Chemical Modification of Birch Bark (Betula L.) for the Improved Bioprocessing of Cadmium(II), Chromium(VI), and Manganese(II) from Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Sorbent Preparation
2.2. General Methods
2.3. Bioremediation Process
2.4. Sorption in Equilibrium
Model | Equation |
---|---|
Langmuir | (2) |
Freundlich | (3) |
Temkin | (4) (5) |
- qmax—maximum sorption capacity (mg/g);
- b—Langmuir constant (dm3/mg);
- Kf—Freundlich constant (mg1−(1/n)dm3)1/ng−1);
- n—heterogeneity coefficient;
- Kt—constant for the maximum binding energy (dm3/g);
- B—constant of the sorption heat (J/mol);
- R—gas constant (8.314 J mol/K);
- T—temperature (K);
- bt—Temkin isotherm constant.
2.5. Sorption Kinetics
Model | Equation |
---|---|
Pseudo–first-rate order | (6) |
Pseudo–second-rate order | (7) |
Weber–Morris | (8) |
- k1—pseudo–first-rate order kinetics constant (1/min);
- k2—pseudo–second-rate order kinetics constant;
- Kid—the intra-particle diffusion rate constant (mg/g min0.5);
- I—intercept of the line in the Weber–Morris model.
2.6. Desorption Studies
3. Results and Discussion
3.1. Sorption Experiments
3.2. Sorption Kinetics
3.3. Desorption Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kulshreshtha, A.; Agrawal, R.; Barar, M.; Saxena, S. A Review on Bioremediation of Heavy Metals in Contaminated Water. IOSR J. Environ. Sci. 2014, 8, 44–50. [Google Scholar] [CrossRef]
- AlOmar, M.K.; Alsaadi, M.A.; Hayyan, M.; Akib, S.; Ibrahim, R.K.; Hashim, M.A. Lead removal from water by choline chloride based deep eutectic solvents functionalized carbon nanotubes. J. Mol. Liq. 2016, 222, 883–894. [Google Scholar] [CrossRef]
- Mani, D.; Kumar, C. Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. Int. J. Environ. Sci. Technol. 2014, 11, 843–872. [Google Scholar] [CrossRef]
- Nzediegwu, C.; Arshad, M.; Ulah, A.; Naeth, M.A.; Chang, S.X. Fuel, thermal and surface properties of microwave-pyrolyzed biochars depend on feedstock type and pyrolysis temperature. Bioresour. Technol. 2021, 320, 124282. [Google Scholar] [CrossRef] [PubMed]
- Bilba, K.; Arsene, M.A.; Ouensanga, A. Study of banana and coconut fibers. Botanical composition, thermal degradation and textural observations. Bioresour. Technol. 2007, 98, 58–68. [Google Scholar] [CrossRef]
- Saleh, I.A.; Zouari, N.; Al-Ghouti, M.A. Removal of pesticides from water and wastewater: Chemical, physical and biological treatment approaches. Environ. Technol. Innov. 2020, 19, 101026. [Google Scholar] [CrossRef]
- Song, H.-J.; Kim, S.; Cho, Y. Removal of heavy metals using sorbents derived from bark. J. Porous Mater. 2020, 27, 319–328. [Google Scholar] [CrossRef]
- Saidi, S.; Boudrahem, F.; Yahiaoui, I.; Aissani-Benissad, F. Agar-agar impregnated on porous activated carbon as a new adsorbent for Pb(II) removal. Water Sci. Technol. 2019, 79, 1316–1326. [Google Scholar] [CrossRef]
- Ighnih, H.; Haounati, R.; Ouachtak, H.; Regti, A.; El Ibrahimi, B.; Hafid, N.; Jada, A.; Taha, M.L.; Addi, A.A. Efficient removal of hazardous dye from aqueous solutions using magnetic kaolinite nanocomposite: Experimental and Monte Carlo simulation studies. Inorg. Chem. Commun. 2023, 153, 110886. [Google Scholar] [CrossRef]
- Das, N.; Vimala, R.; Karthika, P. Biosorption of heavy metals—An overview. Indian J. Biotechnol. 2008, 7, 159–169. [Google Scholar]
- Ding, Z.; Hu, X.; Wan, Y.; Wang, S.; Gao, B. Removal of lead; copper; cadmium; zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. J. Ind. Eng. Chem. 2016, 33, 239–245. [Google Scholar] [CrossRef]
- Park, D.; Yun, Y.-S.; Park, J.M.; Past, T. Present, and Future Trends of Biosorption. Biotechnol. Bioprocess Eng. 2010, 15, 86–102. [Google Scholar] [CrossRef]
- Gnanasambandam, R.; Proctor, A. Determination of Pectin Degree of Esterification by Diffuse Reflectance Fourier Transform Infrared Spectroscopy. (n.d.). Available online: https://www.sciencedirect.com/science/article/abs/pii/S0308814699001910 (accessed on 1 December 2023).
