Improving the Process of Product Design in a Phase of Life Cycle Assessment (LCA)
Abstract
:1. Introduction
1.1. Life Cycle Assessment in Product Improvement
1.2. Literature Review and Problem Research
1.3. Purpose, Oryginality, and Application of the Model
- Improving the process of developing and analysing alternatives of product design, including simultaneously customers’ expectations towards these alternatives (modifications) of product criteria and the impact of these alternatives on the environment;
- The effectiveness of the model when based on pre-defined environmental impacts;
- The possibility of performing analyses for any product by including variables depends on the entity (the expert or the decision maker) using the model, including variables resulting from customers’ expectations;
- Ensuring consideration of customers’ expectations towards product quality and its impact on the natural environment.
2. Model Supporting the Improvement of the Product Design Process in the Life Cycle Phase (LCA)
2.1. Stage 1: Selection of the Product for Research and the Choice of the Team of Experts
2.2. Stage 2: Determine the Purpose of Research
2.3. Stage 3: Identification of Possible Modifications to the Product
2.4. Stage 4: Determination of Environmental Impact Criteria
- Carbon footprint (climate change/greenhouse gas emissions/global warming);
- Depletion of the ozone layer;
- Human toxicity (including carcinogenic effects or not);
- Ecotoxicity (water);
- Terrestrial ecotoxicity;
- Formation of photo-oxidants;
- Acidification (water/soil);
- Eutrophication (water/terrestrial);
- Ozone formation (human health/terrestrial ecosystems);
- Photochemical oxidant formation potential/photochemical ozone/photochemical oxidation/photochemical ecotoxicity;
- Waste (hazardous/bulky/radioactive/radioactive/deposited);
- Abiotic depletion (elements/fossil fuels/other resources);
- Particulate matter or inorganic substances in the respiratory system/effects on the respiratory system;
- Ionizing radiation (human health/ecosystems);
- Land development;
- Scarcity of resources (mineral/fossil/renewable/aquatic)/extraction of minerals;
- Water consumption/water footprint;
- Heavy metals to water/soil/air;
- Radioactive substances to air/water;
- Water pollution;
- Noise;
- Soil pesticides;
- Major air pollutants.
2.5. Stage 5: Assessment of the Environmental Impact of Possible Product Modifications
2.6. Stage 6: Obtaining Customer Expectations
- The first part is used to determine the importance (weights) of product criteria according to customers (selected in the third stage of the model);
- The second part is used to determine customer satisfaction with possible modifications to the product (i.e., with the states of the criteria defined in the third stage of the model);
- The third part is used to determine the importance (weights) of environmental impact criteria according to customers (selected at stage four of the model).
2.7. Stage 7: Estimating Quality Level and Environmental Impact for the Product Criteria
- The importance of the product criteria (specified by customers—step six) and the value of satisfaction with the ranges of these criteria’s states (defined by customers—step six);
- The importance of environmental impact criteria (determined by clients—stage six) and the value of the impact of these criteria on the natural environment (determined by a team of experts—stage five).
2.8. Stage 8: Estimation of Qualitative–Environmental Level for the Combination of Criteria States and Their Environmental Impact
2.9. Stage 9: Predicting the Direction of Qualitative–Environmental Improvement for LCA in the Product Design Phase
3. Test of Model
3.1. Stage 1: Selection of the Product for Research and Choice of the Team of Experts
3.2. Stage 2: Determine the Purpose of Research
3.3. Stage 3: Identification of Possible Modifications to the Product
- Rated power (Wp);
- Short-circuit current (A);
- No-load voltage (V);
- Efficiency (%);
- Dimensions (mm);
- Number of cells;
- Temperature coefficient of intensity (%/°C);
- Degree of integration;
- Light reflection.
3.4. Stage 4: Determination of Environmental Impact Criteria in the Context of LCA
- Efficiency;
- Type of silicon (i.e., scrap EG-Si or SoG-Si);
- Technology used to produce silicon;
- Silicon layer thickness;
- PV installation method;
- Depletion of the ozone layer (E1);
- Photochemical oxidant formation potential/photochemical ozone/photochemical oxidation/photochemical ecotoxicity (E2);
- Waste (hazardous/bulky/radioactive/radioactive/deposited) (E3);
- Abiotic depletion (elements/fossil fuels/other resources) (E4);
- Land development (E5);
- Scarcity of resources (mineral/fossil/renewable/aquatic)/extraction of minerals (E6);
- Carbon footprint (E7).
3.5. Stage 5: Assessment of the Environmental Impact of Possible Product Modifications
3.6. Stage 6: Obtaining Customer Expectations
3.7. Stage 7: Estimating Quality Level and Environmental Impact for the Product Criteria
3.8. Stage 8: Estimation of Qualitative–Environmental Level for the Combination of Criteria States and Their Environmental Impact
3.9. Stage 9: Predicting the Direction of Qualitative–Environmental Improvement for LCA in the Product Design Phase
- Rated power (Wp): —sufficient for QE = 0.59;
- Short-circuit current (A): —moderate for QE = 0.60;
- No-load voltage (V): —satisfactory for QE = 0.76;
- Efficiency (%): —distinctive for QE = 0.97;
- Dimensions (mm): or —sufficient for QE = 0.41 or QE = 0.48;
- Number of cells: lub —sufficient for QE = 0.42 or QE = 0.49;
- Temperature coefficient of intensity (%/°C): —satisfactory for QE = 0.62;
- Degree of integration: integrated—moderate for QE = 0.56;
- Light reflection: low or high—sufficient or moderate for QE = 0.46 or QE = 0.53.
4. Discussion
- Economic benefit;
- Legislation fulfilment;
- Public image improvement;
- Employee motivation enhancement;
- Meeting customers’ expectations;
- Increasing opportunities for environmental protection.
