Research on Flow Field Prediction in a Multi-Swirl Combustor Using Artificial Neural Network
Abstract
:1. Introduction
2. Experimental Setup and Modeling Method
2.1. Optical Model Combustor
2.2. PIV Test System
2.3. Deep Learning Method
2.3.1. Data Preprocessing
2.3.2. Neural Network Framework
2.3.3. Training Setup
3. Results and Discussion
3.1. Network Architecture Optimization
3.2. Performance of Trained DNN Model
3.3. Extrapolation of Flow Fields
3.4. Combustor Physics Analysis Based on DNN Model
3.4.1. Flow Analysis
3.4.2. Fuel Droplets Dispersion
3.4.3. Ignition and Flame Propagation
3.5. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
pressure | |
V | flow velocity |
root mean squared error | |
activation function | |
w | weight factor |
b | bias |
dimensionless coefficient | |
S | strain rate |
d | diameter of droplets |
probability density function | |
K | turbulent kinetic energy |
Greek Letters | |
total pressure drop across the combustor | |
vorticity | |
Subscripts | |
3 | combustor inlet |
4 | combustor exit |
x | x coordinate |
y | y coordinate |
true value | |
predicted value | |
Abbreviations | |
PIV | particle image velocimetry |
CFD | computational fluid dynamics |
LDV | laser doppler velocimetry |
MTV | molecular tagging velocimetry |
LES | large eddy simulations |
DNS | direct numerical simulations |
ML | machine learning |
DNN | deep neural network |
LPP | lean premixed prevaporized |
TAPS | twin annular premixing swirler |
SWJ | swirl jet zone |
IRZ | inner recirculation zone |
ORZ | outer recirculation zone |
LRZ | lip recirculation zone |
ISL | inner shear layer |
OSL | outer shear layer |
References
- Zhou, L.; Song, Y.; Ji, W.; Wei, H. Machine learning for combustion. Energy AI 2022, 7, 100128. [Google Scholar] [CrossRef]
- Chterev, I.; Foley, C.; Foti, D.; Kostka, S.; Caswell, A.; Jiang, N.; Lynch, A.; Noble, D.; Menon, S.; Seitzman, J.; et al. Flame and flow topologies in an annular swirling flow. Combust. Sci. Technol. 2014, 186, 1041–1074. [Google Scholar] [CrossRef]
- Mastorakos, E. Forced ignition of turbulent spray flames. Proc. Combust. Inst. 2017, 36, 2367–2383. [Google Scholar] [CrossRef]
- Jäckel, R.; Gutiérrez-Urueta, G.; Tapia, F. A review on Pitot tube icing in aeronautics: Research-design and characterization–future trends. Flow Meas. Instrum. 2021, 81, 102033. [Google Scholar] [CrossRef]
- Motallebi, F. A review of the hot-wire technique in 2-D compressible flows. Prog. Aerosp. Sci. 1994, 30, 267–294. [Google Scholar] [CrossRef]
- Ruan, C.; Chen, F.; Cai, W.; Qian, Y.; Yu, L.; Lu, X. Principles of non-intrusive diagnostic techniques and their applications for fundamental studies of combustion instabilities in gas turbine combustors: A brief review. Aerosp. Sci. Technol. 2019, 84, 585–603. [Google Scholar] [CrossRef]
- Chterev, I.; Rock, N.; Ek, H.; Emerson, B.; Seitzman, J.; Jiang, N.; Roy, S.; Lee, T.; Gord, J.; Lieuwen, T. Simultaneous imaging of fuel, OH, and three component velocity fields in high pressure, liquid fueled, swirl stabilized flames at 5 kHz. Combust. Flame 2017, 186, 150–165. [Google Scholar] [CrossRef]
- Gicquel, L.Y.; Staffelbach, G.; Poinsot, T. Large eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 2012, 38, 782–817. [Google Scholar] [CrossRef]
- Ihme, M.; Chung, W.T.; Mishra, A.A. Combustion machine learning: Principles, progress and prospects. Prog. Energy Combust. Sci. 2022, 91, 101010. [Google Scholar] [CrossRef]
- Kou, J.; Zhang, W. Data-driven modeling for unsteady aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 2021, 125, 100725. [Google Scholar] [CrossRef]
- Li, Y.; Chang, J.; Kong, C.; Bao, W. Recent progress of machine learning in flow modeling and active flow control. Chin. J. Aeronaut. 2022, 35, 14–44. [Google Scholar] [CrossRef]
- Jin, X.; Cheng, P.; Chen, W.L.; Li, H. Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder. Phys. Fluids 2018, 30, 047105. [Google Scholar] [CrossRef]
