Identification of an Antimicrobial Protease from Acanthamoeba via a Novel Zymogram
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Cultures
2.2. Electrophoresis SDS Page and Protease Zymography
2.3. Anitmicrobial Zymogram
2.4. Protease and Antimicrobial Zymogram Testing Conditions
2.5. UPLC System and Chromatography
2.6. Protein Purification
2.7. RNA Sequencing
3. Results
3.1. Antimicrobial Zymogram
3.2. Chromatography Acanthamoeba Protease
3.3. Purification of Acanthamoeba Protease
3.4. RNA-Seq Data
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bayer-Santos, E.; Aguilar-Bonavides, C.; Rodrigues, S.P.; Cordero, E.M.; Marques, A.F.; Varela-Ramirez, A.; Choi, H.; Yoshida, N.; Da Silveira, J.F.; Almeida, I.C. Proteomic analysis of Trypanosoma cruzi secretome: Characterization of two populations of extracellular vesicles and soluble proteins. J. Proteome Res. 2013, 12, 883–897. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Siddiqui, R.; Khan, N.A. Acanthamoeba and bacteria produce antimicrobials to target their counterpart. Parasit. Vectors 2014, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Piña-Vázquez, C.; Reyes-López, M.; Ortíz-Estrada, G.; De La Garza, M.; Serrano-Luna, J. Host-parasite interaction: Parasite-derived and -induced proteases that degrade human extracellular matrix. J. Parasitol. Res. 2012, 2012, 748206. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Jefferson, D.M.; Panjwani, N. Role of carbohydrate-mediated adherence in cytopathogenic mechanisms of Acanthamoeba. J. Biol. Chem. 1998, 273, 15838–15845. [Google Scholar] [CrossRef]
- Hadas, E.; Mazur, T. Proteolytic enzymes of pathogenic and non-pathogenic strains of Acanthamoeba spp. Trop. Med. Parasitol. 1993, 44, 197–200. [Google Scholar] [PubMed]
- Khan, N.A.; Jarroll, E.L.; Panjwani, N.; Cao, Z.; Paget, T.A. Proteases as markers for differentiation of pathogenic and nonpathogenic species of Acanthamoeba. J. Clin. Microbiol. 2000, 38, 2858–2861. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Ha, Y.R.; Yu, H.S.; Kong, H.H.; Chung, D. Il Purification and characterization of a 33 kDa serine protease from Acanthamoeba lugdunensis KA/E2 isolated from a Korean keratitis patient. Korean J. Parasitol. 2003, 41, 189–196. [Google Scholar] [CrossRef]
- Kong, H.H.; Kim, T.H.; Chung, D.I. Purification and characterization of a secretory serine proteinase of Acanthamoeba healyi isolated from GAE. J. Parasitol. 2000, 86, 12–17. [Google Scholar] [CrossRef]
- Leher, H.; Silvany, R.; Alizadeh, H.; Huang, J.; Niederkorn, J.Y. Mannose induces the release of cytopathic factors from Acanthamoeba castellanii. Infect. Immun. 1998, 66, 5–10. [Google Scholar] [CrossRef]
- Mitro, K.; Bhagavathiammai, A.; Zhou, O.M.; Bobbett, G.; McKerrow, J.H.; Chokshi, R.; Chokshi, B.; James, E.R. Partial characterization of the proteolytic secretions of Acanthamoeba polyphaga. Exp. Parasitol. 1994, 78, 377–385. [Google Scholar] [CrossRef]
- Na, B.K.; Kim, J.C.; Song, C.Y. Characterization and pathogenetic role of proteinase from Acanthamoeba castellanii. Microb. Pathog. 2001, 30, 39–48. [Google Scholar] [CrossRef]
- Lorenzo-Morales, J.; Monteverde-Miranda, C.A.; Jiménez, C.; Tejedor, M.L.; Valladares, B.; Ortega-Rivas, A. Evaluation of Acanthamoeba isolates from environmental sources. Ann. Agric. Environ. Med. 2005, 12, 233–236. [Google Scholar] [PubMed]