- An ability to analyse design alternatives (scenarios) based on low-complexity data from customers and experts;
- An uncomplicated way to anticipate the direction of product design while taking into account customer expectations regarding product quality and its environmental impact;
- Predicting customer satisfaction and environmental impact in the early stages of product development under LCA;
- A low-cost and uncomplicated model that can be used by experts for analyses as part of the design phase in LCA.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AHP | Analytic Hierarchy Process |
BM | Brainstorming Method |
DEF | Design for Environment |
ELECTRE | Elimination and Choice Expressing the Reality |
EPD | Environmental Product Declaration |
FMEA | Failure Modes and Effects Analysis |
Fuzzy TOPSIS | Fuzzy Technique for Order of Preference by Similarity to Ideal Solution |
LCA | Life Cycle Assessment |
LCP | Life Cycle Phases |
LLC | Life Cycle Cost |
PCR | Rules of the Product Categories |
PEF | Environmental Footprint of the Product |
PLM | Product Life Cycle Management |
PROMETHEE | Preference Ranking Organization Method for the Enrichment of Evaluations |
PVs | Photovoltaic Panels |
QFD | Quality Function Deployment |
REN21 | Renewables Now 2021 |
RESs | Renewable Energy Resources |
SMEs | Small and Medium-Sized Enterprises |
TRIZ | Theory of Inventive Problem Solving |
VIKOR | The Multiple Criteria Optimization Compromise Solution |
VOC | Voice of Customer |
WSM | Weighted Sum Model |
Appendix A
Environmental Impact Criteria | Sum of Points (Max. 100) | ||||
---|---|---|---|---|---|
Qualitative Criteria and Range of States | Environmental Criterion 1 | Environmental Criterion 2 | Environmental Criterion n | ||
Qualitative criterion 1 | State 1 | ||||
State 2 | |||||
State 3 | |||||
State n | |||||
Qualitative criterion n | State 1 | ||||
State 2 | |||||
State 3 | |||||
State n |
Qualitative Criteria and Range of States | Environmental Impact Criteria | |||||||
---|---|---|---|---|---|---|---|---|
E1 | E2 | E3 | E4 | E5 | E6 | E7 | ||
(Q1) Rated power (Wp) | 3 | 8 | 4 | 2 | 2 | 5 | 2 | |
3 | 9 | 5 | 2 | 3 | 6 | 3 | ||
4 | 11 | 7 | 5 | 4 | 9 | 3 | ||
(Q2) Short-circuit current (A) | 4 | 7 | 6 | 2 | 2 | 6 | 2 | |
5 | 8 | 6 | 2 | 2 | 6 | 2 | ||
6 | 10 | 8 | 3 | 3 | 8 | 2 | ||
No-load voltage (V) | 5 | 5 | 8 | 4 | 2 | 2 | 2 | |
5 | 5 | 9 | 5 | 3 | 3 | 3 | ||
6 | 6 | 10 | 6 | 4 | 4 | 3 | ||
Efficiency (%) | 5 | 5 | 7 | 3 | 3 | 2 | 2 | |
6 | 7 | 7 | 4 | 3 | 2 | 2 | ||
7 | 9 | 9 | 6 | 6 | 2 | 3 | ||
Dimensions (mm) | 3 | 4 | 8 | 4 | 7 | 1 | 2 | |
3 | 4 | 9 | 5 | 8 | 1 | 2 | ||
3 | 5 | 11 | 7 | 9 | 2 | 2 | ||
Number of cells | 4 | 5 | 6 | 3 | 3 | 1 | 2 | |
5 | 7 | 6 | 4 | 4 | 2 | 3 | ||
6 | 10 | 11 | 6 | 5 | 3 | 4 | ||
Temperature coefficient of intensity (%/°C) | 3 | 5 | 7 | 4 | 3 | 3 | 3 | |
5 | 5 | 8 | 5 | 3 | 3 | 3 | ||
6 | 6 | 9 | 7 | 4 | 4 | 4 | ||
Degree of integration | Not integrated | 3 | 8 | 11 | 7 | 10 | 4 | 5 |
Partially integrated | 2 | 5 | 6 | 5 | 7 | 3 | 3 | |
Integrated | 1 | 3 | 4 | 4 | 5 | 2 | 2 | |
Light reflection | Small | 3 | 6 | 9 | 7 | 9 | 4 | 4 |
Medium | 2 | 5 | 8 | 5 | 7 | 3 | 3 | |
Large | 1 | 4 | 5 | 4 | 6 | 3 | 2 |
Quality Criteria and Their Importance for Customers | Environmental Impact Criteria and Their Relevance to Customers | ||||
---|---|---|---|---|---|
Designation and Name | Weight | Designation and Name | Weight | ||
Q1 | Rated power (Wp) | 14.20 | E1 | Depletion of the ozone layer | 20.06 |
Q2 | Short-circuit current (A) | 9.10 | E2 | Photochemical oxidant formation potential/photochemical ozone/photochemical oxidation/photochemical ecotoxicity | 5.10 |
Q3 | No-load voltage (V) | 5.70 | E3 | Waste (hazardous/bulky/radioactive/radioactive/ deposited) | 23.45 |
Q4 | Efficiency (%) | 22.45 | E4 | Abiotic depletion (elements/fossil fuels/other resources) | 10.65 |
Q5 | Dimensions (mm) | 9.95 | E5 | land development | 3.22 |
Q6 | Number of cells | 11.03 | E6 | Scarcity of resources (mineral/fossil/renewable/aquatic)/extraction of minerals | 14.50 |
Q7 | Temperature coefficient of intensity (%/°C) | 6.22 | E7 | Carbon footprint | 25.50 |
Q8 | Degree of integration | 16.69 | |||
Q9 | Light reflection | 5.30 |
Qualitative Criteria and the Ranges of Their States to Be Modified | Average Level Customer Satisfaction | Average Environmental Impact | |
---|---|---|---|
Rated power (Wp) | 20.00 | 3.71 | |
28.00 | 4.43 | ||
52.00 | 6.14 | ||
Short-circuit current (A) | 19.00 | 4.14 | |
27.00 | 4.43 | ||
54.00 | 5.71 | ||
Open-circuit voltage (V) | 10.00 | 4.00 | |
15.00 | 4.71 | ||
70.00 | 5.57 | ||
Efficiency (%) | 3.00 | 3.86 | |
7.00 | 4.43 | ||
90.00 | 6.00 | ||
Dimensions (mm) | 22.00 | 4.14 | |
36.00 | 4.57 | ||
42.00 | 5.57 | ||
Number of cells | 21.00 | 3.43 | |
37.00 | 4.43 | ||
42.00 | 6.43 | ||
Temperature coefficient of intensity (%/°C) | 17.00 | 4.00 | |
27.00 | 4.57 | ||
56.00 | 5.71 | ||
Degree of integration | Not integrated | 18.00 | 6.86 |
Partially integrated | 29.00 | 4.43 | |
Integrated | 53.00 | 3.00 | |
Light reflection | Small | 40.00 | 6.00 |
Medium | 48.00 | 4.71 | |
Large | 12.00 | 3.57 |
References
- Beylot, A.; Bodénan, F.; Guezennec, A.-G.; Muller, S. LCA as a Support to More Sustainable Tailings Management: Critical Review, Lessons Learnt and Potential Way Forward. Resour. Conserv. Recycl. 2022, 183, 106347. [Google Scholar] [CrossRef]
- Koch, D.; Friedl, A.; Mihalyi, B. Influence of Different LCIA Methods on an Exemplary Scenario Analysis from a Process Development LCA Case Study. Environ. Dev. Sustain. 2023, 25, 6269–6293. [Google Scholar] [CrossRef]
- Bonilla-Alicea, R.J.; Fu, K. Social Life-Cycle Assessment (S-LCA) of Residential Rooftop Solar Panels Using Challenge-Derived Framework. Energy Sustain. Soc. 2022, 12, 7. [Google Scholar] [CrossRef]
- Skaar, C.; Lausselet, C.; Bergsdal, H.; Brattebø, H. Towards a LCA Database for the Planning and Design of Zero-Emissions Neighborhoods. Buildings 2022, 12, 512. [Google Scholar] [CrossRef]