- Pirbazari, A.E.; Saberikhah, E.; Badrouh, M.; Emami, M.S. Alkali treated Foumanat tea waste as an efficient adsorbent for methylene blue adsorption from aqueous solution. Water Resour. Ind. 2014, 6, 64–80. [Google Scholar] [CrossRef]
- Worzakowska, M.; Sztanke, M.; Sztanke, K. Thermal properties and decomposition mechanism of disubstituted fused 1,2,4-triazoles considered as potential anticancer and antibacterial agents. J. Therm. Anal. Calorim. 2022, 147, 14315–14327. [Google Scholar] [CrossRef]
- El Amri, A.; Kadiri, L.; Hsissou, R.; Lebkiri, A.; Wardighi, Z.; Rifi, E.H.; Lebkiri, A. Investigation of Typha Latifolia (TL) as potential biosorbent for removal of the methyl orange anionic dye in the aqueous solution. Kinetic and DFT approaches. J. Mol. Struct. 2023, 1272, 134098. [Google Scholar] [CrossRef]
- Rao, H.; Yang, Y.; Hu, X.; Yu, J.; Jiang, H. Identification of an Ancient Birch Bark Quiver from a Tang Dynasty (A.D. 618-907) Tomb in Xinjiang, Northwest China. Econ. Bot. 2017, 71, 32–44. [Google Scholar] [CrossRef]
- Sidi-Yacoub, B.; Oudghiri, F.; Belkadi, M.; Rodríguez-Barroso, R. Characterization of lignocellulosic components in exhausted sugar beet pulp waste by TG/FTIR analysis. J. Therm. Anal. Calorim. 2019, 138, 1801–1809. [Google Scholar] [CrossRef]
- Gupta, V.K.; Rastogi, A.; Nayak, A. Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J. Colloid Interface Sci. 2010, 342, 135–141. [Google Scholar] [CrossRef]
- Khajavian, M.; Wood, D.A.; Hallajsani, A.; Majidian, N. Simultaneous biosorption of nickel and cadmium by the brown algae Cystoseria indica characterized by isotherm and kinetic models. Appl. Biol. Chem. 2019, 62, 1–12. [Google Scholar] [CrossRef]
- Aguilar, D.L.G.; Miranda, J.P.R.; Guzmán, D.B.; Andrés, J.; Muñoz, E.; Co, J.A.E.M. Using Coffee Pulp as Bioadsorbent for the Removal of Manganese (Mn (II)) from Synthetic Wastewater. Water 2020, 12, 2500. [Google Scholar] [CrossRef]
- Sahmoune, M.N. Performance of Streptomyces rimosus biomass in biosorption of heavy metals from aqueous solutions. Microchem. J. 2018, 141, 87–95. [Google Scholar] [CrossRef]
- Svilović, S.; Rušić, D.; Bašić, A. Investigations of different kinetic models of copper ions sorption on zeolite 13X. Desalination 2010, 259, 71–75. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Wnetrzak, R.; Leahy, J.J.; Hayes, M.H.B.; Kwapiński, W.; Hubicki, Z. Kinetic and adsorptive characterization of biochar in metal ions removal. Chem. Eng. J. 2012, 197, 295–305. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, X.; Wei, B.; Zhao, Y.; Wang, J. Evaluation of adsorption potential of bamboo biochar for metal-complex dye: Equilibrium, kinetics and artificial neural network modeling. Int. J. Environ. Sci. Technol. 2014, 11, 1093–1100. [Google Scholar] [CrossRef]
