Availability of Biomass and Potential of Nanotechnologies for Bioenergy Production in Jordan
Abstract
:1. Introduction
2. Nanoparticle: Preparation, Synthesis, and Characterization
2.1. Nanoparticles-Synthesis
2.2. Nanoparticles-Characterizations
3. Plant-Based Nanoparticles
3.1. Natural Sources (Plant-Based) of Inorganic Nanoparticles
3.2. Metallic Nanoparticles-Synthesized Based on Plants
4. Bioenergy Production and Blending with Nanotechnologies
4.1. Biofuels Production Utilizaing Nanotechnologies
Bioethanol Production Utilizaing Nanotechnologies
4.2. Biodiesel Production and Blending with Nanotechnologies
4.2.1. Biodiesel Production from Waste Tomatoes by Using Nanoparticles
4.2.2. Biodiesel Nano-Additives’ Effects in Internal Combustion Engines
4.3. Biofuel Cells by Using Nanotechnologies
4.4. Biogas Production by Using Nanotechnologies
5. Potential Biomass Supply in Jordan
6. Potential Bioenergy Supply in Jordan
6.1. Potential Bioenergy from Crop Residues in Jordan
6.1.1. Biofuel from Corn Leaf Waste in Jordan
6.1.2. Biodiesel from Jojoba in Jordan
6.1.3. Biodiesel from Citrullus colocynthis in Jordan
6.1.4. Biodiesel from Jatropha in Jordan
6.2. Potential Yield of Biogases in Jordan
7. Potential Bioenergy Production and Blending with Nanotechnologies Discussion
8. Conclusions
- Nanoparticles can boost overall performance in biofuel production in range of (82.3–98.0%);
- To fulfill the next energy requirements, nanoparticles have the potential to significantly improve the quality and quantity of biofuel production in range of (11.0–166.1%);
- Nanoparticles have enhanced the emissions, efficiency, and combustion characteristics of IC engines; BSFC (0.20–1.08 kg/kWh) and BTE (24.5–40%), CO (0.02–0.44% by volume), NOx (257.37–1600 ppm), hydrocarbon (12–102 ppm), and smoke opacity (0.706–52%);
- Nanotechnologies employed in conjunction with bioenergy production could contribute significantly to Jordan’s energy mix. This would have a significant positive socioeconomic and environmental impact, as well as contribute to Jordan’s energy independence and environmental protection;
- Jordan’s bioenergy/biomass savings and revenue would allow for further investments into health, education, and social assets that would improve long-term local security, livelihood, and productivity;
- In the future, nanoparticle technologies will have large-scale applications in biofuel production and the fuel sector, overcoming numerous technological and commercial obstacles.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
ABEI | Acetone-Butanol-Ethanol-Isopropanol |
AD | Anaerobic Digestion |
Au | Gold |
BD | Bio Diesel |
BFCS | Biofuel Cells |
BG | Biogas |
BMEP | Brake Mean Effective Pressure |
BSFC | Brake-Specific Fuel Consumption |
BTE | Brake thermal efficiency |
CA | Citric Acid |
CAPEX | Capital Expenditure |
CBNs | Carbon-Based Nanomaterials |
CBSCs | Carbon-Based Sulfonated Catalysts |
CaO | Calcium Oxide |
CH4 | Methane |
CHC | Canola Hazelnut Cottonseed |
CI | Compression Ignition |
CNT | Carbon Nano Tube |
CO | Carbone Monoxide |
CO2 | Carbone Dioxide |
CP | Cylinder Pressure |
cSt | Centistokes |
DI | Direct Injection |
Db | Dry Basis |
EBFCs | Enzymatic Biofuel Cells |
EGT | Exhaust Gas Temperature |
FAME | Fatty Acid Methyl Ester |
FC | Fuel Cell |
Fe | Iron |
FFA | Free Fatty Acid |
GHGs | Greenhouse Gases |
GOx | Glucose Oxidase |
Ha | Hectare |
HC | Hydro Carbone |
HEOC | Hybrid Enzymatic and Organic Cascade |
HHR | Heat Release Rate |
HTCC | Hydrothermal Carbon Catalyst |
H2SO4 | Sulfuric Acid |
I2 | Iodine |
IRR | Internal Rate of Return |
KOH | Potassium Hydroxide |
LFG | Landfill Gas |
MCM | Million Cubic Meter |
MFCs | Microbial Fuel Cells |
MgO | Magnesium Oxide |
Ml | Milliliter |
MOME | Mustard Oil Methyl Ester |
MSW | Municipal Solid Waste |
Na2SO4 | Sodium Sulfate |
NaOH | Sodium Hydroxide |
Nm | Nano Meter |
NOx | Nitrogen Oxides |
NPs | Nano Particles |
NPV | Net Present Value |
OPEX | Operating Expenditure |
PM | Particle Matter |
PMEFCs | Proton Exchange Membrane Fuel Cells |
Pt | Platinum |
RE | Renewable Energy |
SCS | Sunflower Corn–Soybean |
STC | Standard Test Conditions |
TEMPO | 2,2,6,6-tetramethyl-1-piperidine N-oxyl |
TL | Thermomyces Lanuginosus |
tph | Ton per Hour |
VS | Volatile Solid |
Wi | Indicated Work |
wt% | Percentage Weight |
WWTPs | Wastewater Treatment Plants |
References
- Abu-Rumman, G.; Khdair, A.I.; Khdair, S.I. Current status and future investment potential in renewable energy in Jordan: An overview. Heliyon 2020, 6, e03346. [Google Scholar] [CrossRef]
- Franceschini, B.; Guardo, A.; Renzulli, A.A.A.; Reem, H.Z. Renewable Energy Sector Development in Jordan; Ministry of Energy and Mineral Resources: Cape Town, South Africa, 2019. Available online: https://www.export.gov/apex/article2?id=Jordan-Renewable-Energy (accessed on 20 November 2022).
- Albatayneh, A.; Juaidi, A.; Abdallah, R.; Peña-Fernández, A.; Manzano-Agugliaro, F. Effect of the subsidised electrical energy tariff on the residential energy consumption in Jordan. Energy Rep. 2022, 8, 893–903. [Google Scholar] [CrossRef]
- Sayed, E.T.; Rezk, H.; Olabi, A.G.; Gomaa, M.R.; Hassan, Y.B.; Rahman, S.M.A.; Shah, S.K.; Abdelkareem, M.A. Application of Artificial Intelligence to Improve the Thermal Energy and Exergy of Nanofluid-Based PV Thermal/Nano-Enhanced Phase Change Material. Energies 2022, 15, 8494. [Google Scholar] [CrossRef]
- Aziz, A.S.; Tajuddin, M.F.N.; Adzman, M.R.; Azmi, A.; Ramli, M.A. Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: A case study of Iraq. Renew. Energy 2019, 138, 775–792. [Google Scholar] [CrossRef]
- Das, B.K.; Al-Abdeli, Y.M.; Woolridge, M. Effects of battery technology and load scalability on stand-alone PV/ICE hybrid micro-grid system performance. Energy 2018, 168, 57–69. [Google Scholar] [CrossRef]
- Gomaa, M.R.; Al-Bawwat, A.K.; Al-Dhaifallah, M.; Rezk, H.; Ahmed, M. Optimal design and economic analysis of a hybrid renewable energy system for powering and desalinating seawater. Energy Rep. 2023, 9, 2473–2493. [Google Scholar] [CrossRef]
- Løkke, S.; Aramendia, E.; Malskær, J. A review of public opinion on liquid biofuels in the EU: Current knowledge and future challenges. Biomass Bioenergy 2021, 150, 106094. [Google Scholar] [CrossRef]
- Mustafa, R.J.; Gomaa, M.R.; Al-Dhaifallah, M.; Rezk, H. Environmental Impacts on the Performance of Solar Photovoltaic Systems. Sustainability 2020, 12, 608. [Google Scholar] [CrossRef]
- Kiwan, S.; Al-Gharibeh, E. Jordan toward a 100% renewable electricity system. Renew. Energy 2019, 147, 423–436. [Google Scholar] [CrossRef]
- Alshare, A.; Tashtoush, B.; Altarazi, S.; El-Khalil, H. Energy and economic analysis of a 5 MW photovoltaic system in northern Jordan. Case Stud. Therm. Eng. 2020, 21, 100722. [Google Scholar] [CrossRef]
- JT, Jordan Tops Region in Clean Energy Investment Ranking for 2019, the Jordan Times. 2019. Available online: https://jordantimes.com/news/local/jordan-tops-region-clean-energy-investment-ranking-2019 (accessed on 15 May 2022).