- Rovelli, D.; Brondi, C.; Andreotti, M.; Abbate, E.; Zanforlin, M.; Ballarino, A. A Modular Tool to Support Data Management for LCA in Industry: Methodology, Application and Potentialities. Sustainability 2022, 14, 3746. [Google Scholar] [CrossRef]
- Turner, C.; Oyekan, J.; Garn, W.; Duggan, C.; Abdou, K. Industry 5.0 and the Circular Economy: Utilizing LCA with Intelligent Products. Sustainability 2022, 14, 14847. [Google Scholar] [CrossRef]
- Saadé, M.; Erradhouani, B.; Pawlak, S.; Appendino, F.; Peuportier, B.; Roux, C. Combining Circular and LCA Indicators for the Early Design of Urban Projects. Int. J. Life Cycle Assess. 2022, 27, 1–19. [Google Scholar] [CrossRef]
- Calado, E.A.; Leite, M.; Silva, A. Integrating Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) in the Early Phases of Aircraft Structural Design: An Elevator Case Study. Int. J. Life Cycle Assess. 2019, 24, 2091–2110. [Google Scholar] [CrossRef]
- Means, P.; Guggemos, A. Framework for Life Cycle Assessment (LCA) Based Environmental Decision Making during the Conceptual Design Phase for Commercial Buildings. Procedia Eng. 2015, 118, 802–812. [Google Scholar] [CrossRef]
- Bhat, I.K.; Prakash, R. LCA of Renewable Energy for Electricity Generation Systems—A Review. Renew. Sustain. Energy Rev. 2009, 13, 1067–1073. [Google Scholar] [CrossRef]
- Pehnt, M. Dynamic Life Cycle Assessment (LCA) of Renewable Energy Technologies. Renew. Energy 2006, 31, 55–71. [Google Scholar] [CrossRef]
- PN-EN ISO 14040:2009/A1:2021-03; English Version. Environmental Management—Life Cycle Assessment—Principles and structure. PKN: Warszawa, Polska, 2021.
- Hameed, A.Z.; Kandasamy, J.; Aravind Raj, S.; Baghdadi, M.A.; Shahzad, M.A. Sustainable Product Development Using FMEA ECQFD TRIZ and Fuzzy TOPSIS. Sustainability 2022, 14, 14345. [Google Scholar] [CrossRef]
- Karlewski, H.; Lehmann, A.; Ruhland, K.; Finkbeiner, M. A Practical Approach for Social Life Cycle Assessment in the Automotive Industry. Resources 2019, 8, 146. [Google Scholar] [CrossRef]
- Kulczycka, J.; Smol, M. Environmentally Friendly Pathways for the Evaluation of Investment Projects Using Life Cycle Assessment (LCA) and Life Cycle Cost Analysis (LCCA). Clean Technol. Environ. Policy 2016, 18, 829–842. [Google Scholar] [CrossRef]
- Han, J.; Jiang, P.; Childs, P.R.N. Metrics for Measuring Sustainable Product Design Concepts. Energies 2021, 14, 3469. [Google Scholar] [CrossRef]
- Bersano, G.; Fayemi, P.-E.; Schoefer, M.; Spreafico, C. An Eco-Design Methodology Based on a-LCA and TRIZ. In Sustainable Design and Manufacturing 2017; Springer: Cham, Switzerland, 2017; pp. 919–928. [Google Scholar]
- Puglieri, F.N.; Ometto, A.R.; Salvador, R.; Barros, M.V.; Piekarski, C.M.; Rodrigues, I.M.; Diegoli Netto, O. An Environmental and Operational Analysis of Quality Function Deployment-Based Methods. Sustainability 2020, 12, 3486. [Google Scholar] [CrossRef]
- Ko, N.; Graf, R.; Buchert, T.; Kim, M.; Wehner, D. Resource Optimized Product Design—Assessment of a Product’s Life Cycle Resource Efficiency by Combining LCA and PLM in the Product Development. Procedia CIRP 2016, 57, 669–673. [Google Scholar] [CrossRef]
- Lagerstedt, J.; Luttropp, C.; Lindfors, L.-G. Functional Priorities in LCA and Design for Environment. Int. J. Life Cycle Assess. 2003, 8, 160–166. [Google Scholar] [CrossRef]
- Hilton, S.P.; Keoleian, G.A.; Daigger, G.T.; Zhou, B.; Love, N.G. Life Cycle Assessment of Urine Diversion and Conversion to Fertilizer Products at the City Scale. Environ. Sci. Technol. 2021, 55, 593–603. [Google Scholar] [CrossRef]
- Damiani, M.; Sinkko, T.; Caldeira, C.; Tosches, D.; Robuchon, M.; Sala, S. Critical Review of Methods and Models for Biodiversity Impact Assessment and Their Applicability in the LCA Context. Environ. Impact Assess. Rev. 2023, 101, 107134. [Google Scholar] [CrossRef]
- Neramballi, A.; Sakao, T.; Willskytt, S.; Tillman, A.-M. A Design Navigator to Guide the Transition towards Environmentally Benign Product/Service Systems Based on LCA Results. J. Clean. Prod. 2020, 277, 124074. [Google Scholar] [CrossRef]
- Sakao, T. A QFD-Centred Design Methodology for Environmentally Conscious Product Design. Int. J. Prod. Res. 2007, 45, 4143–4162. [Google Scholar] [CrossRef]
- McAuliffe, G.A.; Takahashi, T.; Beal, T.; Huppertz, T.; Leroy, F.; Buttriss, J.; Collins, A.L.; Drewnowski, A.; McLaren, S.J.; Ortenzi, F.; et al. Protein Quality as a Complementary Functional Unit in Life Cycle Assessment (LCA). Int. J. Life Cycle Assess. 2023, 28, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Ragab, A.; Osama, A.; Ramzy, A. Simulation of the Environmental Impact of Industries in Smart Cities. Ain Shams Eng. J. 2023, 14, 102103. [Google Scholar] [CrossRef]
- Witczak, J.; Kasprzak, J.; Klos, Z.; Kurczewski, P.; Lewandowska, A.; Lewicki, R. Life Cycle Thinking in Small and Medium Enterprises: The Results of Research on the Implementation of Life Cycle Tools in Polish SMEs—Part 2: LCA Related Aspects. Int. J. Life Cycle Assess. 2014, 19, 891–900. [Google Scholar] [CrossRef]
- Zhou, S.; Zhu, C.; Zheng, L.; Cui, S.; Chan, C.C. Applying LCC Compensated Primary Topology Utilizing Switches for Transmitters with Inter-Coupling in a Wireless Power Transmission System. IEEE Access 2022, 10, 68257–68265. [Google Scholar] [CrossRef]
- Torkayesh, A.E.; Rajaeifar, M.A.; Rostom, M.; Malmir, B.; Yazdani, M.; Suh, S.; Heidrich, O. Integrating Life Cycle Assessment and Multi Criteria Decision Making for Sustainable Waste Management: Key Issues and Recommendations for Future Studies. Renew. Sustain. Energy Rev. 2022, 168, 112819. [Google Scholar] [CrossRef]
- Solaun, K.; Cerdá, E. Climate Change Impacts on Renewable Energy Generation. A Review of Quantitative Projections. Renew. Sustain. Energy Rev. 2019, 116, 109415. [Google Scholar] [CrossRef]
- Mazurek-Czarnecka, A.; Rosiek, K.; Salamaga, M.; Wąsowicz, K.; Żaba-Nieroda, R. Study on Support Mechanisms for Renewable Energy Sources in Poland. Energies 2022, 15, 4196. [Google Scholar] [CrossRef]
- PN-EN 15804+A2:2020-03; Sustainability of Buildings—Product Environmental Declarations—Basic Principles of Categorization of Construction Products. PKN: Warszawa, Polska, 2020.