- AL-Othman, Z.A.; Ali, R.; Naushad, M. Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: Adsorption kinetics, equilibrium and thermodynamic studies. Chem. Eng. J. 2012, 184, 238–247. [Google Scholar] [CrossRef]
- Pacini, V.A.; Ingallinella, A.M.; Sanguinetti, G. Removal of iron and manganese using biological roughing up flow filtration technology. Water Res. 2005, 39, 4463–4475. [Google Scholar] [CrossRef] [PubMed]
- Delgado, N.; Capparelli, A.; Navarro, A.; Marino, D. Pharmaceutical emerging pollutants removal from water using powdered activated carbon: Study of kinetics and adsorption equilibrium. J. Environ. Manag. 2019, 236, 301–308. [Google Scholar] [CrossRef]
- Kaushik, A.; Singh, M. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr. Res. 2011, 346, 76–85. [Google Scholar] [CrossRef]
- Bhatti, H.N.; Safa, Y.; Yakout, S.M.; Shair, O.H.; Iqbal, M.; Nazir, A. Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: Adsorption/desorption, kinetics and recycling studies. Int. J. Biol. Macromol. 2020, 150, 861–870. [Google Scholar] [CrossRef]
Elemental Composition (%) | Untreated Bark (BB) | Alkali-Treated Bark (BBNa) |
---|---|---|
C | 44.27% | 44.95% |
O | 50.23% | 50.87% |
N | 0.25% | 0.21% |
H | 4.25% | 3.12% |
Others | 0.98% | 0.85% |
Parameter | BB | BBNa | ||||
---|---|---|---|---|---|---|
Cd(II) | Cr(VI) | Mn(II) | Cd(II) | Cr(VI) | Mn(II) | |
Freundlich | ||||||
R2 | 0.944 | 0.986 | 0.449 | 0.988 | 0.973 | 0.897 |
KF(mg1−(1/n)(dm3)1/ng−1) | 5.761 | 2.202 | 4.543 | 7.016 | 0.304 | 4.703 |
1/n | 0.332 | 0.609 | 0.141 | 0.390 | 0.918 | 0.232 |
Langmuir | ||||||
R2 | 0.975 | 0.871 | 0.945 | 0.962 | 0.141 | 0.996 |
Kl | 0.080 | 0.017 | 0.133 | 0.107 | 0.001 | 0.190 |
Temkin | ||||||
R2 | 0.904 | 0.874 | 0.394 | 0.943 | 0.880 | 0.898 |
B | 4.917 | 11.303 | 1.014 | 6.833 | 12.41 | 0.891 |
Kt | 1.617 | 0.199 | 55.38 | 1.778 | 0.058 | 3.998 |
Parameter | BB | BBNa | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cd(II) Concentration (mg/dm3) | ||||||||||
50 | 100 | 150 | 200 | 250 | 50 | 100 | 150 | 200 | 250 | |
I order | ||||||||||
qe | 5.576 | 6.064 | 16.157 | 8.585 | 15.081 | 1.374 | 2.977 | 11.563 | 8.432 | 11.913 |