- Ye, S.; Zhang, Z.; Song, X.; Wang, Y.; Chen, Y.; Huang, C. A flow feature detection method for modeling pressure distribution around a cylinder in non-uniform flows by using a convolutional neural network. Sci. Rep. 2020, 10, 4459. [Google Scholar] [CrossRef]
- Cheng, C.; Zhang, G.T. Deep learning method based on physics informed neural network with resnet block for solving fluid flow problems. Water 2021, 13, 423. [Google Scholar] [CrossRef]
- Sekar, V.; Jiang, Q.; Shu, C.; Khoo, B.C. Fast flow field prediction over airfoils using deep learning approach. Phys. Fluids 2019, 31, 057103. [Google Scholar] [CrossRef]
- Li, K.; Kou, J.; Zhang, W. Deep learning for multifidelity aerodynamic distribution modeling from experimental and simulation data. AIAA J. 2022, 60, 4413–4427. [Google Scholar] [CrossRef]
- Kou, J.; Zhang, W. Multi-kernel neural networks for nonlinear unsteady aerodynamic reduced-order modeling. Aerosp. Sci. Technol. 2017, 67, 309–326. [Google Scholar] [CrossRef]
- Li, K.; Kou, J.; Zhang, W. Deep neural network for unsteady aerodynamic and aeroelastic modeling across multiple Mach numbers. Nonlinear Dyn. 2019, 96, 2157–2177. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, W.; Kou, J.; Liu, Y. Machine learning methods for turbulence modeling in subsonic flows around airfoils. Phys. Fluids 2019, 31, 015105. [Google Scholar] [CrossRef]
- Kong, C.; Chang, J.; Li, Y.; Li, N. Flowfield reconstruction and shock train leading edge detection in scramjet isolators. AIAA J. 2020, 58, 4068–4080. [Google Scholar] [CrossRef]
- Kong, C.; Chang, J.; Li, Y.; Wang, Z. A deep learning approach for the velocity field prediction in a scramjet isolator. Phys. Fluids 2021, 33, 026103. [Google Scholar] [CrossRef]
- Chen, H.; Guo, M.; Tian, Y.; Le, J.; Zhang, H.; Zhong, F. Intelligent reconstruction of the flow field in a supersonic combustor based on deep learning. Phys. Fluids 2022, 34, 035128. [Google Scholar] [CrossRef]
- Babanezhad, M.; Behroyan, I.; Nakhjiri, A.T.; Marjani, A.; Shirazian, S. Computational modeling of transport in porous media using an adaptive network-based fuzzy inference system. ACS Omega 2020, 5, 30826–30835. [Google Scholar] [CrossRef] [PubMed]
- Babanezhad, M.; Behroyan, I.; Marjani, A.; Shirazian, S. Velocity prediction of nanofluid in a heated porous pipe: DEFIS learning of CFD results. Sci. Rep. 2021, 11, 1209. [Google Scholar] [CrossRef]
- Liu, L.; Bai, B. Flow regime identification of swirling gas-liquid flow with image processing technique and neural networks. Chem. Eng. Sci. 2019, 199, 588–601. [Google Scholar] [CrossRef]
- Mongia, H. TAPS: A fourth generation propulsion combustor technology for low emissions. In Proceedings of the AIAA International Air and Space Symposium and Exposition: The Next 100 Years, Dayton, OH, USA, 14–17 July 2003; p. 2657. [Google Scholar]
- Lazik, W.; Doerr, T.; Bake, S. Low NOx combustor development for the engine 3E core engine demonstrator. In Proceedings of the XVIII International Symposium on Air Breathing Engines (ISABE), Beijing, China, 2–7 September 2007; pp. 2–7. [Google Scholar]
- Wang, B.; Zhang, C.; Lin, Y.; Hui, X.; Li, J. Influence of main swirler vane angle on the ignition performance of TeLESS-II combustor. J. Eng. Gas Turbines Power 2017, 139, 011501. [Google Scholar] [CrossRef]
- Yang, S.; Hui, X.; Zhang, C.; Qian, W.; Gan, X. Mechanistic Insights into Effects of Outer Stage Flare Angle on Ignition and Flame Propagation of Separated Dual-Swirl Spray Flames. J. Therm. Sci. 2022, 31, 1642–1662. [Google Scholar] [CrossRef]
- Lefebvre, A.H. Gas Turbine Combustion; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Tuttle, J.F.; Blackburn, L.D.; Andersson, K.; Powell, K.M. A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling. Appl. Energy 2021, 292, 116886. [Google Scholar] [CrossRef]