- Pacana, A.; Siwiec, D. Model to Predict Quality of Photovoltaic Panels Considering Customers’ Expectations. Energies 2022, 15, 1101. [Google Scholar] [CrossRef]
- Siwiec, D.; Pacana, A. Model of Choice Photovoltaic Panels Considering Customers’ Expectations. Energies 2021, 14, 5977. [Google Scholar] [CrossRef]
- Singh, A.; Olsen, S.I.; Pant, D. Importance of Life Cycle Assessment of Renewable Energy Sources. In Life Cycle Assessment of Renewable Energy Sources. Green Energy and Technology; Springer: London, UK, 2013; pp. 1–11. [Google Scholar]
- Frischknecht, R.; Wyss, F.; Büsser Knöpfel, S.; Lützkendorf, T.; Balouktsi, M. Cumulative Energy Demand in LCA: The Energy Harvested Approach. Int. J. Life Cycle Assess. 2015, 20, 957–969. [Google Scholar] [CrossRef]
- Rossi, F.; Heleno, M.; Basosi, R.; Sinicropi, A. LCA Driven Solar Compensation Mechanism for Renewable Energy Communities: The Italian Case. Energy 2021, 235, 121374. [Google Scholar] [CrossRef]
- Ling-Chin, J.; Heidrich, O.; Roskilly, A.P. Life Cycle Assessment (LCA)—From Analysing Methodology Development to Introducing an LCA Framework for Marine Photovoltaic (PV) Systems. Renew. Sustain. Energy Rev. 2016, 59, 352–378. [Google Scholar] [CrossRef]
- Śliwińska, A.; Czaplicka-Kolarz, K. Wybrane Aspekty Metodologii Analizy Cyklu Życia Odnawialnych Źródeł Energii [Selected Aspects of LCA Methodology in the Field of Renewable Energy Technologies]. Czas. Tech. Sr. 2009, 106, 131–145. [Google Scholar]
- Database & Support team at PRé Sustainability. SimaPro Database Manual—Methods Library. PRé Sustain. B. V. 2020, 4, 15. [Google Scholar]
- Hasheem, M.J.; Wang, S.; Ye, N.; Farooq, M.Z.; Shahid, H.M. Factors Influencing Purchase Intention of Solar Photovoltaic Technology: An Extended Perspective of Technology Readiness Index and Theory of Planned Behaviour. Clean. Responsible Consum. 2022, 7, 100079. [Google Scholar] [CrossRef]
- Ding, L.; Shi, Y.; He, C.; Dai, Q.; Zhang, Z.; Li, J.; Zhou, L. How Does Satisfaction of Solar PV Users Enhance Their Trust in the Power Grid?—Evidence from PPAPs in Rural China. Energy Sustain. Soc. 2021, 11, 31. [Google Scholar] [CrossRef]
- Hietala, S.; Usva, K.; Nousiainen, J.; Vieraankivi, M.-L.; Vorne, V.; Leinonen, I. Environmental Impact Assessment of Finnish Feed Crop Production with Methodological Comparison of PEF and IPCC Methods for Climate Change Impact. J. Clean. Prod. 2022, 379, 134664. [Google Scholar] [CrossRef]
- Soust-Verdaguer, B.; Palumbo, E.; Llatas, C.; Velasco Acevedo, Á.; Fernández Galvéz, M.D.; Hoxha, E.; Passer, A. The Use of Environmental Product Declarations of Construction Products as a Data Source to Conduct a Building Life-Cycle Assessment in Spain. Sustainability 2023, 15, 1284. [Google Scholar] [CrossRef]
- Pedersen, E.; Remmen, A. Challenges with Product Environmental Footprint: A Systematic Review. Int. J. Life Cycle Assess. 2022, 27, 342–352. [Google Scholar] [CrossRef]
- Lehmann, A.; Bach, V.; Finkbeiner, M. EU Product Environmental Footprint—Mid-Term Review of the Pilot Phase. Sustainability 2016, 8, 92. [Google Scholar] [CrossRef]
- Lutz, H.; Weitzel, H.-P.; Huster, W. Aqueous Emulsion Polymers. In Polymer Science: A Comprehensive Reference; Elsevier: Amsterdam, The Netherlands, 2012; pp. 479–518. [Google Scholar]
- Hospido, A.; Rivela, B.; Gazulla, C. Life Cycle Methods and Experiences of Environmental Sustainability Assessments in the Wine Sector. In Improving Sustainable Viticulture and Winemaking Practices; Elsevier: Amsterdam, The Netherlands, 2022; pp. 351–370. [Google Scholar]
- Del Borghi, A.; Moreschi, L.; Gallo, M. Life Cycle Assessment in the Food Industry. In The Interaction of Food Industry and Environment; Elsevier: Amsterdam, The Netherlands, 2020; pp. 63–118. [Google Scholar]
- Ekvall, T.; Gottfridsson, M.; Nellström, M.; Nilsson, J.; Rydberg, M.; Rydberg, T. Modelling Incineration for More Accurate Comparisons to Recycling in PEF and LCA. Waste Manag. 2021, 136, 153–161. [Google Scholar] [CrossRef]
- Ostasz, G.; Siwiec, D.; Pacana, A. Model to Determine the Best Modifications of Products with Consideration Customers’ Expectations. Energies 2022, 15, 8102. [Google Scholar] [CrossRef]
- Ostasz, G.; Siwiec, D.; Pacana, A. Universal Model to Predict Expected Direction of Products Quality Improvement. Energies 2022, 15, 1751. [Google Scholar] [CrossRef]
- Goh, C.S.; Chong, H.-Y. Opportunities in the Sustainable Built Environment: Perspectives on Human-Centric Approaches. Energies 2023, 16, 1301. [Google Scholar] [CrossRef]
- Pacana, A.; Siwiec, D. Method of Fuzzy Analysis of Qualitative-Environmental Threat in Improving Products and Processes (Fuzzy QE-FMEA). Materials 2023, 16, 1651. [Google Scholar] [CrossRef]