k1 | 0.1616 | 0.0627 | 0.0936 | 0.0321 | 0.1155 | 0.1178 | 0.0234 | 0.0535 | 0.0221 | 0.0540 |
R2 | 0.9902 | 0.9271 | 0.9807 | 0.6088 | 0.8893 | 0.7976 | 0.2598 | 0.9632 | 0.7004 | 0.7580 |
II order | ||||||||||
qe | 8.364 | 13.386 | 20.931 | 23.793 | 25.981 | 8.390 | 13.642 | 22.603 | 27.215 | 34.545 |
k2 | 0.0643 | 0.0177 | 0.0070 | 0.0086 | 0.0107 | 0.2013 | 0.0996 | 0.0127 | 0.0127 | 0.0094 |
R2 | 0.9997 | 0.9988 | 0.9960 | 0.9926 | 0.9970 | 0.9999 | 0.9995 | 0.9995 | 0.9967 | 0.9992 |
Weber Morris | ||||||||||
I | 5.6520 | 6.5702 | 6.3941 | 11.0630 | 12.5089 | 7.1955 | 11.3329 | 11.8796 | 17.5199 | 19.8388 |
Kid | 0.3628 | 0.8318 | 1.7571 | 1.5088 | 1.7814 | 0.1701 | 0.3299 | 1.3604 | 1.1495 | 1.8580 |
R2 | 0.7333 | 0.8816 | 0.8391 | 0.8281 | 0.6399 | 0.5640 | 0.3486 | 0.8355 | 0.9139 | 0.7860 |
Cr(VI) Concentration (mg/dm3) | ||||||||||
50 | 100 | 150 | 200 | 250 | 50 | 100 | 150 | 200 | 250 | |
I order | ||||||||||
qe | 1.611 | 1.704 | 5.180 | 5.334 | 6.445 | 1.310 | 1.897 | 4.744 | 5.439 | 6.589 |
k1 | 0.0652 | 0.0261 | 0.0833 | 0.0603 | 0.0646 | 0.0451 | 0.0407 | 0.0738 | 0.0523 | 0.0533 |
R2 | 0.9771 | 0.8112 | 0.9840 | 0.9412 | 0.9281 | 0.9438 | 0.9935 | 0.9691 | 0.9298 | 0.9103 |
II order | ||||||||||
qe | 8.391 | 12.874 | 16.042 | 18.542 | 32.191 | 2.067 | 4.753 | 10.497 | 15.361 | 24.191 |
k2 | 0.0248 | 0.0151 | 0.0075 | 0.0053 | 0.0041 | 0.0299 | 0.0128 | 0.0087 | 0.0053 | 0.0041 |
R2 | 0.9813 | 0.9984 | 0.9864 | 0.9656 | 0.9415 | 0.9900 | 0.9946 | 0.9724 | 0.9769 | 0.9545 |
Weber Morris | ||||||||||
I | 0.1629 | −0.0231 | −0.0304 | 0.0357 | 0.0732 | 0.1575 | −0.1066 | 0.0400 | 0.0357 | 0.0732 |
Kid | 0.2329 | 0.2816 | 0.6031 | 0.7997 | 0.9772 | 0.1997 | 0.2628 | 0.5484 | 0.7997 | 0.9772 |
R2 | 0.9027 | 0.9415 | 0.9447 | 0.9147 | 0.8945 | 0.9351 | 0.9873 | 0.9379 | 0.9052 | 0.8829 |
Mn(II) Concentration (mg/dm3) | ||||||||||
50 | 100 | 150 | 200 | 250 | 50 | 100 | 150 | 200 | 250 | |
I order | ||||||||||
qe | 4.562 | 7.915 | 10.596 | 5.732 | 5.799 | 0.345 | 1.247 | 1.134 | 1.186 | 1.336 |
k1 | 0.0688 | 0.0570 | 0.1082 | 0.0899 | 0.0619 | 0.0380 | 0.0332 | 0.0598 | 0.1073 | 0.0845 |
R2 | 0.9767 | 0.9948 | 0.9777 | 0.9606 | 0.8954 | 0.9798 | 0.9604 | 0.9885 | 0.8966 | 0.9915 |
II order | ||||||||||
qe | 6.534 | 8.931 | 10.006 | 15.472 | 18.076 | 1.399 | 2.369 | 7.583 | 12.651 | 13.729 |
k2 | 0.0166 | 0.0033 | 0.0071 | 0.0232 | 0.0104 | 0.2777 | 0.0424 | 0.0940 | 0.1657 | 0.1116 |