- Hasan, A.O.; Al-Rawashdeh, H.; Abu-Jrai, A.; Gomaa, M.R.; Jamil, F. Impact of variable compression ratios on engine performance and unregulated HC emitted from a research single cylinder engine fueled with commercial gasoline. Int. J. Hydrog. Energy, 2022; in press. [Google Scholar] [CrossRef]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Henderson, O.P. Biomass for Energy. Energy Stud. Rev. 1989, 1, 1–168. [Google Scholar] [CrossRef]
- Araujo, V.K.W.S.; Hamacher, S.; Scavarda, L.F. Economic assessment of biodiesel production from waste frying oils. Bioresour. Technol. 2010, 101, 4415–4422. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, L.; Kannangara, M.; Bensebaa, F. Cost-effectiveness of small scale biomass supply chain and bioenergy production systems in carbon credit markets: A life cycle perspective. Sustain. Energy Technol. Assess. 2020, 37, 100627. [Google Scholar] [CrossRef]
- Zhang, S.; Gilless, J.K.; Stewart, W. Modeling price-driven interactions between wood bioenergy and global wood product markets. Biomass Bioenergy 2014, 60, 68–78. [Google Scholar] [CrossRef]
- Jiang, Y.; van der Werf, E.; van Ierland, E.C.; Keesman, K.J. The potential role of waste biomass in the future urban electricity system. Biomass Bioenergy 2017, 107, 182–190. [Google Scholar] [CrossRef]
- Panwar, N.L.; Kaushik, S.C.; Kothari, S. Role of renewable energy sources in environmental protection: A review. Renew. Sustain. Energy Rev. 2011, 15, 1513–1524. [Google Scholar] [CrossRef]
- Parikka, M. Global biomass fuel resources. Biomass Bioenergy 2004, 27, 613–620. [Google Scholar] [CrossRef]
- Kamel, S.; El-Sattar, H.A.; Vera, D.; Jurado, F. RETRACTED: Bioenergy potential from agriculture residues for energy generation in Egypt. Renew. Sustain. Energy Rev. 2018, 94, 28–37. [Google Scholar] [CrossRef]
- Hasan, A.O.; Osman, A.I.; Al-Muhtaseb, A.H.; Al-Rawashdeh, H.; Abu-Jrai, A.; Ahmad, R.; Gomaa, M.R.; Deka, T.J.; Rooney, D.W. An experimental study of engine characteristics and tailpipe emissions from modern DI diesel engine fuelled with methanol/diesel blends. Fuel Process. Technol. 2021, 220, 106901. [Google Scholar] [CrossRef]
- Gomaa, M.R.; Al-Dmour, N.; Al-Rawashdeh, H.A.; Shalby, M. Theoretical model of a fluidized bed solar reactor design with the aid of MCRT method and synthesis gas production. Renew. Energy 2019, 148, 91–102. [Google Scholar] [CrossRef]
- Gomaa, M.R.; Mustafa, R.J.; Al-Dmour, N. Solar thermochemical conversion of carbonaceous materials into syngas by Co-Gasification. J. Clean. Prod. 2019, 248, 119185. [Google Scholar] [CrossRef]
- Memon, S.S.; Memon, N.; Memon, S.; Lachgar, A.; Memon, A. Batch to batch variation study for biodiesel production by hydrothermal carbon catalyst: Preparation, characterization and its application. Mater. Res. Express 2020, 7, 015521. [Google Scholar] [CrossRef]
- Kherissat, F.; Al-Esawi, D. Checklist of Wadi Hassan flora, Northeastern Badia, Jordan. Plant Divers. 2019, 41, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Ty, M.; Mousa, T.Y. Food Security, Food Waste, and Food Donation and Redistribution in Jordan. Austin J. Nutr. Food Sci. 2020, 8, 1145. Available online: www.austinpublishinggroup.com (accessed on 20 March 2022).
- Jaber, J.; Elkarmi, F.; Alasis, E.; Kostas, A. Employment of renewable energy in Jordan: Current status, SWOT and problem analysis. Renew. Sustain. Energy Rev. 2015, 49, 490–499. [Google Scholar] [CrossRef]
- Sandri, S.; Hussein, H.; Alshyab, N. Sustainability of the Energy Sector in Jordan: Challenges and Opportunities. Sustainability 2020, 12, 10465. [Google Scholar] [CrossRef]
- Khresat, A. The Energy Sector of Jordan; Abdulhameed Shoman Foundation: Amman, Jordan, 2008. (In Arabic) [Google Scholar]
- Lasensky, S. Jordan and Iraq—Between cooperation and crisis. In Regional Influences on Iraq; Nova Science Publishers: Hauppauge, NY, USA, 2010. [Google Scholar]
- Seedan, M. Sustainable Energy Mix and Policy Framework for Jordan. 2011. Available online: https://library.fes.de/pdf-files/bueros/amman/08883.pdf (accessed on 17 March 2022).
- Ministry of Energy and Mineral Resources of Hashemite Kingdom of Jordan. Updated Master Strategy of Energy Sector in Jordan 2007–2020; Ministry of Energy and Mineral Resources of Hashemite Kingdom of Jordan: Amman, Jordan, 2007. Available online: https://www.memr.gov.jo/EBV4.0/Root_Storage/EN/EB_Info_Page/energystrategy.pdf (accessed on 17 March 2022).
- Ministry of Agriculture, DSS (Department of Statistical Studies, Ministry of Agriculture). Annual Report; Ministry of Agriculture: Amman, Jordan, 2013. Available online: http://www.dos.gov.jo/dos_home_e/main/ (accessed on 22 March 2022).
- Al-Hamamre, Z.; Saidan, M.; Hararah, M.; Rawajfeh, K.; Alkhasawneh, H.E.; Al-Shannag, M. Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renew. Sustain. Energy Rev. 2017, 67, 295–314. [Google Scholar] [CrossRef]
- Al-Hamamre, Z.; Al-Matar, A.; Sweis, F.; Rawajfeh, K. Assessment of the status and outlook of biomass energy in Jordan. Energy Convers. Manag. 2014, 77, 183–192. [Google Scholar] [CrossRef]
- Mandotra, S.K.; Kumar, R.; Upadhyay, S.K.; Ramteke, P.W. Nanotechnology: A New Tool for Biofuel Production. Green Nanotechnol. Biofuel Prod. 2018, 5, 17–28. [Google Scholar] [CrossRef]
- Antunes, F.A.F.; Gaikwad, S.; Ingle, A.P.; Pandit, R.; dos Santos, J.C.; Rai, M.; da Silva, S.S. Bioenergy and Biofuels: Nanotechnological Solutions for Sustainable Production. In Nanotechnology for Bioenergy and Biofuel Production; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Raju, V.; Reddy, S.; Venu, H.; Subramani, L.; Soudagar, M.E.M. Effect of Nanoparticles in Bio-Oil on the Performance, Combustion and Emission Characteristics of a Diesel Engine. In Liquid Biofuels: Fundamentals, Characterization, and Applications; Wiley-Scrivener: Beverly, MA, USA, 2021. [Google Scholar] [CrossRef]
- Basha, J.S.; Al Balushi, M.; Soudagar, M.E.M.; Safaei, M.R.; Mujtaba, M.A.; Khan, T.M.Y.; Hossain, N.; Elfasakhany, A. Applications of Nano-Additives in Internal Combustion Engines: A Critical Review. J. Therm. Anal. Calorim. 2022, 147, 9383–9403. [Google Scholar] [CrossRef]
- Banković–Ilić, I.B.; Miladinović, M.R.; Stamenković, O.S.; Veljković, V.B. Application of nano CaO–based catalysts in biodiesel synthesis. Renew. Sustain. Energy Rev. 2017, 72, 746–760. [Google Scholar] [CrossRef]
- Saxena, V.; Kumar, N.; Saxena, V. A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled C.I. engine. Renew. Sustain. Energy Rev. 2017, 70, 563–588. [Google Scholar] [CrossRef]
- Ingle, A.P.; Chandel, A.K.; Philippini, R.; Martiniano, S.E.; da Silva, S.S. Advances in Nanocatalysts Mediated Biodiesel Production: A Critical Appraisal. Symmetry 2020, 12, 256. [Google Scholar] [CrossRef]
