Removal of Paracetamol and Cu2+ from Water by Using Porous Carbons Derived from Agrowastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin of Carbon Materials
2.2. Characterization of Carbon Materials
2.3. Batch Adsorption Assays
2.4. Adsorption Experiments on the Single Component System—Kinetics
2.5. Adsorption Experiments on the Binary Component System
2.6. Ecotoxicity Assessment
3. Results and Discussion
3.1. Characterization of the Carbons and Their Eluates
3.1.1. Proximate and Elemental Analyses and pHpzc
3.1.2. Thermogravimetric Analysis
3.1.3. Bulk Mineral Content
3.1.4. Mobility of Chemical Elements
3.1.5. Ecotoxicity Assessment of the Carbons
3.1.6. FTIR Spectra
3.1.7. Textural Properties of the Carbon Samples
3.2. Adsorption in Single and Binary Systems: Kinetics, Equilibrium Assays, and Ecotoxicity
3.2.1. Adsorption Kinetics
3.2.2. Equilibrium Studies—Adsorption Isotherms
3.2.3. Ecotoxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Companhia Nacional de Abastecimento (CONAB). Boletim da Sociobiodiversidade; CONAB: Brasilia, Brazil, 2022. [Google Scholar]
- Carrazza, L.R.; Ávila, J.C.C.; da Silva, M.L. Manual Tecnológico de Aproveitamento Integral do Fruto do Babaçu; ISPN: Brasilia, Brazil, 2012. [Google Scholar]
- USDA Palm Oil Explorer. Available online: https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=4243000 (accessed on 18 May 2023).
- Cardoso Vieira, M.; Pischke Garske, R.; de Souza Rocha, P.; da Fontoura Xavier Costa, L.; Nunes Paiva, A.R.; Thys, R.C.S. Babassu Mesocarp Flour: A Nutritive Brazilian By-product for Gluten-free Muffins. J. Culin. Sci. Technol. 2021, 21, 517–532. [Google Scholar] [CrossRef]
- Kaniapan, S.; Hassan, S.; Ya, H.; Patma Nesan, K.; Azeem, M. The Utilisation of Palm Oil and Oil Palm Residues and the Related Challenges as a Sustainable Alternative in Biofuel, Bioenergy, and Transportation Sector: A Review. Sustainability 2021, 13, 3110. [Google Scholar] [CrossRef]
- Ferreira, R.C.; Couto, O.M.; Carvalho, K.Q.; Arroyo, P.A.; Barros, M.A.S.D. Effect of solution pH on the removal of paracetamol by activated carbon of dende coconut mesocarp. Chem. Biochem. Eng. Q. 2015, 29, 47–53. [Google Scholar] [CrossRef]
- Hoppen, M.I.; Carvalho, K.Q.; Ferreira, R.C.; Passig, F.H.; Pereira, I.C.; Rizzo-Domingues, R.C.P.; Lenzi, M.K.; Bottini, R.C.R. Adsorption and desorption of acetylsalicylic acid onto activated carbon of babassu coconut mesocarp. J. Environ. Chem. Eng. 2019, 7, 102862. [Google Scholar] [CrossRef]
- Vilella, P.C.; Lira, J.A.; Azevedo, D.C.S.; Bastos-Neto, M.; Stefanutti, R. Preparation of biomass-based activated carbons and their evaluation for biogas upgrading purposes. Ind. Crops Prod. 2017, 109, 134–140. [Google Scholar] [CrossRef]
- Melo, L.L.A.; Ide, A.H.; Duarte, J.L.S.; Zanta, C.L.P.S.; Oliveira, L.M.T.M.; Pimentel, W.R.O.; Meili, L. Caffeine removal using Elaeis guineensis activated carbon: Adsorption and RSM studies. Environ. Sci. Pollut. Res. 2020, 27, 27048–27060. [Google Scholar] [CrossRef]
- Lai, J.Y.; Ngu, L.H.; Hashim, S.S.; Chew, J.J.; Sunarso, J. Review of oil palm-derived activated carbon for CO2 capture. Carbon Lett. 2021, 31, 201–252. [Google Scholar] [CrossRef]