- Pacana, A.; Siwiec, D. Universal Model to Support the Quality Improvement of Industrial Products. Materials 2021, 14, 7872. [Google Scholar] [CrossRef] [PubMed]
- Siwiec, D.; Pacana, J.; Pacana, A. A Novelty Procedure to Identify Critical Causes of Materials Incompatibility. Materials 2023, 16, 3884. [Google Scholar] [CrossRef]
- Lawor, B.; Hornyak, M. Smart Goals: How the Application of Smart Goals Can Contribute to Achievement of Student Learning Outcomes. Dev. Bus. Simul. Exp. Learn. 2012, 39, 259–267. [Google Scholar]
- Siwiec, D.; Pacana, A. Model Supporting Development Decisions by Considering Qualitative–Environmental Aspects. Sustainability 2021, 13, 9067. [Google Scholar] [CrossRef]
- Putman, V.L.; Paulus, P.B. Brainstorming, Brainstorming Rules and Decision Making. J. Creat. Behav. 2009, 43, 29–40. [Google Scholar] [CrossRef]
- Mu, E.; Pereyra-Rojas, M. Practical Decision Making, 1st ed.; Springer International Publishing: Cham, Switzerland, 2017; Volume 1, ISBN 978-3-319-33860-6. [Google Scholar]
- Siwiec, D.; Bełch, P.; Hajduk-Stelmachowicz, M.; Pacana, A.; Bednárová, L. Determinants of Making Decisions in Improving the Quality of Products. Sci. Pap. Silesian Univ. Technol. Organ. Manag. Ser. 2022, 2022, 497–507. [Google Scholar] [CrossRef]
- Kolman, R. Quality Engineering; PWE: Warsaw, Poland, 1992. [Google Scholar]
- Gajdzik, B.; Burchart-Korol, D. Eco-Innovation in Manufacturing Plants Illustrated with an Example of Steel Products Development. Metalurgija 2011, 50, 63–66. [Google Scholar]
- Gajdzik, B. Comprehensive Classification of Environmental Aspects in a Manufacturing Enterprise. Metalurgija 2012, 51, 541–544. [Google Scholar]
- Siwiec, D.; Pacana, A. A Pro-Environmental Method of Sample Size Determination to Predict the Quality Level of Products Considering Current Customers’ Expectations. Sustainability 2021, 13, 5542. [Google Scholar] [CrossRef]
- Gajdzik, B.; Wolniak, R. Digitalisation and Innovation in the Steel Industry in Poland—Selected Tools of ICT in an Analysis of Statistical Data and a Case Study. Energies 2021, 14, 3034. [Google Scholar] [CrossRef]
- GaBi Databasses. Available online: https://Sphera.Com/Wp-Content/Uploads/2022/02/GaBi-Databases-2022-Edition-Upgrades-and-Improvements.Pdf (accessed on 16 June 2023).
- Life Cycle Initiative. Available online: https://www.Lifecycleinitiative.Org/Activities/Life-Cycle-Assessment-Data-and-Methods/Global-Guidance-for-Life-Cycle-Impact-Assessment-Indicators-and-Methods-Glam/Lcia-Cf/ (accessed on 15 June 2023).
- Geldermann, J.; Spengler, T.; Rentz, O. Fuzzy Outranking for Environmental Assessment. Case Study: Iron and Steel Making Industry. Fuzzy Sets Syst 2000, 115, 45–65. [Google Scholar] [CrossRef]
- Liu, F.; Dai, Y. Product Processing Quality Classification Model for Small-Sample and Imbalanced Data Environment. Comput. Intell. Neurosci. 2022, 2022, 9024165. [Google Scholar] [CrossRef]
- Wolniak, E.R.; Sȩdek, A. Using QFD Method for the Ecological Designing of Products and Services. Qual. Quant. 2009, 43, 695–701. [Google Scholar] [CrossRef]
- Li, Z.; Tian, H. Research on Fuzzy Hierarchy Optimization Model of Product Family Parameters Based on Flexible Design of Clothing. In Proceedings of the IOP Conference Series: Materials Science and Engineering, 2019 7th International Forum on Industrial Design, Luoyang, China, 17–19 May 2019; Volume 573, p. 012002. [Google Scholar] [CrossRef]
- Lee, C.-H.; Chen, C.-H.; Lin, C.; Li, F.; Zhao, X. Developing a Quick Response Product Configuration System under Industry 4.0 Based on Customer Requirement Modelling and Optimization Method. Appl. Sci. 2019, 9, 5004. [Google Scholar] [CrossRef]
- Chen, C.-H.; Khoo, L.P.; Yan, W. Evaluation of Multicultural Factors from Elicited Customer Requirements for New Product Development. Res. Eng. Des. 2003, 14, 119–130. [Google Scholar] [CrossRef]
- Wolniak, R. Metoda QFD w Projektowaniu Jakości. Teoria i Praktyka; Politechnika Śląska: Gliwice, Poland, 2016; Volume 1. [Google Scholar]
- Wolniak, R. The Use of QFD Method Advantages and Limitation. Prod. Eng. Arch. 2018, 18, 14–17. [Google Scholar] [CrossRef]
- Sorooshian, S.; Parsia, Y. Modified Weighted Sum Method for Decisions with Altered Sources of Information. Math. Stat. 2019, 7, 57–60. [Google Scholar] [CrossRef]
- Şahin, M. A Comprehensive Analysis of Weighting and Multicriteria Methods in the Context of Sustainable Energy. Int. J. Environ. Sci. Technol. 2021, 18, 1591–1616. [Google Scholar] [CrossRef]
- Figueira, J.R.; Mousseau, V.; Roy, B. ELECTRE Methods. In Multiple Criteria Decision Analysis; Springer: Berlin/Heidelberg, Germany, 2016; pp. 155–185. [Google Scholar]