- Banerjee, S.; Rout, S.; Banerjee, S.; Atta, A.; Das, D. Fe2O3 nanocatalyst aided transesterification for biodiesel production from lipid-intact wet microalgal biomass: A biorefinery approach. Energy Convers. Manag. 2019, 195, 844–853. [Google Scholar] [CrossRef]
- Lee, Y.-C.; Lee, K.; Oh, Y.-K. Recent nanoparticle engineering advances in microalgal cultivation and harvesting processes of biodiesel production: A review. Bioresour. Technol. 2015, 184, 63–72. [Google Scholar] [CrossRef]
- Chung, K.-H.; Kim, J.; Lee, K.-Y. Biodiesel production by transesterification of duck tallow with methanol on alkali catalysts. Biomass Bioenergy 2009, 33, 155–158. [Google Scholar] [CrossRef]
- Ganesan, S.; Sivasubramanian, R.; Sajin, J.B.; Subbiah, G.; Devarajan, Y. Performance and emission study on the effect of oxygenated additive in neat Biofuel fueled diesel engine. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 2017–2027. [Google Scholar]
- Gurusamy, S.; Kulanthaisamy, M.R.; Hari, D.G.; Veleeswaran, A.; Thulasinathan, B.; Muthuramalingam, J.B.; Balasubramani, R.; Chang, S.W.; Arasu, M.V.; Al-Dhabi, N.A.; et al. Environmental friendly synthesis of TiO2-ZnO nanocomposite catalyst and silver nanomaterials for the enhanced production of biodiesel from Ulva lactuca seaweed and potential antimicrobial properties against the microbial pathogens. J. Photochem. Photobiol. B Biol. 2019, 193, 118–130. [Google Scholar] [CrossRef]
- Baskar, G.; Gurugulladevi, A.; Nishanthini, T.; Aiswarya, R.; Tamilarasan, K. Optimization and kinetics of biodiesel production from Mahua oil using manganese doped zinc oxide nanocatalyst. Renew. Energy 2017, 103, 641–646. [Google Scholar] [CrossRef]
- Vahid, B.R.; Haghighi, M. Biodiesel production from sunflower oil over MgO/MgAl2O4 nanocatalyst: Effect of fuel type on catalyst nanostructure and performance. Energy Convers. Manag. 2017, 134, 290–300. [Google Scholar] [CrossRef]
- Bet-Moushoul, E.; Farhadi, K.; Mansourpanah, Y.; Nikbakht, A.M.; Molaei, R.; Forough, M. Application of CaO-based/Au nanoparticles as heterogeneous nanocatalysts in biodiesel production. Fuel 2016, 164, 119–127. [Google Scholar] [CrossRef]
- Istadi, I.; Prasetyo, S.A.; Nugroho, T.S. Characterization of K2O/CaO-ZnO Catalyst for Transesterification of Soybean Oil to Biodiesel. Procedia Environ. Sci. 2015, 23, 394–399. [Google Scholar] [CrossRef]
- Abomohra, A.E.-F.; Elsayed, M.; Esakkimuthu, S.; El-Sheekh, M.; Hanelt, D. Potential of fat, oil and grease (FOG) for biodiesel production: A critical review on the recent progress and future perspectives. Prog. Energy Combust. Sci. 2020, 81, 100868. [Google Scholar] [CrossRef]
- Borah, M.J.; Das, A.; Das, V.; Bhuyan, N.; Deka, D. Transesterification of waste cooking oil for biodiesel production catalyzed by Zn substituted waste egg shell derived CaO nanocatalyst. Fuel 2019, 242, 345–354. [Google Scholar] [CrossRef]
- Ram, S.K.L.; Kumar, R.; Yellapu, S.K.; Kaur, R.; Tyagi, R.D. Economic Evaluation of Biodiesel Production Processes. In Statistical Analysis of Hydrologic Variables: Methods and Applications; American Society of Civil Engineers: New York, NY, USA, 2019; Chapter 22. [Google Scholar] [CrossRef]
- Savic, N.; Rahman, M.; Miljevic, B.; Saathoff, H.; Naumann, K.; Leisner, T.; Riches, J.; Gupta, B.; Motta, N.; Ristovski, Z. Influence of biodiesel fuel composition on the morphology and microstructure of particles emitted from diesel engines. Carbon 2016, 104, 179–189. [Google Scholar] [CrossRef]
- Jamil, F.; Al-Muhtaseb, A.; Myint, M.T.Z.; Al-Hinai, M.; Al-Haj, L.; Baawain, M.; Al-Abri, M.; Kumar, G.; Atabani, A.E. Biodiesel production by valorizing waste Phoenix dactylifera L. Kernel oil in the presence of synthesized heterogeneous metallic oxide catalyst (Mn@MgO-ZrO2). Energy Convers. Manag. 2018, 155, 128–137. [Google Scholar] [CrossRef]
- Rahimzadeh, H.; Tabatabaei, M.; Aghbashlo, M.; Panahi, H.K.S.; Rashidi, A.; Goli, S.A.H.; Mostafaei, M.; Ardjmand, M.; Nizami, A.S. Potential of acid-activated bentonite and SO3H-functionalized MWCNTs for Biofuel production from residual olive oil under biorefinery scheme. Front. Energy Res. 2018, 6, 137. [Google Scholar] [CrossRef]
- Moses, E.; Thliza, B.A.; Shanu, B.U. Nanotechnical Production and Optimization of Biofuel (Biodiesel) from an Edible Seed Oil (Palm-Olein). Annu. Res. Rev. Biol. 2020, 20–31. [Google Scholar] [CrossRef]
- Tiwari, A.; Rajesh, V.; Yadav, S. Biodiesel production in micro-reactors: A review. Energy Sustain. Dev. 2018, 43, 143–161. [Google Scholar] [CrossRef]
- Bidir, M.G.; Millerjothi, N.; Adaramola, M.S.; Hagos, F.Y. The role of nanoparticles on biofuel production and as an additive in ternary blend fuelled diesel engine: A review. Energy Rep. 2021, 7, 3614–3627. [Google Scholar] [CrossRef]
- Amer, M.W.; Alhesan, J.S.A.; Ibrahim, S.; Qussay, G.; Marshall, M.; Al-Ayed, O.S. Potential use of corn leaf waste for biofuel production in Jordan (physio-chemical study). Energy 2020, 214, 118863. [Google Scholar] [CrossRef]
- Lee, H.; Juan, J.; Taufiq-Yap, Y. Preparation and application of binary acid–base CaO–La2O3 catalyst for biodiesel production. Renew. Energy 2015, 74, 124–132. [Google Scholar] [CrossRef]
- Salimi, Z.; Hosseini, S.A. Study and optimization of conditions of biodiesel production from edible oils using ZnO/BiFeO3 nano magnetic catalyst. Fuel 2018, 239, 1204–1212. [Google Scholar] [CrossRef]
- Linus, G.J.; Okoro, N. Advanced nanocatalysts for Biofuel production. Eur. Chem. Bull. 2020, 9, 148–153. [Google Scholar]
- Molina, C. ZnO Nanorods as Catalyst for Biodiesel Production from Olive Oil; University of Louisville: Louisville, Kentucky, 2013. [Google Scholar] [CrossRef]
- Mihankhah, T.; Delnavaz, M.; Khaligh, N.G. Application of TiO2 nanoparticles for eco-friendly biodiesel production from waste olive oil. Int. J. Green Energy 2018, 15, 69–75. [Google Scholar] [CrossRef]
- Shaheen, A.; Sultana, S.; Lu, H.; Ahmad, M.; Asma, M.; Mahmood, T. Assessing the potential of different nano-composite (MgO, Al2O3-CaO and TiO2) for efficient conversion of Silybum eburneum seed oil to liquid biodiesel. J. Mol. Liq. 2018, 249, 511–521. [Google Scholar] [CrossRef]
- Esmaeili, H.; Yeganeh, G.; Esmaeilzadeh, F. Optimization of biodiesel production from Moringa oleifera seeds oil in the presence of nano-MgO using Taguchi method. Int. Nano Lett. 2019, 9, 257–263. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, T.; He, H.; Liang, H. Fe3O4/ZnMg(Al)O magnetic nanoparticles for efficient biodiesel production. Appl. Organomet. Chem. 2018, 32, e4330. [Google Scholar] [CrossRef]
- Hashmi, S.; Gohar, S.; Mahmood, T.; Nawaz, U.; Farooqi, H. Biodiesel Production by Using CaO-Al2O3 Nano Catalyst. Int. J. Eng. Res. Sci. 2016, 2, 2395–6992. Available online: https://ia600404.us.archive.org/35/items/IJOERJAN21636/IJOER-JAN-216-36.pdf (accessed on 17 March 2022).