- Ferreira, R.C.; de Lima, H.H.C.; Cândido, A.A.; Junior, O.M.C.; Arroyo, P.A.; Gauze, G.F.; Carvalho, K.Q.; Barros, M.A.S.D. Adsorption of Paracetamol Using Activated Carbon of Dende and Babassu Coconut Mesocarp. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2015, 9, 575–580. [Google Scholar]
- Zbair, M.; Ait Ahsaine, H.; Anfar, Z. Porous carbon by microwave assisted pyrolysis: An effective and low-cost adsorbent for sulfamethoxazole adsorption and optimization using response surface methodology. J. Clean. Prod. 2018, 202, 571–581. [Google Scholar] [CrossRef]
- Jaria, G.; Silva, C.P.; Oliveira, J.A.B.P.; Santos, S.M.; Gil, M.V.; Otero, M.; Calisto, V.; Esteves, V.I. Production of highly efficient activated carbons from industrial wastes for the removal of pharmaceuticals from water—A full factorial design. J. Hazard. Mater. 2019, 370, 212–218. [Google Scholar] [CrossRef] [Green Version]
- To, M.-H.; Hadi, P.; Hui, C.-W.; Lin, C.S.K.; McKay, G. Mechanistic study of atenolol, acebutolol and carbamazepine adsorption on waste biomass derived activated carbon. J. Mol. Liq. 2017, 241, 386–398. [Google Scholar] [CrossRef]
- Ahmed, M.J. Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: Review. J. Environ. Manag. 2017, 190, 274–282. [Google Scholar] [CrossRef]
- Michelon, A.; Bortoluz, J.; Raota, C.S.; Giovanela, M. Agro-industrial residues as biosorbents for the removal of anti-inflammatories from aqueous matrices: An overview. Environ. Adv. 2022, 9, 100261. [Google Scholar] [CrossRef]
- Mansour, F.; Al-Hindi, M.; Yahfoufi, R.; Ayoub, G.M.; Ahmad, M.N. The use of activated carbon for the removal of pharmaceuticals from aqueous solutions: A review. Rev. Environ. Sci. Bio/Technol. 2018, 17, 109–145. [Google Scholar] [CrossRef]
- Kumar, M.; Ngasepam, J.; Dhangar, K.; Mahlknecht, J.; Manna, S. Critical review on negative emerging contaminant removal efficiency of wastewater treatment systems: Concept, consistency and consequences. Bioresour. Technol. 2022, 352, 127054. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziylan-Yavas, A.; Santos, D.; Flores, E.M.M.; Ince, N.H. Pharmaceuticals and personal care products (PPCPs): Environmental and public health risks. Environ. Prog. Sustain. Energy 2022, 41, e13821. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Ncube, S. Health effects and risks associated with the occurrence of pharmaceuticals and their metabolites in marine organisms and seafood. Sci. Total Environ. 2022, 837, 155780. [Google Scholar] [CrossRef]
- Tran, N.H.; Reinhard, M.; Gin, K.Y.-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 2018, 133, 182–207. [Google Scholar] [CrossRef]
- Balakrishna, K.; Rath, A.; Praveenkumarreddy, Y.; Guruge, K.S.; Subedi, B. A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol. Environ. Saf. 2017, 137, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, A.P.; Mestre, A.S.; Haro, M.; Ania, C.O. Advanced Methods for the Removal of Acetaminophen from Water. In Acetaminophen: Properties, Clinical Uses, and Adverse Effects; Javaherian, A., Latifpour, P., Eds.; Nova Publishers: New York, NY, USA, 2011; ISBN 9781619423749. [Google Scholar]
- Żur, J.; Piński, A.; Marchlewicz, A.; Hupert-Kocurek, K.; Wojcieszyńska, D.; Guzik, U. Organic micropollutants paracetamol and ibuprofen—Toxicity, biodegradation, and genetic background of their utilization by bacteria. Environ. Sci. Pollut. Res. 2018, 25, 21498–21524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parolini, M. Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review. Sci. Total Environ. 2020, 740, 140043. [Google Scholar] [CrossRef]