- Sinaga, A.; Maulana, D. Implementation of Weighted Product Method for Evaluating Performance of Technicians. Int. J. Mod. Educ. Comput. Sci. 2022, 14, 30–42. [Google Scholar] [CrossRef]
- Liang, W.; Dai, B.; Zhao, G.; Wu, H. Assessing the Performance of Green Mines via a Hesitant Fuzzy ORESTE–QUALIFLEX Method. Mathematics 2019, 7, 788. [Google Scholar] [CrossRef]
- Chen, C.-T. Extensions of the TOPSIS for Group Decision-Making under Fuzzy Environment. Fuzzy Sets Syst. 2000, 114, 1–9. [Google Scholar] [CrossRef]
- Kabassi, K.; Martinis, A. Sensitivity Analysis of PROMETHEE II for the Evaluation of Environmental Websites. Appl. Sci. 2021, 11, 9215. [Google Scholar] [CrossRef]
- Kaya, T.; Kahraman, C. Multicriteria Renewable Energy Planning Using an Integrated Fuzzy VIKOR & AHP Methodology: The Case of Istanbul. Energy 2010, 35, 2517–2527. [Google Scholar] [CrossRef]
- Tran, N.H.; Yang, S.-H.; Tsai, C.Y.; Yang, N.C.; Chang, C.-M. Developing Transportation Livability-Related Indicators for Green Urban Road Rating System in Taiwan. Sustainability 2021, 13, 14016. [Google Scholar] [CrossRef]
- Garcia-Ayllon, S.; Hontoria, E.; Munier, N. The Contribution of MCDM to SUMP: The Case of Spanish Cities during 2006–2021. Int. J. Environ. Res. Public Health 2021, 19, 294. [Google Scholar] [CrossRef] [PubMed]
- Ulewicz, R.; Siwiec, D.; Pacana, A.; Tutak, M.; Brodny, J. Multi-Criteria Method for the Selection of Renewable Energy Sources in the Polish Industrial Sector. Energies 2021, 14, 2386. [Google Scholar] [CrossRef]
- Olejarz, T.; Siwiec, D.; Pacana, A. Method of Qualitative–Environmental Choice of Devices Converting Green Energy. Energies 2022, 15, 8845. [Google Scholar] [CrossRef]
- Korzynski, M.; Pacana, A.; Cwanek, J. Fatigue Strength of Chromium Coated Elements and Possibility of Its Improvement with Slide Diamond Burnishing. Surf. Coat. Technol. 2009, 203, 1670–1676. [Google Scholar] [CrossRef]
- Hemeida, M.G.; Hemeida, A.M.; Senjyu, T.; Osheba, D. Renewable Energy Resources Technologies and Life Cycle Assessment: Review. Energies 2022, 15, 9417. [Google Scholar] [CrossRef]
- Sánchez-Pantoja, N.; Vidal, R.; Pastor, M.C. Aesthetic Impact of Solar Energy Systems. Renew. Sustain. Energy Rev. 2018, 98, 227–238. [Google Scholar] [CrossRef]
- Wall, M.; Probst, M.C.M.; Roecker, C.; Dubois, M.-C.; Horvat, M.; Jørgensen, O.B.; Kappel, K. Achieving Solar Energy in Architecture-IEA SHC Task 41. Energy Procedia 2012, 30, 1250–1260. [Google Scholar] [CrossRef]
- Sánchez-Pantoja, N.; Vidal, R.; Pastor, M. EU-Funded Projects with Actual Implementation of Renewable Energies in Cities. Analysis of Their Concern for Aesthetic Impact. Energies 2021, 14, 1627. [Google Scholar] [CrossRef]
- Lucchi, E.; Polo Lopez, C.S.; Franco, G. A Conceptual Framework on the Integration of Solar Energy Systems in Heritage Sites and Buildings. In Proceedings of the IOP Conference Series: Materials Science and Engineering, International Conference Florence Heri-tech: The Future of Heritage Science and Technologies, Online. 14–16 October 2020; Volume 949, p. 012113. [Google Scholar] [CrossRef]
- Pal, A.; Kilby, J. Using Life Cycle Assessment to Determine the Environmental Impacts Caused by Solar Photovoltaic Systems. E3S Web Conf. 2019, 122, 02005. [Google Scholar] [CrossRef]
- Rashedi, A.; Khanam, T. Life Cycle Assessment of Most Widely Adopted Solar Photovoltaic Energy Technologies by Mid-Point and End-Point Indicators of ReCiPe Method. Environ. Sci. Pollut. Res. 2020, 27, 29075–29090. [Google Scholar] [CrossRef]
- Ziemińska-Stolarska, A.; Pietrzak, M.; Zbiciński, I. Application of LCA to Determine Environmental Impact of Concentrated Photovoltaic Solar Panels—State-of-the-Art. Energies 2021, 14, 3143. [Google Scholar] [CrossRef]
- Herrando, M.; Elduque, D.; Javierre, C.; Fueyo, N. Life Cycle Assessment of Solar Energy Systems for the Provision of Heating, Cooling and Electricity in Buildings: A Comparative Analysis. Energy Convers. Manag. 2022, 257, 115402. [Google Scholar] [CrossRef]
- Muteri, V.; Cellura, M.; Curto, D.; Franzitta, V.; Longo, S.; Mistretta, M.; Parisi, M.L. Review on Life Cycle Assessment of Solar Photovoltaic Panels. Energies 2020, 13, 252. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, J.; Pantelous, A.A.; Liu, Y.; Zhang, Z. A Voice of the Customer Real-Time Strategy: An Integrated Quality Function Deployment Approach. Comput. Ind. Eng. 2022, 169, 108233. [Google Scholar] [CrossRef]
- Siwiec, D. Wspomaganie Decyzji w Procesie Doboru Penetrantów Fluorescencyjnych Do Przemysłowych Badań Nieniszczących. Przemysł Chem. 2019, 1, 92–94. [Google Scholar] [CrossRef]