- Alsam, S.; Sissons, J.; Jayasekera, S.; Khan, N.A. Extracellular proteases of Acanthamoeba castellanii (encephalitis isolate belonging to T1 genotype) contribute to increased permeability in an in vitro model of the human blood-brain barrier. J. Infect. 2005, 51, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Sissons, J.; Alsam, S.; Goldsworthy, G.; Lightfoot, M.; Jarroll, E.L.; Khan, N.A. Identification and properties of proteases from an Acanthamoeba isolate capable of producing granulomatous encephalitis. BMC Microbiol. 2006, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Na, B.K.; Kim, T.S.; Song, C.Y. Purification and characterization of an extracellular serine proteinase from Acanthamoeba castellanii. IUBMB Life 2000, 50, 209–214. [Google Scholar] [PubMed]
- Kim, S.-H.; Moon, E.-K.; Hong, Y.; Chung, D.-I.; Kong, H.-H. Autophagy protein 12 plays an essential role in Acanthamoeba encystation. Exp. Parasitol. 2015, 159, 46–52. [Google Scholar] [CrossRef]
- Lee, J.Y.; Song, S.M.; Moon, E.K.; Lee, Y.R.; Jha, B.K.; Sylvatrie Danne, D.B.; Cha, H.J.; Yu, H.S.; Kong, H.H.; Chung, D., II; et al. Cysteine protease inhibitor (AcStefin) is required for complete cyst formation of Acanthamoeba. Eukaryot. Cell 2013, 12, 567–574. [Google Scholar] [CrossRef]
- Leitsch, D.; Köhsler, M.; Marchetti-Deschmann, M.; Deutsch, A.; Allmaier, G.; Duchêne, M.; Walochnik, J. Major role for cysteine proteases during the early phase of Acanthamoeba castellanii encystment. Eukaryot. Cell 2010, 9, 611–618. [Google Scholar] [CrossRef]
- Watts, D.J.; Ashworth, J.M. Growth of myxameobae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem. J. 1970, 119, 171–174. [Google Scholar] [CrossRef]
- de Obeso Fernandez del Valle, A. Protein Secretion and Encystation in Acanthamoeba. Ph.D. Thesis, The University of Edinburgh, Edinburgh, UK, 2018. [Google Scholar]
- de Obeso Fernández del Valle, A.; Gómez-Montalvo, J.; Maciver, S.K. Acanthamoeba castellanii exhibits intron retention during encystment. Parasitol. Res. 2022, 121, 2615–2622. [Google Scholar] [CrossRef]
- Maciver, S.K.; Koutsogiannis, Z.; de Obeso Fernández del Valle, A. ‘Meiotic genes’ are constitutively expressed in an asexual amoeba and are not necessarily involved in sexual reproduction. Biol. Lett. 2019, 15, 20180871. [Google Scholar] [CrossRef] [PubMed]
- Kersey, P.J.; Allen, J.E.; Allot, A.; Barba, M.; Boddu, S.; Bolt, B.J.; Carvalho-Silva, D.; Christensen, M.; Davis, P.; Grabmueller, C.; et al. Ensembl Genomes 2018: An integrated omics infrastructure for non-vertebrate species. Nucleic Acids Res. 2017, 46, D802–D808. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2009, 26, 139–140. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Schindler, C.A.; Schuhardt, V.T. Lysostaphin: A New Bacteriolytic Agent for the Staphylococcus. Proc. Natl. Acad. Sci. USA 1964, 51, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Bardelang, P.; Vankemmelbeke, M.; Zhang, Y.; Jarvis, H.; Antoniadou, E.; Rochette, S.; Thomas, N.R.; Penfold, C.N.; James, R. Design of a polypeptide FRET substrate that facilitates study of the antimicrobial protease lysostaphin. Biochem. J. 2009, 418, 615–624. [Google Scholar] [CrossRef]
- Campanelli, D.; Melchior, M.; Fu, Y.P.; Nakata, M.; Shuman, H.; Nathan, C.; Gabay, J.E. Cloning of cDNA for proteinase-3—A serine protease, antibiotic, and autoantigen from human neutrophils. J. Exp. Med. 1990, 172, 1709–1715. [Google Scholar] [CrossRef]
- Guevara, M.G.; Oliva, C.R.; Huarte, M.; Daleo, G.R. An aspartic protease with antimicrobial activity is induced after infection and wounding in intercellular fluids of potato tubers. Eur. J. Plant Pathol. 2002, 108, 131–137. [Google Scholar] [CrossRef]
- Siritapetawee, J.; Thumanu, K.; Sojikul, P.; Thammasirirak, S. A novel serine protease with human fibrino(geno)lytic activities from Artocarpus heterophyllus latex. Biochim. Biophys. Acta 2012, 1824, 907–912. [Google Scholar] [CrossRef]