- Rocha, C.H.B.; Costa, H.F.; Azevedo, L.P. Heavy metals in the São Mateus Stream Basin, Peixe River Basin, Paraiba do Sul River Basin, Brazil. Ambient. Agua-Interdiscip. J. Appl. Sci. 2019, 14, e2329. [Google Scholar] [CrossRef] [Green Version]
- Saha, P.; Paul, B. Assessment of heavy metal toxicity related with human health risk in the surface water of an industrialized area by a novel technique. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 966–987. [Google Scholar] [CrossRef]
- Vareda, J.P.; Valente, A.J.M.; Durães, L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. J. Environ. Manag. 2019, 246, 101–118. [Google Scholar] [CrossRef]
- Couto, C.M.C.M.; Ribeiro, C. Pollution status and risk assessment of trace elements in Portuguese water, soils, sediments, and associated biota: A trend analysis from the 80s to 2021. Environ. Sci. Pollut. Res. 2022, 29, 48057–48087. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.; Liu, L.; Wang, Q.; Saleem, M.H.; Bashir, S.; Ullah, S.; Peng, D. Copper environmental toxicology, recent advances, and future outlook: A review. Environ. Sci. Pollut. Res. 2019, 26, 18003–18016. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.J. Copper. In Veterinary Toxicology; Gupta, R.C., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 425–427. ISBN 9780128114100. [Google Scholar]
- Luo, C.-H.; Wang, R.; Zhao, Y.; Huang, J.; Evans, N.J. Mobilization of Cu in the continental lower crust: A perspective from Cu isotopes. Geosci. Front. 2023, 14, 101590. [Google Scholar] [CrossRef]
- Zheng, J.; Li, Q.; Zheng, X. Ocean acidification increases copper accumulation and exacerbates copper toxicity in Amphioctopus fangsiao (Mollusca: Cephalopoda): A potential threat to seafood safety. Sci. Total Environ. 2023, 891, 164473. [Google Scholar] [CrossRef]
- Quesada, H.B.; Baptista, A.T.A.; Cusioli, L.F.; Seibert, D.; de Oliveira Bezerra, C.; Bergamasco, R. Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review. Chemosphere 2019, 222, 766–780. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Hameed, B.H. Insights into the isotherm and kinetic models for the coadsorption of pharmaceuticals in the absence and presence of metal ions: A review. J. Environ. Manag. 2019, 252, 109617. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.C.; Dias, D.; Fonseca, I.; Bernardo, M.; Willimann Pimenta, J.L.C.; Lapa, N.; de Barros, M.A.S.D. Multi-component adsorption study by using bone char: Modelling and removal mechanisms. Environ. Technol. 2022, 43, 789–804. [Google Scholar] [CrossRef] [PubMed]
- Dias, D.; Lapa, N.; Bernardo, M.; Godinho, D.; Fonseca, I.; Miranda, M.; Pinto, F.; Lemos, F. Properties of chars from the gasification and pyrolysis of rice waste streams towards their valorisation as adsorbent materials. Waste Manag. 2017, 65, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Is the bet equation applicable to microporous adsorbents? In Studies in Surface Science and Catalysis; Llewellyn, P.L., Rodriquez-Reinoso, F., Rouqerol, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 49–56. ISBN 9780444520227. [Google Scholar]