R2 | 0.9987 | 0.9963 | 0.9874 | 0.9972 | 0.9878 | 0.9984 | 0.9796 | 0.9988 | 0.9987 | 0.9996 |
Weber Morris | ||||||||||
I | 1.4563 | −0.4055 | 0.9729 | 4.2850 | 1.4651 | 0.9577 | 0.6015 | 1.3314 | 1.8322 | 1.5328 |
Kid | 0.5854 | 1.0580 | 0.9987 | 0.6417 | 0.7115 | 0.0515 | 0.1902 | 0.1501 | 0.0998 | 0.1490 |
R2 | 0.9009 | 0.9492 | 0.8300 | 0.8270 | 0.9180 | 0.9361 | 0.9544 | 0.9481 | 0.8665 | 0.9012 |
Elution (%) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle 1 | Cycle 2 | Cycle 3 | Cycle 4 | Cycle 5 | |||||||||||
BB | |||||||||||||||
Cd(II) | Cr(VI) | Mn(II) | Cd(II) | Cr(VI) | Mn(II) | Cd(II) | Cr(VI) | Mn(II) | Cd(II) | Cr(VI) | Mn(II) | Cd(II) | Cr(VI) | Mn(II) | |
Citric acid | 84 | 71 | 68 | 80 | 67 | 65 | 78 | 69 | 67 | 80 | 64 | 63 | 74 | 60 | 58 |
Acetic acid | 67 | 59 | 60 | 69 | 55 | 57 | 63 | 52 | 50 | 67 | 50 | 51 | 64 | 48 | 45 |
Sodium chloride | 19 | 15 | 17 | 20 | 14 | 19 | 22 | 18 | 16 | 15 | 13 | 11 | 11 | 8 | 10 |
Water | 0.3 | 0.1 | 0.3 | 0.2 | 0.1 | 0.3 | 0.4 | 0.2 | 0.1 | 0.2 | 0.5 | 0.3 | 0.1 | 0.2 | 0.5 |
BBNa | |||||||||||||||
Citric acid | 80 | 73 | 71 | 78 | 63 | 60 | 75 | 66 | 63 | 74 | 68 | 60 | 69 | 52 | 53 |
Acetic acid | 65 | 61 | 58 | 66 | 50 | 49 | 58 | 46 | 42 | 51 | 43 | 42 | 55 | 40 | 38 |
Sodium chloride | 21 | 17 | 15 | 18 | 16 | 15 | 11 | 15 | 13 | 12 | 10 | 14 | 15 | 11 | 9 |
Water | 0.4 | 0.1 | 0.2 | 0.3 | 0.1 | 0.1 | 0.2 | 0.3 | 0.3 | 0.2 | 0.4 | 0.1 | 0.4 | 0.3 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chwastowski, J.; Staroń, P. Chemical Modification of Birch Bark (Betula L.) for the Improved Bioprocessing of Cadmium(II), Chromium(VI), and Manganese(II) from Aqueous Solutions. Processes 2024, 12, 1005. https://doi.org/10.3390/pr12051005
Chwastowski J, Staroń P. Chemical Modification of Birch Bark (Betula L.) for the Improved Bioprocessing of Cadmium(II), Chromium(VI), and Manganese(II) from Aqueous Solutions. Processes. 2024; 12(5):1005. https://doi.org/10.3390/pr12051005
Chicago/Turabian StyleChwastowski, Jarosław, and Paweł Staroń. 2024. "Chemical Modification of Birch Bark (Betula L.) for the Improved Bioprocessing of Cadmium(II), Chromium(VI), and Manganese(II) from Aqueous Solutions" Processes 12, no. 5: 1005. https://doi.org/10.3390/pr12051005
APA StyleChwastowski, J., & Staroń, P. (2024). Chemical Modification of Birch Bark (Betula L.) for the Improved Bioprocessing of Cadmium(II), Chromium(VI), and Manganese(II) from Aqueous Solutions. Processes, 12(5), 1005. https://doi.org/10.3390/pr12051005