- Kawabata, S.I.; Tokunaga, F.; Kugi, Y.; Motoyama, S.; Miura, Y.; Hirata, M.; Iwanaga, S. Limulus factor D, a 43-kDa protein isolated from horseshoe crab hemocytes, is a serine protease homologue with antimicrobial activity. FEBS Lett. 1996, 398, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.T.; Kong, H.H.; Ha, Y.R.; Hong, Y.C.; Jeong, H.J.; Yu, H.S.; Chung, D. Il Comparison of specific activity and cytopathic effects of purified 33 kDa serine proteinase from Acanthamoeba strains with different degree of virulence. Korean J. Parasitol. 2006, 44, 321–330. [Google Scholar] [CrossRef]
- Martín-Navarro, C.M.; López-Arencibia, A.; Sifaoui, I.; Reyes-Batlle, M.; Fouque, E.; Osuna, A.; Valladares, B.; Piñero, J.E.; Héchard, Y.; Maciver, S.K.; et al. Amoebicidal Activity of Caffeine and Maslinic Acid by the Induction of Programmed Cell Death in Acanthamoeba. Antimicrob. Agents Chemother. 2017, 61, e02660-16. [Google Scholar] [CrossRef]
- Hiemstra, P.S. Novel roles of protease inhibitors in infection and inflammation. Biochem. Soc. Trans. 2002, 30, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Makioka, A.; Kumagai, M.; Kobayashi, S.; Takeuchi, T. Entamoeba invadens: Cysteine protease inhibitors block excystation and metacystic development. Exp. Parasitol. 2005, 109, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Moncada, D.; Keller, K.; Ankri, S.; Mirelman, D.; Chadee, K. Antisense inhibition of Entamoeba histolytica cysteine proteases inhibits colonic mucus degradation. Gastroenterology 2006, 130, 721–730. [Google Scholar] [CrossRef]
- Larkin, D.F.P.; Kilvington, S.; Dart, J.K.G. Treatment of Acanthamoeba keratitis with polyhexamethylene biguanide. Ophthalmology 1992, 99, 185–191. [Google Scholar] [CrossRef]
- Lorenzo-Morales, J.; Martín-Navarro, C.M.; López-Arencibia, A.; Arnalich-Montiel, F.; Piñero, J.E.; Valladares, B. Acanthamoeba keratitis: An emerging disease gathering importance worldwide? Trends Parasitol. 2013, 29, 181–187. [Google Scholar] [CrossRef]
- Turner, N.A.; Russell, A.D.; Furr, J.R.; Lloyd, D. Resistance, biguanide sorption and biguanide-induced pentose leakage during encystment of Acanthamaoeba castellanii. J. Appl. Microbiol. 2004, 96, 1287–1295. [Google Scholar] [CrossRef]
- Moon, E.K.; Chung, D.I.; Hong, Y.C.; Kong, H.H. Autophagy protein 8 mediating autophagosome in encysting Acanthamoeba. Mol. Biochem. Parasitol. 2009, 168, 43–48. [Google Scholar] [CrossRef]
- Moon, E.-K.; Xuan, Y.-H.; Chung, D.-I.; Hong, Y.; Kong, H.-H. Microarray analysis of differentially expressed genes between cysts and trophozoites of Acanthamoeba castellanii. Korean J. Parasitol. 2011, 49, 341–347. [Google Scholar] [CrossRef]
- Moon, E.K.; Hong, Y.; Chung, D.I.; Kong, H.H. Cysteine protease involving in autophagosomal degradation of mitochondria during encystation of Acanthamoeba. Mol. Biochem. Parasitol. 2012, 185, 121–126. [Google Scholar] [CrossRef]
- Alsam, S.; Jeong, S.R.; Sissons, J.; Dudley, R.; Kim, K.S.; Khan, N.A. Escherichia coli interactions with Acanthamoeba: A symbiosis with environmental and clinical implications. J. Med. Microbiol. 2006, 55, 689–694. [Google Scholar] [CrossRef]
- Weekers, P.H.H.; Bodelier, P.L.E.; Wijen, J.P.H.; Vogels, G.D. Effects of grazing by the free-living soil amoebae Acanthamoeba castellanii, Acanthamoeba polyphaga, and Hartmanella vermiformis on various bacteria. Appl. Environ. Microbiol. 1993, 59, 2317–2319. [Google Scholar] [CrossRef]
- Medina, G.; Flores-Martin, S.; Fonseca, B.; Otth, C.; Fernandez, H. Mechanisms associated with phagocytosis of Arcobacter butzleri by Acanthamoeba castellanii. Parasitol. Res. 2014, 113, 1933–1942. [Google Scholar] [CrossRef]