- Lagergren, S. About the theory of so-called adsorption of soluble substances. Sven. Vetensk. Handl. 1898, 24, 1–39. [Google Scholar]
- Ho, Y. Review of second-order models for adsorption systems. J. Hazard. Mater. 2006, 136, 681–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, Y.-S. Selection of optimum sorption isotherm. Carbon N. Y. 2004, 42, 2115–2116. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Agarwal, B.; Balomajumder, C.; Thakur, P.K. Simultaneous co-adsorptive removal of phenol and cyanide from binary solution using granular activated carbon. Chem. Eng. J. 2013, 228, 655–664. [Google Scholar] [CrossRef]
- Mohan, D.; Singh, K.P. Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—An agricultural waste. Water Res. 2002, 36, 2304–2318. [Google Scholar] [CrossRef]
- Couto, O.M.; Matos, I.; da Fonseca, I.M.; Arroyo, P.A.; da Silva, E.A.; de Barros, M.A.S.D. Effect of solution pH and influence of water hardness on caffeine adsorption onto activated carbons. Can. J. Chem. Eng. 2015, 93, 68–77. [Google Scholar] [CrossRef]
- Dias, D.; Lapa, N.; Bernardo, M.; Ribeiro, W.; Matos, I.; Fonseca, I.; Pinto, F. Cr(III) removal from synthetic and industrial wastewaters by using co-gasification chars of rice waste streams. Bioresour. Technol. 2018, 266, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Dias, D.; Bernardo, M.; Matos, I.; Fonseca, I.; Pinto, F.; Lapa, N. Activation of co-pyrolysis chars from rice wastes to improve the removal of Cr3+ from simulated and real industrial wastewaters. J. Clean. Prod. 2020, 267, 121993. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd.: Chichester, UK, 2006. [Google Scholar]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D. Spectrometric Identification of Organic Compounds, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005; ISBN 1118311655. [Google Scholar]
- Ghosh, A.; da Silva Santos, A.M.; Cunha, J.R.; Dasgupta, A.; Fujisawa, K.; Ferreira, O.P.; Lobo, A.O.; Terrones, M.; Terrones, H.; Viana, B.C. CO2 Sensing by in-situ Raman spectroscopy using activated carbon generated from mesocarp of babassu coconut. Vib. Spectrosc. 2018, 98, 111–118. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004; ISBN 0470093072. [Google Scholar]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Reck, I.M.; Paixão, R.M.; Bergamasco, R.; Vieira, M.F.; Vieira, A.M.S. Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds. J. Clean. Prod. 2018, 171, 85–97. [Google Scholar] [CrossRef]
- Cabrita, I.; Ruiz, B.; Mestre, A.S.; Fonseca, I.M.; Carvalho, A.P.; Ania, C.O. Removal of an analgesic using activated carbons prepared from urban and industrial residues. Chem. Eng. J. 2010, 163, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Bernal, V.; Erto, A.; Giraldo, L.; Moreno-Piraján, J. Effect of Solution pH on the Adsorption of Paracetamol on Chemically Modified Activated Carbons. Molecules 2017, 22, 1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, D.T.; Tran, H.N.; Juang, R.-S.; Dat, N.D.; Tomul, F.; Ivanets, A.; Woo, S.H.; Hosseini-Bandegharaei, A.; Nguyen, V.P.; Chao, H.-P. Adsorption process and mechanism of acetaminophen onto commercial activated carbon. J. Environ. Chem. Eng. 2020, 8, 104408. [Google Scholar] [CrossRef]