- Torkzaban, S.; Feyzi, M. A novel robust CaO/ZnFe2O4 hollow magnetic microspheres heterogenous catalyst for synthesis biodiesel from waste frying sunflower oil. Renew. Energy 2022, 200, 996–1007. [Google Scholar] [CrossRef]
- Silva, A.L.D.; Farias, A.F.F.; Meneghetti, S.M.P.; dos S. Filho, E.A.; de M. Costa, A.C.F. Optimization of Biodiesel Production Via Transesterification of Soybean Oil Using A-Moo3 Catalyst Obtained by the Combustion Method. SSRN Electron. J. 2022, 15, 104012. [Google Scholar] [CrossRef]
- Farokhi, G.; Saidi, M.; Najafabadi, A.T. Application of spinel Type NixZn1−xFe2O4 magnetic nanocatalysts for biodiesel production from neem seed oil: Catalytic performance evaluation and optimization. Ind. Crops Prod. 2023, 192, 116035. [Google Scholar] [CrossRef]
- Sharma, B.; Larroche, C.; Dussap, C.-G. Comprehensive assessment of 2G bioethanol production. Bioresour. Technol. 2020, 313, 123630. [Google Scholar] [CrossRef]
- Xiang, H.; Xin, R.; Prasongthum, N.; Natewong, P.; Sooknoi, T.; Wang, J.; Reubroycharoen, P.; Fan, X. Catalytic conversion of bioethanol to value-added chemicals and fuels: A review. Resour. Chem. Mater. 2022, 1, 47–68. [Google Scholar] [CrossRef]
- Patel, S.; Dixit, S.; Suneja, K.G.; Tipan, N. Second Generation Biofuel—An Alternative Clean Fuel. Smart Moves J. Ijoscience 2021, 7, 13–21. [Google Scholar] [CrossRef]
- Weber, C.T.; Trierweiler, L.F.; Trierweiler, J.O. Food waste biorefinery advocating circular economy: Bioethanol and distilled beverage from sweet potato. J. Clean. Prod. 2020, 268, 121788. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Park, S.E.; Lee, H.; Yun, J.Y. Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles. Bioresour. Technol. 2014, 159, 446–450. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Lee, H. Use of magnetic nanoparticles to enhance bioethano production in syngas fermentation. Bioresour. Technol. 2010, 204, 539–544. [Google Scholar] [CrossRef]
- Baskar, G.; Kumar, R.N.; Melvin, X.H.; Aiswarya, R.; Soumya, S. Sesbania aculeate biomass hydrolysis using magnetic nanobiocomposite of cellulase for bioethanol production. Renew. Energy 2016, 98, 23–28. [Google Scholar] [CrossRef]
- Cherian, E.; Dharmendirakumar, M.; Baskar, G. Immobilization of cellulase onto MnO2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Chin. J. Catal. 2015, 36, 1223–1229. [Google Scholar] [CrossRef]
- Singhvi, M.; Kim, B. Current Developments in Lignocellulosic Biomass Conversion into Biofuels Using Nanobiotechology Approach. Energies 2020, 13, 5300. [Google Scholar] [CrossRef]
- Aarti, C.; Khusro, A.; Agastian, P.; Kuppusamy, P.; Al Farraj, D.A. Synthesis of gold nanoparticles using bacterial cellulase and its role in saccharification and bioethanol production from aquatic weeds. J. King Saud Univ. Sci. 2022, 34, 101974. [Google Scholar] [CrossRef]
- Sanusi, I.A.; Suinyuy, T.N.; Lateef, A.; Kana, G.E. Effect of nickel oxide nanoparticles on bioethanol production: Process optimization, kinetic and metabolic studies. Process. Biochem. 2020, 92, 386–400. [Google Scholar] [CrossRef]
- Sandouqa, A.; Al-Hamamre, Z. Economical evaluation of jojoba cultivation for biodiesel production in Jordan. Renew. Energy 2021, 177, 1116–1132. [Google Scholar] [CrossRef]
- Tse, H.; Leung, C.W.; Cheung, C.S. Investigation on the combustion characteristics and particulate emissions from a diesel engine fueled with diesel-biodiesel-ethanol blends. Energy 2015, 83, 343–350. [Google Scholar] [CrossRef]
- Atmanli, A.; İleri, E.; Yüksel, B. Experimental investigation of engine performance and exhaust emissions of a diesel engine fueled with diesel–n-butanol–vegetable oil blends. Energy Convers Manag. 2014, 81, 312–321. [Google Scholar] [CrossRef]
- Lam, M.K.; Lee, K.T.; Mohamed, A.R. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnol. Adv. 2010, 28, 500–518. [Google Scholar] [CrossRef]
- Sagiroglu, A.; Isbilir, S.Ş.; Ozcan, M.H.; Paluzar, H.; Toprakkiran, N.M. Comparison of biodiesel productivities of different vegetable oils by acidic catalysis. Chem. Ind. Chem. Eng. Q. 2011, 17, 53–58. [Google Scholar] [CrossRef]
- Atadashi, I.M.; Aroua, M.K.; Aziz, A.R.A.; Sulaiman, N.M.N. The effects of catalysts in biodiesel production: A review. J. Ind. Eng. Chem. 2013, 19, 14–26. [Google Scholar] [CrossRef]
- Clohessy, J.; Kwapinski, W. Carbon-Based Catalysts for Biodiesel Production—A Review. Appl. Sci. 2020, 10, 918. [Google Scholar] [CrossRef]
- Rao, M.S.; Anand, R. Performance and emission characteristics improvement studies on a biodiesel fuelled DICI engine using water and AlO(OH) nanoparticles. Appl. Therm. Eng. 2016, 98, 636–645. [Google Scholar] [CrossRef]
- Vellaiyan, S.; Subbiah, A.; Chockalingam, P. Effect of titanium dioxide nanoparticle as an additive on the exhaust characteristics of diesel-water emulsion fuel blends. Pet. Sci. Technol. 2019, 38, 194–202. [Google Scholar] [CrossRef]
- Yuvarajan, D.; Babu, M.D.; BeemKumar, N.; Kishore, P.A. Experimental investigation on the influence of titanium dioxide nanofluid on emission pattern of biodiesel in a diesel engine. Atmospheric Pollut. Res. 2018, 9, 47–52. [Google Scholar] [CrossRef]
- Örs, I.; Sarıkoç, S.; Atabani, A.; Ünalan, S.; Akansu, S. The effects on performance, combustion and emission characteristics of DICI engine fuelled with TiO2 nanoparticles addition in diesel/biodiesel/n-butanol blends. Fuel 2018, 234, 177–188. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Munuswamy, D.B.; Devarajan, Y.; Mahalingam, A. Effect of nanoparticle on emission and performance characteristics of a diesel engine fueled with cashew nut shell biodiesel. Energy Sources Part A Recover. Util. Environ. Eff. 2018, 40, 2485–2493. [Google Scholar] [CrossRef]
- Xie, W.; Ma, N. Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. Biomass Bioenergy 2010, 34, 890–896. [Google Scholar] [CrossRef]
- Ibrahim, K.A.; Abu-Sbeih, K.A.; Al-Trawneh, I.; Bourghli, L. Preparation and Characterization of Alkyd Resins of Jordan Valley Tomato Oil. J. Polym. Environ. 2014, 22, 553–558. [Google Scholar] [CrossRef]
- Karami, R.; Rasul, M.G.; Khan, M.M.K.; Salahi, M.M.; Anwar, M. Experimental and computational analysis of combustion characteristics of a diesel engine fueled with diesel-tomato seed oil biodiesel blends. Fuel 2021, 285, 119243. [Google Scholar] [CrossRef]
- Sarno, M.; Iuliano, M. Highly active and stable Fe3O4/Au nanoparticles supporting lipase catalyst for biodiesel production from waste tomato. Appl. Surf. Sci. 2018, 474, 135–146. [Google Scholar] [CrossRef]
- Vardast, N.; Haghighi, M.; Dehghani, S. Sono-dispersion of calcium over Al-MCM-41used as a nanocatalyst for biodiesel production from sunflower oil: Influence of ultrasound irradiation and calcium content on catalytic properties and performance. Renew. Energy 2018, 132, 979–988. [Google Scholar] [CrossRef]
- Varghese, R.; Jose, S.; Joyprabu, H.; Johnson, I. Ultrasonication Assisted Production of Biodiesel from Sunflower Oil by Using CuO: Mg Heterogeneous Nanocatalyst. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 225. [Google Scholar] [CrossRef]
- Salam, K.A.; Velasquez-Orta, S.B.; Harvey, A.P. A sustainable integrated in situ transesterification of microalgae for biodiesel production and associated co-product-a review. Renew. Sustain. Energy Rev. 2016, 65, 1179–1198. [Google Scholar] [CrossRef]
- Mozaffarikhah, K.; Kargari, A. Treatment of biodiesel production wastewater by a commercial nanofiltration system. Desalination Water Treat. 2017, 86, 59–67. [Google Scholar] [CrossRef]
- Tamilvanan, A.; Balamurugan, K.; Vijayakumar, M. Effects of nano-copper additive on performance, combustion and emission characteristics of Calophyllum inophyllum biodiesel in CI engine. J. Therm. Anal. Calorim. 2018, 136, 317–330. [Google Scholar] [CrossRef]
- Sridhar, R.; Shaisundaram, V.; Baskar, S.; Ramasubramanian, S.; Sathiskumar, G.; Sivabalan, S. Investigation of grape seed oil biodiesel with cerium oxide nanoparticle in CI engine. Mater. Today Proc. 2020, 37, 1399–1402. [Google Scholar] [CrossRef]