- Villanuevaa, M.P.; Medinab, G.; Fernándeza, H. Arcobacter butzleri sobrevive en el interior de trofozoitos de Acanthamoeba castellanii. Rev. Argent. Microbiol. 2016, 48, 105–109. [Google Scholar] [CrossRef]
- Barker, J.; Humphrey, T.J.; Brown, M.W.R. Survival of Escherichia coli 0157 in a soil protozoan: Implications for disease. FEMS Microbiol. Lett. 1999, 173, 291–295. [Google Scholar] [CrossRef]
- Hong, Y.C.; Kong, H.H.; Ock, M.S.; Kim, I.S.; Chung, D.I. Isolation and characterization of a cDNA encoding a subtilisin-like serine proteinase (AhSUB) from Acanthamoeba healyi. Mol. Biochem. Parasitol. 2000, 111, 441–446. [Google Scholar] [CrossRef]
- Dyer, R.P.; Weiss, G.A. Making the cut with protease engineering. Cell Chem. Biol. 2022, 29, 177–190. [Google Scholar] [CrossRef]
- Bryan, P.N. Protein engineering of subtilisin. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 2000, 1543, 203–222. [Google Scholar] [CrossRef]
- Siddiqui, R.; Khan, N.A. War of the microbial worlds: Who is the beneficiary in Acanthamoeba-bacterial interactions? Exp. Parasitol. 2012, 130, 311–313. [Google Scholar] [CrossRef]
- Anand, C.M.; Skinner, A.R.; Malic, A.; Kurtz, J.B. Interaction of L. pneumophilia and a free living amoeba (Acanthamoeba palestinensis). J. Hyg. 1983, 91, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Abd, H.; Saeed, A.; Weintraub, A.; Nair, G.B.; Sandström, G. Vibrio cholerae O1 strains are facultative intracellular bacteria, able to survive and multiply symbiotically inside the aquatic free-living amoeba Acanthamoeba castellanii. FEMS Microbiol. Ecol. 2007, 60, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Dey, R.; Hoffman, P.S.; Glomski, I.J. Germination and amplification of anthrax spores by soil-dwelling amoebas. Appl. Environ. Microbiol. 2012, 78, 8075–8081. [Google Scholar] [CrossRef] [PubMed]
- Essig, A.; Heinemann, M.; Simnacher, U.; Marre, R. Infection of Acanthamoeba castellanii by Chlamydia pneumoniae. Appl. Environ. Microbiol. 1997, 63, 1396–1399. [Google Scholar] [CrossRef]
- Gaze, W.H.; Burroughs, N.; Gallagher, M.P.; Wellington, E.M.H. Interactions between Salmonella typhimurium and Acanthamoeba polyphaga, and bbservation of a new mode of intracellular growth within contractile vacuoles. Microb. Ecol. 2003, 46, 358–369. [Google Scholar] [CrossRef]
- Moreno-Mesonero, L.; Moreno, Y.; Alonso, J.L.; Ferrús, M.A. DVC-FISH and PMA-qPCR techniques to assess the survival of Helicobacter pylori inside Acanthamoeba castellanii. Res. Microbiol. 2016, 167, 29–34. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Obeso Fernández del Valle, A.; Melgoza-Ramírez, L.J.; Esqueda Hernández, M.F.; Rios-Pérez, A.D.; Maciver, S.K. Identification of an Antimicrobial Protease from Acanthamoeba via a Novel Zymogram. Processes 2023, 11, 2620. https://doi.org/10.3390/pr11092620
de Obeso Fernández del Valle A, Melgoza-Ramírez LJ, Esqueda Hernández MF, Rios-Pérez AD, Maciver SK. Identification of an Antimicrobial Protease from Acanthamoeba via a Novel Zymogram. Processes. 2023; 11(9):2620. https://doi.org/10.3390/pr11092620
Chicago/Turabian Stylede Obeso Fernández del Valle, Alvaro, Luis Javier Melgoza-Ramírez, María Fernanda Esqueda Hernández, Alfonso David Rios-Pérez, and Sutherland K. Maciver. 2023. "Identification of an Antimicrobial Protease from Acanthamoeba via a Novel Zymogram" Processes 11, no. 9: 2620. https://doi.org/10.3390/pr11092620
APA Stylede Obeso Fernández del Valle, A., Melgoza-Ramírez, L. J., Esqueda Hernández, M. F., Rios-Pérez, A. D., & Maciver, S. K. (2023). Identification of an Antimicrobial Protease from Acanthamoeba via a Novel Zymogram. Processes, 11(9), 2620. https://doi.org/10.3390/pr11092620