- Chao, H.P.; Chang, C.C. Adsorption of copper(II), cadmium(II), nickel(II) and lead(II) from aqueous solution using biosorbents. Adsorption 2012, 18, 395–401. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Krukowska, J.; Thomas, P. Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chem. Eng. J. 2017, 307, 353–363. [Google Scholar] [CrossRef]
- Li, A.Y.; Deng, H.; Jiang, Y.H.; Ye, C.H.; Yu, B.G.; Zhou, X.L.; Ma, A.Y. Superefficient Removal of Heavy Metals from Wastewater by Mg-Loaded Biochars: Adsorption Characteristics and Removal Mechanisms. Langmuir 2020, 36, 9160–9174. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, X. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Giles, C.H.; MacEwan, T.H.; Nakhwa, S.N.; Smith, D. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 1960, 786, 3973. [Google Scholar] [CrossRef]
- Giménez, B.N.; Conte, L.O.; Alfano, O.M.; Schenone, A.V. Paracetamol removal by photo-Fenton processes at near-neutral pH using a solar simulator: Optimization by D-optimal experimental design and toxicity evaluation. J. Photochem. Photobiol. Chem. 2020, 397, 112584. [Google Scholar] [CrossRef]
- Nunes, B.; Antunes, S.C.; Santos, J.; Martins, L.; Castro, B.B. Toxic potential of paracetamol to freshwater organisms: A headache to environmental regulators? Ecotoxicol. Environ. Saf. 2014, 107, 178–185. [Google Scholar] [CrossRef]
- Kaiser, K.L.E.; Ribo, J.M. Photobacterium phosphoreum toxicity bioassay. II. Toxicity data compilation. Toxic. Assess. 1988, 3, 195–237. [Google Scholar] [CrossRef]
- Cukurluoglu, S.; Muezzinoglu, A. Assessment of toxicity in waters due to heavy metals derived from atmospheric deposition using Vibrio fischeri. J. Environ. Sci. Heal. Part A 2013, 48, 57–66. [Google Scholar] [CrossRef]
- Peraferrer, C.; Martínez, M.; Poch, J.; Villaescusa, I. Toxicity of Metal–Ethylenediaminetetraacetic Acid Solution as a Function of Chemical Speciation: An Approach for Toxicity Assessment. Arch. Environ. Contam. Toxicol. 2012, 63, 484–494. [Google Scholar] [CrossRef] [Green Version]
Parameters | Carbons | ||
---|---|---|---|
BBS | DND | NOR | |
Proximate analysis a (% w/w) | |||
Moisture (%) | 10.2 | 8.9 | 11.7 |
Volatile matter | 8.6 | 11.7 | 7.0 |
Ashes | 7.4 | 6.6 | 11.6 |
Fixed carbon | 73.8 | 72.7 | 69.7 |
Elemental analysis a (% w/w) | |||
C | 79.6 | 78.9 | 80.2 |
H | 0.7 | 1.0 | 0.3 |
N | 0.4 | 0.5 | 0.4 |
S | <0.03 | <0.03 | <0.03 |
O b | 11.9 | 13.0 | 7.5 |
pHpzc | 7.5 | 7.8 | 8.0 |
Chemical Element | Carbons | ||
---|---|---|---|
BBS | DND | NOR | |
Si | 25,907 ± 554 | 17,521 ± 234 | 32,016 ± 120 |
K | 6043 ± 467 | 5189 ± 113 | 623 ± 3.1 |
Fe | 1323 ± 205 | 1692 ± 97 | 7255 ± 551 |
Ca | 786 ± 3.4 | 1165 ± 61 | 1524 ± 35 |
Mg | 749 ± 68 | 4525 ± 508 | 170 ± 29 |
Al | 452 ± 63 | 1148 ± 32 | 13,473 ± 2006 |
Mn | 49 ± 0.1 | 53 ± 0.2 | 30 ± 3.9 |
Zn | 35 ± 13 | 30 ± 3.5 | 20 ± 3.7 |
Na | 23 ± 19 | 276 ± 13 | 257 ± 42 |
Cu | 22 ± 0.3 | 45 ± 0.4 | 9.0 ± 0.1 |
Se | 22 ± 0.1 | <1.8 | 30 ± 0.2 |
Ba | 13 ± 1.1 | 14 ± 0.3 | 70 ± 0.9 |
Pb | 13 ± 0.3 | <0.2 | 19 ± 1.9 |
As | <0.2 | <0.2 | 31 ± 0.3 |
Ni | <1.5 | <1.5 | 38 ± 0.3 |
Cr | <0.6 | <0.6 | 11 ± 0.1 |
Mo | <0.2 | <0.2 | <0.2 |
Chemical Element | BBS | DND | NOR | |||
---|---|---|---|---|---|---|
Eluate Concentration | Relative Mobility | Eluate Concentration | Relative Mobility | Eluate Concentration | Relative Mobility | |
K | 3221 ± 237 | 53.3 | 1262 ± 50 | 24.3 | 8.20 ± 0.30 | 1.31 |