- Prabu, A.; Anand, R. Emission control strategy by adding alumina and cerium oxide nano particle in biodiesel. J. Energy Inst. 2016, 89, 366–372. [Google Scholar] [CrossRef]
- Nutakki, P.K.; Gugulothu, S.K.; Ramachander, J. Effect of Metal-Based SiO2 Nanoparticles Blended Concentration on Performance, Combustion and Emission Characteristics of CRDI Diesel Engine Running on Mahua Methyl Ester Biodiesel. Silicon 2021, 13, 4773–4787. [Google Scholar] [CrossRef]
- Shaisundaram, V.; Chandrasekaran, M. Investigation of watermelon seed oil biodiesel with Cerium oxide nanoparticle in CI engine. Mater. Today Proc. 2020, 44, 3633–3637. [Google Scholar] [CrossRef]
- Padmanabhan, S.; Ganesan, S.; Anvesh, A.M.V.; Pradeep, B. Influence of cerium oxide additive and aloe vera biodiesel on a CI engine. Int. J. Ambient. Energy 2017, 39, 516–520. [Google Scholar] [CrossRef]
- Padmanabhan, S.; Kumar, T.V.; Chandrasekaran, M.; Ganesan, S. Investigation of Sapindus seed biodiesel with nano additive on single cylinder diesel engine. Int. J. Ambient. Energy 2018, 41, 1106–1109. [Google Scholar] [CrossRef]
- Sathish, T.; Muthukumar, K.; Abdulwahab, A.; Rajasimman, M.; Saravanan, R.; Balasankar, K. Enhanced waste cooking oil biodiesel with Al2O3 and MWCNT for CI engines. Fuel 2023, 333, 126429. [Google Scholar] [CrossRef]
- Uslu, S.; Simsek, S.; Simsek, H. RSM modeling of different amounts of nano-TiO2 supplementation to a diesel engine running with hemp seed oil biodiesel/diesel fuel blends. Energy 2023, 266, 126439. [Google Scholar] [CrossRef]
- Kalaimurugan, K.; Karthikeyan, S.; Periyasamy, M.; Mahendran, G. Experimental investigations on the performance characteristics of CI engine fuelled with cerium oxide nanoparticle added biodiesel-diesel blends. Mater. Today Proc. 2020, 33, 2882–2885. [Google Scholar] [CrossRef]
- Maleki, A.; Pourfayaz, F.; Ahmadi, M.H. Design of a cost-effective wind/photovoltaic/hydrogen energy system for supplying a desalination unit by a heuristic approach. Sol. Energy 2016, 139, 666–675. [Google Scholar] [CrossRef]
- Sid, M.N.; Becherif, M.; Aboubou, A.; Benmouna, A. Power control techniques for fuel cell hybrid electric vehicles: A comparative study. Comput. Electr. Eng. 2021, 97, 107602. [Google Scholar] [CrossRef]
- Sharifi, M.; Pothu, R.; Boddula, R.; Bardajee, G.R. Trends of biofuel cells for smart biomedical devices. Int. J. Hydrog. Energy 2020, 46, 3220–3229. [Google Scholar] [CrossRef]
- Rezk, H.; Sayed, E.T.; Al-Dhaifallah, M.; Obaid, M.; El-Sayed, A.H.M.; Abdelkareem, M.A.; Olabi, A. Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system. Energy 2019, 175, 423–433. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, M.C.; Kim, Y.J. Barriers and strategies of hydrogen fuel cell power generation based on expert survey in South Korea. Int. J. Hydrogen Energy 2021, 47, 5709–5719. [Google Scholar] [CrossRef]
- Dhimish, M.; Vieira, R.G.; Badran, G. Investigating the stability and degradation of hydrogen PEM fuel cell. Int. J. Hydrog. Energy 2021, 46, 37017–37028. [Google Scholar] [CrossRef]
- Service, R.F. Fuel cells. Biofuel cells. Science 2002, 296, 1223. [Google Scholar] [CrossRef]
- Zhao, C.-E.; Wang, W.-J.; Sun, D.; Wang, X.; Zhang, J.-R.; Zhu, J.-J. Nanostructured Graphene/TiO2Hybrids as High-Performance Anodes for Microbial Fuel Cells. Chem. A Eur. J. 2014, 20, 7091–7097. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wu, Z.; Xu, C.; Hu, Z. Hybrid catalyst cascade for enhanced oxidation of glucose in glucose/air biofuel cell. Bioelectrochemistry 2021, 143, 107983. [Google Scholar] [CrossRef]
- Xiao, X. The direct use of enzymatic biofuel cells as functional bioelectronics. Escience 2021, 2, 1–9. [Google Scholar] [CrossRef]
- Rahimnejad, M.; Adhami, A.; Darvari, S.; Zirepour, A.; Oh, S.-E. Microbial fuel cell as new technology for bioelectricity generation: A review. Alex. Eng. J. 2015, 54, 745–756. [Google Scholar] [CrossRef]
- Flimban, S.G.A.; Ismail, I.M.I.; Kim, T.; Oh, S.-E. Overview of Recent Advancements in the Microbial Fuel Cell from Fundamentals to Applications: Design, Major Elements, and Scalability. Energies 2019, 12, 3390. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Y.-H.P. In vitro metabolic engineering of bioelectricity generation by the complete oxidation of glucose. Metab. Eng. 2017, 39, 110–116. [Google Scholar] [CrossRef]
- Xu, S.; Minteer, S.D. Enzymatic Biofuel Cell for Oxidation of Glucose to CO2. ACS Catal. 2011, 2, 91–94. [Google Scholar] [CrossRef]
- Wang, Y.; Chu, F.; Zeng, J.; Wang, Q.; Naren, T.; Li, Y.; Cheng, Y.; Lei, Y.; Wu, F. Single Atom Catalysts for Fuel Cells and Rechargeable Batteries: Principles, Advances, and Opportunities. ACS Nano 2021, 15, 210–239. [Google Scholar] [CrossRef]
- Xiao, X.; Xia, H.-Q.; Wu, R.; Bai, L.; Yan, L.; Magner, E.; Cosnier, S.; Lojou, E.; Zhu, Z.; Liu, A. Tackling the Challenges of Enzymatic (Bio)Fuel Cells. Chem. Rev. 2019, 119, 9509–9558. [Google Scholar] [CrossRef]
- Stolarczyk, K.; Rogalski, J.; Bilewicz, R. NAD(P)-dependent glucose dehydrogenase: Applications for biosensors, bioelectrodes, and biofuel cells. Bioelectrochemistry 2020, 135, 107574. [Google Scholar] [CrossRef]
- Palaniappan, K. An overview of applications of nanotechnology in biofuel production. World Appl. Sci. J. 2017, 35, 1305–1311. [Google Scholar] [CrossRef]
- Osman, M.; Shah, A.; Walsh, F. Recent progress and continuing challenges in bio-fuel cells. Part I: Enzymatic cells. Biosens. Bioelectron. 2011, 26, 3087–3102. [Google Scholar] [CrossRef]
- Gupta, J.; Kumari, M.; Mishra, A.; Swati; Akram, M.; Thakur, I.S. Agro-forestry waste management—A review. Chemosphere 2021, 287, 132321. [Google Scholar] [CrossRef]
- Meena, R.A.A.; Banu, J.R.; Kannah, R.Y.; Yogalakshmi, K.; Kumar, G. Biohythane production from food processing wastes—Challenges and perspectives. Bioresour. Technol. 2019, 298, 122449. [Google Scholar] [CrossRef]
- Yellezuome, D.; Zhu, X.; Wang, Z.; Liu, R. Mitigation of ammonia inhibition in anaerobic digestion of nitrogen-rich substrates for biogas production by ammonia stripping: A review. Renew. Sustain. Energy Rev. 2022, 157, 112043. [Google Scholar] [CrossRef]
- Habagil, M.; Keucken, A.; Horváth, I.S. Biogas Production from Food Residues—The Role of Trace Metals and Co-Digestion with Primary Sludge. Environments 2020, 7, 42. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, Y.; Tan, D.; Zhao, Z.; Zhao, H.; Quan, X. Roles of magnetite and granular activated carbon in improvement of anaerobic sludge digestion. Bioresour. Technol. 2017, 249, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Plocoste, T.; Jacoby-Koaly, S.; Molinié, J.; Roussas, A. Effect of Leachate Recirculation on Landfill Methane Production in a Tropical Insular Area. Innov. Energy Res. 2016, 5, 1–5. [Google Scholar] [CrossRef]
- Bolyard, S.C.; Reinhart, D.R.; Santra, S. Behavior of Engineered Nanoparticles in Landfill Leachate. Environ. Sci. Technol. 2013, 47, 8114–8122. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.; Visvanathan, C.; Jacob, P.; Jegatheesan, V. Effects of nano cerium (IV) oxide and zinc oxide particles on biogas production. Int. Biodeterior. Biodegrad. 2015, 102, 165–171. [Google Scholar] [CrossRef]
- Laberty-Robert, C.; Long, J.W.; Lucas, E.M.; Pettigrew, K.A.; Stroud, R.M.; Doescher, M.S.; Rolison, D.R. Sol−Gel-Derived Ceria Nanoarchitectures: Synthesis, Characterization, and Electrical Properties. Chem. Mater. 2006, 18, 50–58. [Google Scholar] [CrossRef]
- Moezzi, A.; McDonagh, A.M.; Cortie, M.B. Zinc oxide particles: Synthesis, properties and applications. Chem. Eng. J. 2012, 185–186, 1–22. [Google Scholar] [CrossRef]
- Brar, S.K.; Verma, M.; Tyagi, R.; Surampalli, R. Engineered nanoparticles in wastewater and wastewater sludge—Evidence and impacts. Waste Manag. 2010, 30, 504–520. [Google Scholar] [CrossRef]
- François, M.; Lin, K.S.; Rachmadona, N.; Khoo, K.S. Advancement of nanotechnologies in biogas production and contaminant removal: A review. Fuel 2023, 340, 127470. [Google Scholar] [CrossRef]
