Á, Torres-Martínez LG, Granados-Vallejo M, Corona-González RI, Guatemala-Morales GM, Arriola-Guevara E. Separation of D-Limonene and Other Oxygenated Compounds from Orange Essential Oil by Molecular Distillation and Fractional Distillation with a Wiped Film Evaporator. Processes. 2023; 11(4):991. https://doi.org/10.3390/pr11040991
Chicago/Turabian StyleGarcía-Fajardo, Jorge Alberto, David Antonio Flores-Méndez, Ángela Suárez-Jacobo, Lilia Guadalupe Torres-Martínez, Miriam Granados-Vallejo, Rosa Isela Corona-González, Guadalupe María Guatemala-Morales, and Enrique Arriola-Guevara. 2023. "Separation of D-Limonene and Other Oxygenated Compounds from Orange Essential Oil by Molecular Distillation and Fractional Distillation with a Wiped Film Evaporator" Processes 11, no. 4: 991. https://doi.org/10.3390/pr11040991
APA StyleGarcía-Fajardo, J. A., Flores-Méndez, D. A., Suárez-Jacobo, Á., Torres-Martínez, L. G., Granados-Vallejo, M., Corona-González, R. I., Guatemala-Morales, G. M., & Arriola-Guevara, E. (2023). Separation of D-Limonene and Other Oxygenated Compounds from Orange Essential Oil by Molecular Distillation and Fractional Distillation with a Wiped Film Evaporator. Processes, 11(4), 991. https://doi.org/10.3390/pr11040991