Mg | 69.0 ± 2.9 | 15.3 | 36.0 ± 3.4 | 0.800 | 5.30 ± 0.60 | 3.12 |
Ca | 22.0 ± 1.9 | 2.80 | 0.700 ± 0.100 | 0.060 | 36.0 ± 1.0 | 2.36 |
Na | 3.30 ± 0.40 | 14.4 | 30.0 ± 0.1 | 10.9 | 2.80 ± 0.10 | 1.09 |
Si | 80.0 ± 0.3 | 0.310 | 123 ± 1 | 0.700 | 26.0 ± 1.1 | 0.008 |
Fe | 0.060 ± 0.120 | 0.004 | 0.110 ± 0.080 | 0.006 | 0.090 ± 0.050 | 0.001 |
Al | <0.050 | <0.010 | <0.050 | <0.004 | 0.550 | 0.004 |
Ba | <0.001 | <0.007 | <0.001 | <0.007 | <0.001 | <0.001 |
Zn | <0.004 | <0.010 | <0.004 | <0.010 | <0.004 | <0.02 |
Cu | <0.041 | <0.180 | <0.041 | <0.090 | <0.041 | <0.45 |
Se | <0.053 | <0.240 | <0.053 | n.a. | <0.053 | <0.17 |
As | <0.005 | n.a. | <0.005 | n.a. | <0.005 | <0.01 |
Ni | <0.043 | n.a. | <0.043 | n.a. | <0.043 | <0.11 |
Pb | <0.005 | <0.030 | <0.005 | n.a. | <0.005 | <0.02 |
Cr | <0.018 | n.a. | <0.018 | n.a. | <0.018 | <0.16 |
Mo | <0.006 | n.a. | <0.006 | n.a. | <0.006 | n.a. |
pH | 7.8 | n.a. | 9.5 | n.a. | 7.9 | n.a. |
Carbon | SBET (m2 g−1) | Vtotal (cm3 g−1) | Vmes (cm3 g−1) | Vmicro (cm3 g−1) |
---|---|---|---|---|
BBS | 784 | 0.34 | 0.08 | 0.26 |
DND | 767 | 0.34 | 0.09 | 0.25 |
NOR | 1083 | 0.57 | 0.41 | 0.16 |
Carbon | Paracetamol | Cu2+ | ||||
---|---|---|---|---|---|---|
qe Single (mg g−1) | qe Binary (mg g−1) | EI | qe Single (mg g−1) | qe Binary (mg g−1) | EI | |
BBS | 98.4 | 97.8 | 0.99 | 15.0 | 12.2 | 0.81 |
DND | 109 | 104 | 0.95 | 16.6 | 15.7 | 0.94 |
NOR | 123 | 115 | 0.93 | 18.1 | 16.2 | 0.89 |
Adsorbent | Isotherm Model | Parameters | Paracetamol Binary | Cu2+ Binary |
---|---|---|---|---|
BBS | qe exp | 115 | 10.7 | |
Langmuir | 128 | 12.2 | ||
0.090 | 0.090 | |||
R2 | 0.880 | 0.846 | ||
AIC | 61.4 | 16.8 | ||
Freundlich | 26.4 | 3.65 | ||
1/n | 0.343 | 0.248 | ||
R2 | 0.816 | 0.850 | ||
AIC | 57.5 | 17.1 | ||
DND | qe exp | 104 | 15.7 | |
Langmuir | 149 | 16.6 | ||
0.070 | 0.160 | |||
R2 | 0.921 | 0.971 | ||
AIC | 48.8 | 10.5 | ||
Freundlich | 16.4 | 5.18 | ||
1/n | 0.523 | 0.263 | ||
R2 | 0.837 | 0.973 | ||
AIC | 54.6 | 10.7 | ||
NOR | qe exp | 132 | 17.8 | |
Langmuir | 148 | 20.2 | ||
0.115 | 0.058 | |||
R2 | 0.952 | 0.949 | ||
AIC | 51.4 | 14.7 | ||
Freundlich | 30.3 | 3.19 | ||
1/n | 0.362 | 0.389 | ||
R2 | 0.881 | 0.962 | ||
AIC | 59.9 | 12.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, R.C.; de Araújo, T.P.; Dias, D.; Bernardo, M.; Lapa, N.; Fonseca, I.M.; de Barros, M.A.S.D. Removal of Paracetamol and Cu2+ from Water by Using Porous Carbons Derived from Agrowastes. Processes 2023, 11, 2146. https://doi.org/10.3390/pr11072146
Ferreira RC, de Araújo TP, Dias D, Bernardo M, Lapa N, Fonseca IM, de Barros MASD. Removal of Paracetamol and Cu2+ from Water by Using Porous Carbons Derived from Agrowastes. Processes. 2023; 11(7):2146. https://doi.org/10.3390/pr11072146
Chicago/Turabian StyleFerreira, Regiane C., Thiago Peixoto de Araújo, Diogo Dias, Maria Bernardo, Nuno Lapa, Isabel M. Fonseca, and Maria A. S. D. de Barros. 2023. "Removal of Paracetamol and Cu2+ from Water by Using Porous Carbons Derived from Agrowastes" Processes 11, no. 7: 2146. https://doi.org/10.3390/pr11072146
APA StyleFerreira, R. C., de Araújo, T. P., Dias, D., Bernardo, M., Lapa, N., Fonseca, I. M., & de Barros, M. A. S. D. (2023). Removal of Paracetamol and Cu2+ from Water by Using Porous Carbons Derived from Agrowastes. Processes, 11(7), 2146. https://doi.org/10.3390/pr11072146