- Luna-Delrisco, M.; Orupõld, K.; Dubourguier, H.-C. Particle-size effect of CuO and ZnO on biogas and methane production during anaerobic digestion. J. Hazard. Mater. 2011, 189, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Temizel, I.; Emadian, S.M.; Di Addario, M.; Onay, T.T.; Demirel, B.; Copty, N.K.; Karanfil, T. Effect of nano-ZnO on biogas generation from simulated landfills. Waste Manag. 2017, 63, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Mu, H.; Chen, Y.; Xiao, N. Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion. Bioresour. Technol. 2011, 102, 10305–10311. [Google Scholar] [CrossRef]
- Bolyard, S.C. Fate of Coated Zinc Oxide Nanoparticles in Municipal Solid Waste Landfills; B.S. University of Florida: Gainesville, FL, USA, 2011. [Google Scholar]
- Yang, Y.; Gajaraj, S.; Wall, J.D.; Hu, Z. A comparison of nanosilver and silver ion effects on bioreactor landfill operations and methanogenic population dynamics. Water Res. 2013, 47, 3422–3430. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, H.; Zheng, L.; Li, S.; Hao, H.; Huang, H. Effect of Zn Addition on the Cd-Containing Anaerobic Fermentation Process: Biodegradation and Microbial Communities. Int. J. Environ. Res. Public Health 2019, 16, 2998. [Google Scholar] [CrossRef]
- Barua, S.; Dhar, B.R. Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion. Bioresour. Technol. 2017, 244, 698–707. [Google Scholar] [CrossRef]
- Patil, R.M.; Thorat, N.D.; Shete, P.B.; Bedge, P.A.; Gavde, S.; Joshi, M.G.; Tofail, S.A.; Bohara, R.A. Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochem. Biophys. Rep. 2018, 13, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Qiao, S.; Li, X.; Zhang, M.; Zhou, J. Nano-graphene induced positive effects on methanogenesis in anaerobic digestion. Bioresour. Technol. 2017, 224, 41–47. [Google Scholar] [CrossRef]
- Alawneh, R.; Ghazali, F.E.M.; Ali, H.; Asif, M. Assessing the contribution of water and energy efficiency in green buildings to achieve United Nations Sustainable Development Goals in Jordan. Build. Environ. 2018, 146, 119–132. [Google Scholar] [CrossRef]
- Malkawi, S.; Al-Nimr, M.; Azizi, D. A multi-criteria optimization analysis for Jordan’s energy mix. Energy 2017, 127, 680–696. [Google Scholar] [CrossRef]
- Qayoom, S.; Kanchan, S. Performance and Emission Characteristics of Thumba Oil Based Biodiesel on Diesel Engine: A Comprehensive Review. Asian J. Water, Environ. Pollut. 2018, 15, 93–101. [Google Scholar] [CrossRef]
- Rani, R.; Sharma, D.; Chaturvedi, M.; Yadav, J.P. Antibacterial Activity of Twenty Different Endophytic Fungi Isolated from Calotropis procera and Time Kill Assay. Clin. Microbiol. Open Access 2017, 6, 1–6. [Google Scholar] [CrossRef]
- Bhatt, A.; Gairola, S.; Carón, M.M.; Santo, A.; Murru, V.; El-Keblawy, A.; Mahmoud, T. Effects of Light, Temperature, Salinity, and Maternal Habitat on Seed Germination of Aeluropus Lagopoides (Poaceae): An Economically Important Halophyte of Arid Arabian Deserts. Botany 2020, 98, 117–125. [Google Scholar] [CrossRef]
- Chavan, S.B.; Kumbhar, R.R.; Sharma, Y.C. Transesterification of Citrullus colocynthis (Thumba) oil: Optimisation for biodiesel production. Adv. Appl. Sci. Res. 2014, 5, 10–20. [Google Scholar]
- de Melo, L.N.; Santana, L.A.; da Rocha, P.F.; Meneghetti, S.M.P.; Meneghetti, M.R.; Bortoluzzi, J.H. Studies on Inter- and Transesterification: Different Oils with the Same Fatty Acid Composition and Their Reaction Behaviors. Energy Fuels 2020, 34, 5948–5957. [Google Scholar] [CrossRef]
- Al-Hwaiti, M.S.; Alsbou, E.M.; Abu Sheikha, G.; Bakchiche, B.; Pham, T.H.; Thomas, R.H.; Bardaweel, S.K. Evaluation of the anticancer activity and fatty acids composition of “Handal” (Citrullus colocynthis L.) seed oil, a desert plant from south Jordan. Food Sci. Nutr. 2020, 9, 282–289. [Google Scholar] [CrossRef]
- Al-Hwaiti, M.S.; Alsbou, E.M.; Al Haddad, R.M.; Osman, A.I.; Abu Jrai, A.; Al-Muhtaseb, A.H.; Hasan, A.O.; Morgan, K.; El-Sayed, E.-S.M.; Al-Fatesh, A.S.; et al. Spatio-temporal analyses of extracted citrullus colocynthis seeds (Handal seed oil) as biofuel in internal combustion engine. Renew. Energy 2020, 166, 234–244. [Google Scholar] [CrossRef]
- Atabani, A.; Silitonga, A.; Ong, H.; Mahlia, T.; Masjuki, H.; Badruddin, I.A.; Fayaz, H. Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew. Sustain. Energy Rev. 2012, 18, 211–245. [Google Scholar] [CrossRef]
- Kibazohi, O.; Sangwan, R. Vegetable oil production potential from Jatropha curcas, Croton megalocarpus, Aleurites moluccana, Moringa oleifera and Pachira glabra: Assessment of renewable energy resources for bio-energy production in Africa. Biomass Bioenergy 2011, 35, 1352–1356. [Google Scholar] [CrossRef]
- No, S.-Y. Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review. Renew. Sustain. Energy Rev. 2010, 15, 131–149. [Google Scholar] [CrossRef]
- Pandey, V.C.; Singh, K.; Singh, J.S.; Kumar, A.; Singh, B.; Singh, R.P. Jatropha curcas: A potential biofuel plant for sustainable environmental development. Renew. Sustain. Energy Rev. 2012, 16, 2870–2883. [Google Scholar] [CrossRef]
- Nahar, K. Jatropha Curcas L: A Sustainable Feedstock for the Production of Bioenergy and by Products. J. Energy Nat. Resour. 2014, 3, 51. [Google Scholar] [CrossRef]
- Becker, K.; Wulfmeyer, V.; Berger, T.; Gebel, J.; Münch, W. Carbon farming in hot, dry coastal areas: An option for climate change mitigation. Earth Syst. Dyn. 2013, 4, 237–251. [Google Scholar] [CrossRef]
- Akintayo, E.T. Characteristics and composition of Parkia biglobbossa and Jatropha curcas oils and cakes. Bioresour. Technol. 2004, 92, 307–310. [Google Scholar] [CrossRef]
- Demirbas, A.; Bafail, A.; Ahmad, W.; Sheikh, M. Biodiesel production from non-edible plant oils. Energy Explor. Exploit. 2016, 34, 290–318. [Google Scholar] [CrossRef]
- Qudah, A.; Telfah, Y.; Hammoudeh, H.; Mahmoud, A. Jordanian Dolomite as Potential Catalyst in the Transesterification of Jatropha Oil. JSM Biotechnol. Bioeng. 2018, 5, 1083. [Google Scholar]
- Manurung, R.; Wever, D.; Wildschut, J.; Venderbosch, R.; Hidayat, H.; van Dam, J.; Leijenhorst, E.; Broekhuis, A.; Heeres, H. Valorisation of Jatropha curcas L. plant parts: Nut shell conversion to fast pyrolysis oil. Food Bioprod. Process. 2009, 87, 187–196. [Google Scholar] [CrossRef]
- Telfah, H. Production of Biodiesel from Jordanian Jatropha Oil. Master’s Thesis, Yarmouk University, Irbid, Jordan, 2011. Available online: http://repository.yu.edu.jo:80/jspui/handle/123456789/10419 (accessed on 17 March 2022).
- Pramanik, K. Properties and use of jatropha curcas oil and diesel fuel blends in compression ignition engine. Renew. Energy 2003, 28, 239–248. [Google Scholar] [CrossRef]
- Jafar, R.; Awad, A. State and development of anaerobic technology for biogas production in Syria. Clean. Eng. Technol. 2021, 5, 100253. [Google Scholar] [CrossRef]
- Bin Amin, S.; Al Kabir, F.; Khan, F. Socioeconomic and Institutional Barriers for Accelerating Biogas Generation in Asia. Compr. Renew. Energy 2022, 59–90. [Google Scholar] [CrossRef]
- Surendra, K.C.; Khanal, S.K.; Shrestha, P.; Lamsal, B. Current status of renewable energy in Nepal: Opportunities and challenges. Renew. Sustain. Energy Rev. 2011, 15, 4107–4117. [Google Scholar] [CrossRef]
- Qdais, H.A.; Abdulla, F.; Qrenawi, L. Solid Waste Landfills as a Source of Green Energy: Case Study of Al Akeeder Landfill. Jordan J. Mech. Ind. Eng. 2010, 4, 69–74. Available online: https://www.researchgate.net/publication/228503749 (accessed on 17 March 2022).
- Milbrandt, A.; Overend, R. Assessment of Biomass Resources in Afghanistan; Technical Report; National Renewable Energy Laboratory: Golden, CO, USA, 2011. [Google Scholar] [CrossRef]
- Wang, G. Ris, Biogas Production from Energy Crops and Agriculture Residues Ris0 DTU National Laboratory for Sustainable Energy. 2010. Available online: www.risoe.dtu.dk (accessed on 3 June 2022).