- Liang, W.; Wang, G.; Ning, X.; Zhang, J.; Li, Y.; Jiang, C.; Zhang, N. Application of BP neural network to the prediction of coal ash melting characteristic temperature. Fuel 2020, 260, 116324. [Google Scholar] [CrossRef]
- Sibi, P.; Jones, S.A.; Siddarth, P. Analysis of different activation functions using back propagation neural networks. J. Theor. Appl. Inf. Technol. 2013, 47, 1264–1268. [Google Scholar]
- Roy, R.; Gupta, A.K. Data-driven prediction of flame temperature and pollutant emission in distributed combustion. Appl. Energy 2022, 310, 118502. [Google Scholar] [CrossRef]
- Zhang, G.; Xia, B.; Wang, J. Intelligent state of charge estimation of lithium-ion batteries based on LM optimized back-propagation neural network. J. Energy Storage 2021, 44, 103442. [Google Scholar] [CrossRef]
- Shin, S.; Kwon, M.; Kim, S.; So, H. Prediction of equivalence ratio in combustion flame using chemiluminescence emission and deep neural network. Int. J. Energy Res. 2023, 2023, 3889951. [Google Scholar] [CrossRef]
- Han, R.; Wang, Y.; Zhang, Y.; Chen, G. A novel spatial-temporal prediction method for unsteady wake flows based on hybrid deep neural network. Phys. Fluids 2019, 31, 127101. [Google Scholar] [CrossRef]
- Dhanuka, S.K.; Temme, J.E.; Driscoll, J. Unsteady aspects of lean premixed prevaporized gas turbine combustors: Flame-flame interactions. J. Propuls. Power 2011, 27, 631–641. [Google Scholar] [CrossRef]
- Malbois, P.; Salaün, E.; Vandel, A.; Godard, G.; Cabot, G.; Renou, B.; Boukhalfa, A.M.; Grisch, F. Experimental investigation of aerodynamics and structure of a swirl-stabilized kerosene spray flame with laser diagnostics. Combust. Flame 2019, 205, 109–122. [Google Scholar] [CrossRef]
- Sardina, G.; Jareteg, K.; Ström, H.; Sasic, S. Assessing the ability of the Eulerian-Eulerian and the Eulerian-Lagrangian frameworks to capture meso-scale dynamics in bubbly flows. Chem. Eng. Sci. 2019, 201, 58–73. [Google Scholar] [CrossRef]
- Gu, J.; Shao, Y.; Liu, X.; Zhong, W.; Yu, A. Modelling of particle flow in a dual circulation fluidized bed by a Eulerian-Lagrangian approach. Chem. Eng. Sci. 2018, 192, 619–633. [Google Scholar] [CrossRef]
- Ishii, M.; Zuber, N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE J. 1979, 25, 843–855. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, C.; Lin, Y.; Xue, X.; Gan, X. Experimental investigation of the ignition process in a separated dual-swirl spray flame. Combust. Flame 2020, 219, 161–177. [Google Scholar] [CrossRef]
RMSE | Training Set | Validation Set | Test Set | Extrapolation Set |
---|---|---|---|---|
0.7398 | 0.7369 | 0.7385 | 1.6160 | |
0.7407 | 0.7415 | 0.7359 | 1.3976 | |
Training set | Validation set | Test set | Extrapolation set | |
0.9873 | 0.9875 | 0.9872 | 0.9675 | |
0.9753 | 0.9742 | 0.9812 | 0.9269 |
Parameter | SMD (μm) | y (mm) | (m/s) | (m/s) | (m/s) |
---|---|---|---|---|---|
N:Normal distribution | N(30, 10) | N(9, 1) | N(17.32, 3) | N(10, 3) | N(10, 3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, W.; Yang, S.; Liu, W.; Xu, Q.; Zhu, W. Research on Flow Field Prediction in a Multi-Swirl Combustor Using Artificial Neural Network. Processes 2024, 12, 2435. https://doi.org/10.3390/pr12112435
Qian W, Yang S, Liu W, Xu Q, Zhu W. Research on Flow Field Prediction in a Multi-Swirl Combustor Using Artificial Neural Network. Processes. 2024; 12(11):2435. https://doi.org/10.3390/pr12112435
Chicago/Turabian StyleQian, Weijia, Siheng Yang, Weijie Liu, Quanhong Xu, and Wenbin Zhu. 2024. "Research on Flow Field Prediction in a Multi-Swirl Combustor Using Artificial Neural Network" Processes 12, no. 11: 2435. https://doi.org/10.3390/pr12112435
APA StyleQian, W., Yang, S., Liu, W., Xu, Q., & Zhu, W. (2024). Research on Flow Field Prediction in a Multi-Swirl Combustor Using Artificial Neural Network. Processes, 12(11), 2435. https://doi.org/10.3390/pr12112435