- Siwiec, D.; Pacana, A. Method of Improve the Level of Product Quality. Prod. Eng. Arch. 2021, 27, 1–7. [Google Scholar] [CrossRef]
- Korzynski, M.; Pacana, A. Centreless Burnishing and Influence of Its Parameters on Machining Effects. J. Mater. Process Technol. 2010, 210, 1217–1223. [Google Scholar] [CrossRef]
- Siwiec, D.; Pacana, A.; Gazda, A. A New QFD-CE Method for Considering the Concept of Sustainable Development and Circular Economy. Energies 2023, 16, 2474. [Google Scholar] [CrossRef]
- Alejandrino, C.; Mercante, I.T.; Bovea, M.D. Combining O-LCA and O-LCC to Support Circular Economy Strategies in Organizations: Methodology and Case Study. J. Clean. Prod. 2022, 336, 130365. [Google Scholar] [CrossRef]
- Suhariyanto, T.; Wahab, D.; Rahman, M. Product Design Evaluation Using Life Cycle Assessment and Design for Assembly: A Case Study of a Water Leakage Alarm. Sustainability 2018, 10, 2821. [Google Scholar] [CrossRef]
- Proske, M.; Finkbeiner, M. Obsolescence in LCA–Methodological Challenges and Solution Approaches. Int. J. Life Cycle Assess. 2020, 25, 495–507. [Google Scholar] [CrossRef]
PV Criteria | Range of PV Criteria States (1) | Range of PV Criteria States (2) | Range of PV Criteria States (3) |
---|---|---|---|
Rated power (Wp) | |||
Short-circuit current (A) | |||
No-load voltage (V) | |||
Efficiency (%) | |||
Dimensions (mm) | |||
Number of cells | |||
Temperature coefficient of intensity (%/°C) | |||
Degree of integration | Not integrated | Partially integrated | Integrated |
Light reflection | Small | Average | Large |
Qualitative Criteria and Their Weights | Statuses of PV Quality Criteria and Average Level of Their Quality (Customer Satisfaction) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Rated Power (Wp) | Short-Circuit Current (A) | No-Load Voltage (V) | ||||||||
20.00 | 28.00 | 52.00 | 19.00 | 27.00 | 54.00 | 10.00 | 15.00 | 70.00 | ||
Q1 | 14.20 | 0.28 | 0.40 | 0.74 | 0.27 | 0.38 | 0.77 | 0.14 | 0.21 | 0.99 |
Q2 | 9.10 | 0.18 | 0.25 | 0.47 | 0.17 | 0.25 | 0.49 | 0.09 | 0.14 | 0.64 |
Q3 | 5.70 | 0.11 | 0.16 | 0.30 | 0.11 | 0.15 | 0.31 | 0.06 | 0.09 | 0.40 |
Q4 | 22.45 | 0.45 | 0.63 | 1.17 | 0.43 | 0.61 | 1.21 | 0.22 | 0.34 | 1.57 |
Q5 | 9.95 | 0.20 | 0.28 | 0.52 | 0.19 | 0.27 | 0.54 | 0.10 | 0.15 | 0.70 |
Q6 | 11.03 | 0.22 | 0.31 | 0.57 | 0.21 | 0.30 | 0.60 | 0.11 | 0.17 | 0.77 |
Q7 | 6.22 | 0.12 | 0.17 | 0.32 | 0.12 | 0.17 | 0.34 | 0.06 | 0.09 | 0.44 |
Q8 | 16.69 | 0.33 | 0.47 | 0.87 | 0.32 | 0.45 | 0.90 | 0.17 | 0.25 | 1.17 |
Q9 | 5.30 | 0.11 | 0.15 | 0.28 | 0.10 | 0.14 | 0.29 | 0.05 | 0.08 | 0.37 |
2.01 | 2.82 | 5.23 | 1.91 | 2.72 | 5.43 | 1.01 | 1.51 | 7.04 | ||
Efficiency (%) | Dimensions (mm) | Number of cells | ||||||||
3.00 | 7.00 | 90.00 | 22.00 | 36.00 | 42.00 | 21.00 | 37.00 | 42.00 | ||
Q1 | 14.20 | 0.04 | 0.10 | 1.28 | 0.31 | 0.51 | 0.60 | 0.30 | 0.53 | 0.60 |
Q2 | 9.10 | 0.03 | 0.06 | 0.82 | 0.20 | 0.33 | 0.38 | 0.19 | 0.34 | 0.38 |
Q3 | 5.70 | 0.02 | 0.04 | 0.51 | 0.13 | 0.21 | 0.24 | 0.12 | 0.21 | 0.24 |
Q4 | 22.45 | 0.07 | 0.16 | 2.02 | 0.49 | 0.81 | 0.94 | 0.47 | 0.83 | 0.94 |
Q5 | 9.95 | 0.03 | 0.07 | 0.90 | 0.22 | 0.36 | 0.42 | 0.21 | 0.37 | 0.42 |
Q6 | 11.03 | 0.03 | 0.08 | 0.99 | 0.24 | 0.40 | 0.46 | 0.23 | 0.41 | 0.46 |
Q7 | 6.22 | 0.02 | 0.04 | 0.56 | 0.14 | 0.22 | 0.26 | 0.13 | 0.23 | 0.26 |
Q8 | 16.69 | 0.05 | 0.12 | 1.50 | 0.37 | 0.60 | 0.70 | 0.35 | 0.62 | 0.70 |
Q9 | 5.30 | 0.02 | 0.04 | 0.48 | 0.12 | 0.19 | 0.22 | 0.11 | 0.20 | 0.22 |
0.30 | 0.70 | 9.06 | 2.21 | 3.62 | 4.23 | 2.11 | 3.72 | 4.23 | ||
Temperature coefficient of intensity (%/°C) | Degree of integration | Light reflection | ||||||||
Not integrated | Partially integrated | Integrated | Small | Medium | Large | |||||
17.00 | 27.00 | 56.00 | 18.00 | 29.00 | 53.00 | 40.00 | 48.00 | 12.00 | ||
Q1 | 14.20 | 0.24 | 0.38 | 0.80 | 0.26 | 0.41 | 0.75 | 0.57 | 0.68 | 0.17 |
Q2 | 9.10 | 0.15 | 0.25 | 0.51 | 0.16 | 0.26 | 0.48 | 0.36 | 0.44 | 0.11 |
Q3 | 5.70 | 0.10 | 0.15 | 0.32 | 0.10 | 0.17 | 0.30 | 0.23 | 0.27 | 0.07 |
Q4 | 22.45 | 0.38 | 0.61 | 1.26 | 0.40 | 0.65 | 1.19 | 0.90 | 1.08 | 0.27 |
Q5 | 9.95 | 0.17 | 0.27 | 0.56 | 0.18 | 0.29 | 0.53 | 0.40 | 0.48 | 0.12 |
Q6 | 11.03 | 0.19 | 0.30 | 0.62 | 0.20 | 0.32 | 0.58 | 0.44 | 0.53 | 0.13 |
Q7 | 6.22 | 0.11 | 0.17 | 0.35 | 0.11 | 0.18 | 0.33 | 0.25 | 0.30 | 0.07 |
Q8 | 16.69 | 0.28 | 0.45 | 0.93 | 0.30 | 0.48 | 0.88 | 0.67 | 0.80 | 0.20 |
Q9 | 5.30 | 0.09 | 0.14 | 0.30 | 0.10 | 0.15 | 0.28 | 0.21 | 0.25 | 0.06 |
1.71 | 2.72 | 5.64 | 1.81 | 2.92 | 5.33 | 4.03 | 4.83 | 1.21 |
Environmental Impact Criteria and Their Weights | States of PV Quality Criteria and Averaged Level of Their Environmental Impact | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Rated Power (Wp) | Short-Circuit Current (A) | No-Load Voltage (V) | ||||||||