- Aggarangsi, P.; Tippayawong, N.; Moran, J.; Rerkkriangkrai, P. Overview of livestock biogas technology development and implementation in Thailand. Energy Sustain. Dev. 2013, 17, 371–377. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Klemeš, J.J.; Alhumade, H.; Elkamel, A.; Mahmood, A.; Shen, B.; Ibrahim, M.; Mukhtar, A.; Saqib, S.; Asif, S.; et al. Thermo-kinetic study to elucidate the bioenergy potential of Maple Leaf Waste (MLW) by pyrolysis, TGA and kinetic modelling. Fuel 2021, 293, 120349. [Google Scholar] [CrossRef]
- El-Zoheiry, R.M.; El-Seesy, A.I.; Attia, A.M.; He, Z.; El-Batsh, H.M. Combustion and emission characteristics of Jojoba biodiesel-jet A1 mixtures applying a lean premixed pre-vaporized combustion techniques: An experimental investigation. Renew. Energy 2020, 162, 2227–2245. [Google Scholar] [CrossRef]
- Singh, N.K.; Singh, Y.; Sharma, A. Optimization of biodiesel synthesis from Jojoba oil via supercritical methanol: A response surface methodology approach coupled with genetic algorithm. Biomass Bioenergy 2021, 156, 106332. [Google Scholar] [CrossRef]
- Patil, D.; Arakerimath, R. Performance Characteristics and Analysis of Jatropha Oil in Multi-Cylinder Turbocharge Compression Ignition Engine. Int. J. Eng. Res. Dev. 2012, 1, 50–55. [Google Scholar]
- El Diwani, G.; Attia, N.K.; Hawash, S.I. Development and evaluation of biodiesel fuel and by-products from jatropha oil. Int. J. Environ. Sci. Technol. 2009, 6, 219–224. [Google Scholar] [CrossRef]
- Bojan, S.G.; Durairaj, S.K. Producing biodiesel from high free fatty acid Jatropha Curcas oil by a two step method—An Indian case study. Int. J. Sustain. Energy Environ. 2012, 3, 63–66. [Google Scholar]
- Al-Bawwat, A.K.; Cano, A.; Gomaa, M.R.; Jurado, F. Availability and the possibility of employing wastes and bio-mass materials energy in Jordan. Sustainability 2023, accepted. [Google Scholar]
Feedstock | Nano-Catalyst | Biodiesel Yield | Refs. |
---|---|---|---|
Olive oil | Zno | 94.8% | [67] |
Olive oil | TiO2 | 91.2% | [68] |
Silybum eburneum seed oil | MgO, Al2O3-CaO, TiO2 | 91.0% | [69] |
Moringa oleifera seeds oil | MgO | 93.7% | [70] |
Microalgae oil | Fe3O4/ZnMg(Al)O | 94.0% | [71] |
Jatropha curcas oil | CaO-Al2O3 | 82.3% | [72] |
Waste frying sunflower oil | Magnetic CaO/ZnFe2O4 hollow microspheres | 98.0% | [73] |
Soybean oil | a-MoO3 | 96.9% | [74] |
Neem oil | NixZn1−xFe2O4 | 93.0% | [75] |
Combustion Emissions | ||||
---|---|---|---|---|
Biodiesel | CO | HC | NOx | Released Smoke |
BD 100% | 5.3% | 7.4% | 10.23% | 16.1% |
BD 100-A | 8.8% | 10.1% | 12.4% | 18.4% |
Combustion Emissions at Full Load | |||||||
---|---|---|---|---|---|---|---|
Biodiesel | NPs | Blend | CO (% by Volume) | NOx (ppm) | Hydrocarbon (ppm) | Smoke Opacity (%) | Reference |
Grape seeds oil | CeO2, Al2O3 | B30 + 20 ppm CeO2 | 0.17 | 1580 | - | - | [108] |
Jatropha oil | CeO2, Al2O3 | B30 + 30 ppm Al2O3 + 30 ppm CeO2 | 0.02 | 1208 | 12 | 25.6 | [109] |
Mahua indica oil | SiO2 | B20 + 120 ppm SiO2 | 0.44 | 980 | 102 | 52.0 | [110] |
Watermelon seeds oil | CeO2 | B20 + 20 ppm CeO2 | 0.15 | 1600 | 60 | - | [111] |
Aloe Vera | CeO2 | B30 + 20 ppm CeO2 | 0.052 | 820 | 54 | - | [112] |
Sapindus seed oil | CeO2 | B30 + CeO2 | 0.053 | 1050 | 77 | - | [113] |
Waste cooking oil | Al2O3 + Multi-Walled Carbon nanotubes | B20 + 50 ppm Al2O3 + 50 ppm Multi-Walled Carbon nanotubes | 332 (ppm) | 954 | - | 31.2 | [114] |
Hemp seed oil | TiO2 | B30 + 75 ppm TiO2 | 0.057 | 257.37 | 40.29 | 0.706 | [115] |
Engine Performance Characteristics at Full Load | |||||
---|---|---|---|---|---|
Biodiesel | NPs | Blend | BTE (%) | BSFC (kg/kWh) | Reference |
Grape seeds oil | CeO2, Al2O3 | B30 + 20 ppm Al2O3/B30 + 20 ppm CeO2 | 24.5 | 0.24 | [108] |
Jatropha oil | CeO2, Al2O3 | B30 + 30 ppm Al2O3 + 30 ppm CeO2 | 31.0 | 0.29 | [109] |
Mahua indica oil | SiO2 | B20 + 120 ppm SiO2 | 25.8 | 0.34 | [110] |
Watermelon seeds oil | CeO2 | B20 + 20 ppm CeO2 | 33.0 | 0.20 | [111] |
Algae oil | CeO2 | B30 + 100 ppm CeO2 | 35.3 | 0.25 | [116] |
Aloe Vera oil | CeO2 | B30 + 20 ppm CeO2 | 40.0 | 0.25 | [112] |
Sapindus seed oil | CeO2 | B30 + CeO2 | 38.0 | 0.25 | [113] |
Waste cooking oil | Al2O3 + Multi-Walled Carbon nanotubes | B20 + 50 ppm Al2O3 + 50 ppm Multi-Walled Carbon nanotubes | 30.65 | - | [114] |
Hemp seed oil | TiO2 | B30 + 75 ppm TiO2 | 27.94 | 1.08 | [115] |
NPs | Advantages of Use |
---|---|
Glucose Oxidase (GOx). 2,2,6,6-tetramethyl-1-piperidine N-oxyl (TEMPO). Metallic nanoparticles. Inorganic nanomaterials. Carbon-based nanomaterials (CBNs). | Catalyzes the 4e− oxidation of glucose. Enhances BFC efficiency. Facilitates the direct transmission of electrons from the enzyme to the electrode. Improves the power output of BFCs. Increases the rate of the anaerobic reaction. Enhances the yield of the process by reducing the effect of inhibitory compounds. Solves the problem of low electron transfer efficiency from the active enzymes to the surface of the electrode. Significantly enhances power density. Enhances the functionality of the membrane material. |
NPs | Advantages of Use | Ref. |
---|---|---|
ZnO |
| [148] |
ZnO |
| [149] |
TiO2 + Al2O3 + SiO2 |
| [150] |
TiO2 + ZnO + Ag | The presence of coated nanomaterials in leachate had no impact on biological processes, specifically the five-day biochemical oxygen demand and methane production processes. | [151] |
Ag | Biogas production was reduced by 43% and 74% in the existence of 120 and 240 mg/L ZnO-NP, respectively. | [152] |
CeO2 + ZnO |
| [143] |
Metal, metal nutrient, Fe2O3 | Metal nutrient-NPs, Metal-NPs, and iron oxide (Fe2O3)-NPs are more appropriate for increasing biogas and methane (CH4) production than metal oxide NPs (Al2O3, ZnO, and CuO). | [147] |
Co | Various concentrations of Co-NPs (0.06–6 mg/L) increased CH4 yield by 7–15%. | [153] |
ZVI, Fe2O3 | When compared to the control, the use of ZVI-NPs (10 mg/g) and Fe2O3-NPs (100 mg/g) and increased methanogenic archaea activity and increased biogas yield by 120% and 117%, respectively. | [154] |
ZVI, Fe3O4 | The use of ZVI-NPs at a concentration of 20 mg/L and Fe3O4 magnetic NPs at a concentration of 20 mg/L increased biogas production by 45% and 66%, respectively. | [155] |
Nanographene | The best nanographene concentrations (120 and 30 mg/L) increased the production of CH4 production by 51.4% and 7.0%, respectively. | [156] |
Type | Average Quantity (Dry Waste) [35] | Waste Energy Possibilities | Average Biogas Yield |
---|---|---|---|
(Kiloton/Year) | (TJ) | (MCM) | |
Vegetable residue | 227 | 340 | 22 |
Fruits residue | 940 | 5981 | 137 |
Farming crops residue | 117 | 520 | 8 |
Animal residue | 10,910 | 11,2968 | 499 |
MSW | 16,094 | 4758 | 151 |
Total | 28,188 | 12,4567 | 817 |
Type | Average Seeds Quantity | Average Oil Quantity | Location |
---|---|---|---|
(ton/ha) | (ton/year) | ||
Jojoba [87] | 5000 | 1811.8 | Eastern Badia |
Citrullus Colocynths (Handal) | - | - | Eastern Badia, Wadi Rum, Wadi Araba, Al-Ghours, Aqaba |
Jatropha | 5 | 1.3–2.5 | Desert |
Analysis | |||||||
---|---|---|---|---|---|---|---|
C | H | N | S | O | Ash | Calorific Value | Atomic H/C Ratio |
(wt% daf) | (wt% daf) | (wt% daf) | (wt% daf) | (wt% daf) | (wt% db) | (MJ/kg) | (-) |
47.7 ± 0.5 | 6.4 ± 0.4 | 2.9 ± 0.1 | 0.9 ± 0.0 | 42.1 ± 0.8 | 9.7 ± 0.2 | 17.9 ± 0.3 | 1.59 ± 0.07 |
Components | |||||
---|---|---|---|---|---|
Ethanol Extract | Hexane Extract | Water Extract | Cellulose | Hemicellulose | Lignin |
(wt%) | (wt%) | (wt%) | (wt%) | (wt%) | (wt%) |
13.2 ± 0 | 8.9 ± 0.1 | 7.3 ± 0 | 32.1 ± 0.5 | 18.1 ± 0.3 | 11.9 ± 0.4 |
Biomass Resources | Country | Productivity/Hectare | Rate/Barrel |
---|---|---|---|
(ton) | (USD) | ||
Jatropha Oil | India | 3.0 | 43 |
Palm Oil | Malaysia | 5.0 | 46 |
Rapeseeds Oil | Europe | 1.0 | 78 |