3.71 | 4.43 | 6.14 | 4.14 | 4.43 | 5.71 | 4.00 | 4.71 | 5.57 | ||
E1 | 20.06 | 0.07 | 0.09 | 0.12 | 0.08 | 0.09 | 0.11 | 0.08 | 0.09 | 0.11 |
E2 | 5.10 | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.03 |
E3 | 23.45 | 0.09 | 0.10 | 0.14 | 0.10 | 0.10 | 0.13 | 0.09 | 0.11 | 0.13 |
E4 | 10.65 | 0.04 | 0.05 | 0.07 | 0.04 | 0.05 | 0.06 | 0.04 | 0.05 | 0.06 |
E5 | 3.22 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 |
E6 | 14.50 | 0.05 | 0.06 | 0.09 | 0.06 | 0.06 | 0.08 | 0.06 | 0.07 | 0.08 |
E7 | 25.50 | 0.09 | 0.11 | 0.16 | 0.11 | 0.11 | 0.15 | 0.10 | 0.12 | 0.14 |
0.38 | 0.45 | 0.63 | 0.42 | 0.45 | 0.59 | 0.41 | 0.48 | 0.57 | ||
Efficiency (%) | Dimensions (mm) | Number of cells | ||||||||
3.86 | 4.43 | 6.00 | 4.14 | 4.57 | 5.57 | 3.43 | 4.43 | 6.43 | ||
E1 | 20.06 | 0.08 | 0.09 | 0.12 | 0.08 | 0.09 | 0.11 | 0.07 | 0.09 | 0.13 |
E2 | 5.10 | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 | 0.03 |
E3 | 23.45 | 0.09 | 0.10 | 0.14 | 0.10 | 0.11 | 0.13 | 0.08 | 0.10 | 0.15 |
E4 | 10.65 | 0.04 | 0.05 | 0.06 | 0.04 | 0.05 | 0.06 | 0.04 | 0.05 | 0.07 |
E5 | 3.22 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.02 |
E6 | 14.50 | 0.06 | 0.06 | 0.09 | 0.06 | 0.07 | 0.08 | 0.05 | 0.06 | 0.09 |
E7 | 25.50 | 0.10 | 0.11 | 0.15 | 0.11 | 0.12 | 0.14 | 0.09 | 0.11 | 0.16 |
0.40 | 0.45 | 0.61 | 0.42 | 0.47 | 0.57 | 0.35 | 0.45 | 0.66 | ||
Temperature coefficient of intensity (%/°C) | Degree of integration | Light reflection | ||||||||
Not integrated | Partially integrated | Integrated | Small | Medium | Large | |||||
4.00 | 4.57 | 5.71 | 6.86 | 4.43 | 3.00 | 6.00 | 4.71 | 3.57 | ||
E1 | 20.06 | 0.08 | 0.09 | 0.11 | 0.14 | 0.09 | 0.06 | 0.12 | 0.09 | 0.07 |
E2 | 5.10 | 0.02 | 0.02 | 0.03 | 0.03 | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 |
E3 | 23.45 | 0.09 | 0.11 | 0.13 | 0.16 | 0.10 | 0.07 | 0.14 | 0.11 | 0.08 |
E4 | 10.65 | 0.04 | 0.05 | 0.06 | 0.07 | 0.05 | 0.03 | 0.06 | 0.05 | 0.04 |
E5 | 3.22 | 0.01 | 0.01 | 0.02 | 0.02 | 0.01 | 0.01 | 0.02 | 0.02 | 0.01 |
E6 | 14.50 | 0.06 | 0.07 | 0.08 | 0.10 | 0.06 | 0.04 | 0.09 | 0.07 | 0.05 |
E7 | 25.50 | 0.10 | 0.12 | 0.15 | 0.17 | 0.11 | 0.08 | 0.15 | 0.12 | 0.09 |
0.41 | 0.47 | 0.59 | 0.70 | 0.45 | 0.31 | 0.61 | 0.48 | 0.37 |
Criteria and Range of Modification States | Qualitatitve–Environmental Level | Satisfaction | ||
---|---|---|---|---|
Rated power (Wp) | 2.39 | 0.24 | Critical | |
3.27 | 0.33 | Unsatisfactory | ||
5.86 | 0.59 | Sufficient | ||
Short-circuit current (A) | 2.34 | 0.23 | Critical | |
3.17 | 0.32 | Unsatisfactory | ||
6.02 | 0.60 | Moderate | ||
Open-circuit voltage (V) | 1.42 | 0.14 | Bad | |
1.99 | 0.20 | Critical | ||
7.62 | 0.76 | Satisfactory | ||
Efficiency (%) | 0.70 | 0.07 | Bad | |
1.16 | 0.12 | Critical | ||
9.67 | 0.97 | Distinctive | ||
Dimensions (mm) | 2.64 | 0.26 | Unfavourable | |
4.09 | 0.41 | Sufficient | ||
4.80 | 0.48 | Sufficient | ||
Number of cells | 2.46 | 0.25 | Critical | |
4.18 | 0.42 | Sufficient | ||
4.89 | 0.49 | Sufficient | ||
Temperature coefficient of intensity (%/°C) | 2.12 | 0.21 | Unfavourable | |
3.19 | 0.32 | Unsatisfactory | ||
6.22 | 0.62 | Satisfactory | ||
Degree of integration | Not integrated | 2.51 | 0.25 | Critical |
Partially integrated | 3.37 | 0.34 | Unsatisfactory | |
Integrated | 5.64 | 0.56 | Moderate | |
Light reflection | Small | 4.64 | 0.46 | Sufficient |
Medium | 5.31 | 0.53 | Moderate | |
Large | 1.57 | 0.16 | Critical |
Mesh Nodes | Sensitivity (Truly Addition) | |
---|---|---|
Q—Level of Quality | E—Environmental Impact | |
Minimum | 0.0997 | 0.1046 |
2 | 0.1001 | 0.1034 |
3 | 0.1004 | 0.1027 |
4 | 0.1006 | 0.1023 |
5 | 0.1007 | 0.1025 |
6 | 0.1006 | 0.1030 |
7 | 0.1001 | 0.1038 |
8 | 0.0992 | 0.1049 |
9 | 0.0977 | 0.1061 |
Maximum | 0.0957 | 0.1073 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacana, A.; Siwiec, D.; Bednárová, L.; Petrovský, J. Improving the Process of Product Design in a Phase of Life Cycle Assessment (LCA). Processes 2023, 11, 2579. https://doi.org/10.3390/pr11092579
Pacana A, Siwiec D, Bednárová L, Petrovský J. Improving the Process of Product Design in a Phase of Life Cycle Assessment (LCA). Processes. 2023; 11(9):2579. https://doi.org/10.3390/pr11092579
Chicago/Turabian StylePacana, Andrzej, Dominika Siwiec, Lucia Bednárová, and Ján Petrovský. 2023. "Improving the Process of Product Design in a Phase of Life Cycle Assessment (LCA)" Processes 11, no. 9: 2579. https://doi.org/10.3390/pr11092579
APA StylePacana, A., Siwiec, D., Bednárová, L., & Petrovský, J. (2023). Improving the Process of Product Design in a Phase of Life Cycle Assessment (LCA). Processes, 11(9), 2579. https://doi.org/10.3390/pr11092579