Biomass Resources | BG Yield * | Electricity |
---|---|---|
TJ/year | GWhe/year | |
Animal Manure | 600.5 | 45.9 |
Agricultural Residue | 644.5 | 49.2 |
Sludge and Wastes | 1224.2 | 93.5 |
Total | 2469.2 | 188.6 |
Biomass Resources | Bioenergy | Process | Applicability | Conclusion | Findings | Strength | Shortcoming |
---|---|---|---|---|---|---|---|
Corn leaf waste | Biofuel | Pyrolyss (300–450 °C) | Applicable | Feasible | 450 °C was found to yield more oil from corn leaf waste. | Chemical analysis is well considered. | Economic analysis is not considered Nanotechnologies are not considered. |
Jojoba oil | Biodiesel | Esterification and transesterification | Applicable | Feasible (CAPEX USD 12,701.36, OPEX USD 2352.38) |
| Economic analysis is considered. |
|
Citrullus Colocynts (Handal) seeds oil | Biodiesel | Esterification and transesterification | Applicable | Feasible |
|
|
|
Jatropha | Biodiesel | Esterification and transesterification | Applicable | Feasible |
|
|
|
MSW and animal manure | Biogas | Anaerobic digestion | Applicable | Feasible |
| Different biomass resources are considered (MSW, animal manure) with suitable technical and economic analysis. |
|
Biomass Resources | Country | Bioenergy | Process | LCC | Techno-Economy |
---|---|---|---|---|---|
Corn leaf waste | Jordan [63] | Biofuel | Pyrolysis (300–450 °C). | - | 450 °C was found to yield more oil from corn leaf waste. |
Cornleaf-waste | Canada [185] | Biofuel | Pyrolysis (200–430 °C). | - | At 550 °C, a biochar yield of 10% to 12% is achievable. |
Jojoba oil | Jordan [87] | Biodiesel | Esterification: It is used in the production line of biodiesel to reduce the fatty acid concentration to less than 1.0 wt% before getting a transesterification reaction. Transesterification: Using KOH 1.0 w/w as a catalyst. Methanol to oil ratio (1:3.3). The reaction temperature is 65 °C. | CAPEX USD 12,701.36. OPEX USD 2352.38. | The biodiesel cost reduces to USD 0.70/L when accounting for solketal generated from glycerol byproducts. |
Jojoba oil | Egypt [186] | Biodiesel | Transesterification: Using KOH 0.5 wt% as a catalyst. Methanol to oil ratio (3:18:1) by step 1:1. Reaction time (0.5 h to 3.0 h) by step 0.5 h. | - |
|
Jojoba oil | India [187] | Biodiesel | Transesterification: No catalyst. Methanol to oil ratio (30:1). The reaction temperature is 278 °C. The reaction pressure is 123 bars. Reaction time 23 min. | - | At optimal conditions, the supercritical methanol transesterification method creates the most biodiesel (95.67%). |
Citrullus Colocynths (Handal) seeds oil | Jordan [165] | Biodiesel | Esterification: The catalyst is sulfuric acid (H2SO4), and the reactant is methanol (CH3OH). The FFA content after esterification must be less than 0.5% for biodiesel production. Transesterification: The optimal method for the transesterification of Handal oil requires the addition of methanol equivalent to 0.217 × (unreacted triglycerides in grams) as well as sodium methoxide equal to [0.25 + 0.19 × (%FFA)]/[100 × unreacted triglycerides in grams]. The crude biodiesel obtained is then washed and purified with hot water. | - |
|
Jatropha seeds oil | Jordan [176] | Biodiesel | Esterification: Using methanol in the presence of a 1.0% (w/w) sulfuric acid (H2SO4) catalyst at a 0.6 (w/w) methanol to oil ratio at 50 °C for 1 h Transesterification: using a 0.24 (w/w) methanol to oil ratio in the presence of an alkaline catalyst of 1.4% (w/w) sodium hydroxide (NaOH) at 50 °C for 2 h to produce Jatropha biodiesel with a yield of around 90%. | USD 43 per barrel | A 98% biodiesel yield was generated by transesterification when using a 1.3% KOH catalyst and molar methanol to oil ratio of 6:1 at 64 °C for 20 min. |
Jatropha seeds oil | Jordan [174] | Biodiesel | Esterification and transesterification using KOH as a catalyst. Esterification and transesterification using dolomite as a catalyst. | - | Activated dolomite can be considered to be a less expensive alternative to the more commonly used KOH catalyst. |
Jatropha seeds oil | India [188] | Biodiesel | In the transesterification reactor, Jatropha seeds oil is combined with alcohol (Methanol) and a catalyst mixture (KOH, NaOH). The reactor is maintained at reaction temperature for a set period of time while being vigorously agitated. Following the reaction, the biodiesel and glycerol mixture is transferred to the glycerol sedimentation tanks. Crude Jatropha biodiesel is gathered and washed with water to obtain pure biodiesel. | - |
|
Jatropha seeds oil | Egypt [189] | Biodiesel | Transesterification: Using NaOH 1.0 wt% as a catalyst. Methanol to oil ratio (6:1). Reaction time 1.0 h. Reaction Temperature 338 K. Yield 93.0%. | - |
|
Jatropha seeds oil | India [190] | Biodiesel | Esterification: It is conducted in the presence of a sulfuric acid catalyst (H2SO4) and NaOH. Transesterification: Using KOH 0.55 wt% as a catalyst. Methanol to oil ratio (5.41:1). Reaction time 1.0 h. Reaction Temperature 333 K. Yield 93.0%. | - | The maximum biodiesel yield with two steps of esterification and transesterification was 93% (v/v), which was higher than that with one-step (transesterification) at 80.5%. |
MSW, animal manure | Jordan [36,37,181,191] | Biogas | Anaerobic digestion (Landfill) | Feasible | 1. The total amount of biogas that could potentially be created is around 817 MCM/year. 2. Total amount of power that might be theoretically acquired from CH4 yield per year is 961 GWhe. |
Biomass Resources | Biofuel | NPs | |||
---|---|---|---|---|---|
Type | Current Situation | Applicability in Jordan | Advantages of Use | ||
Tomato waste | Biodiesel | Snowman-like Fe3O4/Au | Not applied | Applicable | Enhance the conversion efficiency. |
General | Biodiesel | Carbon-Based Sulfonated Catalysts (CBSCs) | Not applied | Applicable | Significantly improved the engine’s effectiveness and release qualities. |
Soybean | Biodiesel | Carbon Nano Tube (CNT) | Not applied | Applicable | 4.5% decrease in BSFC. Enhances the combustion, performance, and discharge levels regardless of engine load conditions. |
Mustard oil | Biodiesel | TiO2 | Not applied | Applicable |
|
Cooking oil waste | Biodiesel | TiO2 | Not applied | Applicable |
|
Cashew nutshell | Biodiesel | Alumina nanoparticles | Not applied | Not Applicable | The engine emissions of CO, HC, NOx, and released smoke have been reduced by 8.8%, 10.1%, 12.4%, and 18.4%. |
Olive oil | Biodiesel | ZnO nanorods | Not applied | Applicable | Enhance the conversion efficiency. |
Sweet potato | Bioethanol | Methyl-functionalized silica, Cobalt-ferrite silica, nano-biocatalyst | Not applied | Applicable |
|
Animal manure, Agricultural residue, Sludge, and wastes | Biogas | Metal-NPs, metal nutrients, Co, ZVI, Fe2O3, Fe3O4, Nanographene | Not applied | Applicable | Increasing biogas and methane (CH4) production. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Bawwat, A.K.; Cano, A.; Gomaa, M.R.; Jurado, F. Availability of Biomass and Potential of Nanotechnologies for Bioenergy Production in Jordan. Processes 2023, 11, 992. https://doi.org/10.3390/pr11040992
Al-Bawwat AK, Cano A, Gomaa MR, Jurado F. Availability of Biomass and Potential of Nanotechnologies for Bioenergy Production in Jordan. Processes. 2023; 11(4):992. https://doi.org/10.3390/pr11040992
Chicago/Turabian StyleAl-Bawwat, Ala’a K., Antonio Cano, Mohamed R. Gomaa, and Francisco Jurado. 2023. "Availability of Biomass and Potential of Nanotechnologies for Bioenergy Production in Jordan" Processes 11, no. 4: 992. https://doi.org/10.3390/pr11040992
APA StyleAl-Bawwat, A. K., Cano, A., Gomaa, M. R., & Jurado, F. (2023). Availability of Biomass and Potential of Nanotechnologies for Bioenergy Production in Jordan. Processes, 11(4), 992. https://doi.org/10.3390/pr11040992