Valuable Nutrients, Aroma Profile, and Functional Bioactives Extracted by Eco-Friendly Extraction Techniques from Wild Olive Fruits (Olea europaea L. var. sylvestris)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Proximate Chemical Composition
2.3. Analysis of Fatty Acid Composition
2.4. Determination of Chlorophylls and Carotenoids
2.5. Tocopherols Analysis
2.6. Extraction Procedures of Phenolic Compounds
2.6.1. Ultrasound-Assisted Extraction (UAE)
2.6.2. Microwave-Assisted Extraction (MAE)
2.6.3. Accelerated Solvent Extraction (ASE)
2.7. Total Phenolic and Total Flavonoid Contents
2.8. Antioxidant Activity Assays
2.8.1. DPPH Radical Scavenging Activity
2.8.2. ABTS Radical Scavenging Assay
2.8.3. Ferric Reducing Antioxidant Power Assay (FRAP)
2.9. LC-DAD-MS Analysis of Phenolic Compounds
2.10. SPME-GC-MS Analysis
2.11. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Profile
3.2. Chlorophyls and Carotenoids Contents
3.3. Preliminary Studies for Phenolic Extraction
3.4. Identification of Phenolic Extracts
3.5. Optimization Studies of Different ‘Green’ Extraction Methods
3.5.1. Process Optimization of Ultrasound-Assisted Extraction (UAE)
3.5.2. Process Optimization of Microwave-Assisted Extraction (MAE)
3.5.3. Process Optimization of Accelerated-Assisted Extraction (ASE)
3.6. Comparison of UAE, MAE, and ASE
3.7. Volatile Compounds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kassa, A.; Konrad, H.; Geburek, T. Molecular diversity and gene flow within and among different subspecies of the wild olive (Olea europaea L.): A review. Flora 2019, 250, 18–26. [Google Scholar] [CrossRef]
- Lumaret, R.; Ouazzani, N. Ancient wild olive trees in Mediterranean forests. Nature 2001, 413, 700. [Google Scholar] [CrossRef]
- Belaj, A.; Muñoz-Diez, C.; Baldoni, L.; Porceddu, A.; Barranco, D.; Satovic, Z. Genetic diversity and population structure of wild olives from the north-western mediterranean assessed by SSR markers. Ann. Bot. 2007, 100, 449–458. [Google Scholar] [CrossRef]
- Diez, C.M.; Trujillo, I.; Martinez-Urdiroz, N.; Barranco, D.; Rallo, L.; Marfil, P.; Gaut, B.S. Olive domestication and diversification in the Mediterranean basin. New Phytol. 2015, 206, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Terral, J.F.; Arnold-Simard, G. Beginnings of olive cultivation in relation to Holocene bioclimatic changes. Quat. Res. 1996, 46, 176–185. [Google Scholar] [CrossRef]
- Dabbou, S.; Dabbou, S.; Selvagginib, R.; Urbanib, S.; Taticchib, A.; Servili, M.; Hammami, M. Comparison of the chemical composition and the organoleptic profile of virgin olive oil from two wild and two cultivated Tunisian Olea europaea. Chem. Biodivers. 2011, 8, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Bouarroudj, K.; Tamendjari, A.; Larbat, R. Quality, composition and antioxidant activity of Algerian wild olive (Olea europaea L. subsp. oleaster) oil. Ind. Crops Prod. 2016, 83, 484–491. [Google Scholar]
- Baccouri, B.; Mechi, D.; Rajhi, I.; Vertedor, D.M. Tunisian wild olive leaves: Phenolic compounds and antioxidant activity as an important step toward their valorization. Food Anal. Methods 2023, 16, 436–444. [Google Scholar] [CrossRef]
- Unver, T.; Wu, Z.; Sterck, L.; Turktas, M.; Lohaus, R.; Li, Z.; Van de Peer, Y. Genome of wild olive and the evolution of oil biosynthesis. Proc. Natl. Acad. Sci. USA 2017, 114, E9413–E9422. [Google Scholar] [CrossRef]
- Tourvas, N.; Ganopoulos, I.; Koubouris, G.; Kostelenos, G.; Manthos, I.; Bazakos, C.; Stournaras, V.; Molassiotis, A.; Aravanopoulos, F. Wild and cultivated olive tree genetic diversity in Greece: A diverse resource in danger of Erosion. Front. Genet. 2024, 14, 1298565. [Google Scholar] [CrossRef]
- Besnard, G.; Terral, J.; Cornille, A. On the origins and domestication of the olive: A review and perspectives. Ann. Bot. 2017, 121, 385–403. [Google Scholar] [CrossRef] [PubMed]
- Baldoni, L.; Tosti, N.; Ricciolini, C.; Belaj, A.; Arcioni, S.; Pannelli, G.; Germana, M.A.; Mulas, M.; Porceddu, A. Genetic structure of wild and cultivated olives in the Central Mediterranean Basin. Ann. Bot. 2006, 98, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, V.; Mascio, I.; Montemurro, C. Current status of biodiversity assessment and conservation of wild olive (Olea europaea L. subsp. europaea var. sylvestris). Plants 2022, 11, 480. [Google Scholar] [PubMed]
- Bouarroudj-Hamici, K.; Mettouchi, S.; Medjkouh-Rezzak, L.; Larbat, R.; Tamendjari, A. Antibacterial activity of the phenolic extract of wild virgin olive oil invitro. Curr. Bioact. Compd. 2022, 18, 45–52. [Google Scholar] [CrossRef]
- Lafka, T.I.; Lazou, A.; Sinanoglou, V.; Lazos, E. Phenolic extracts from wild olive leaves and their potential as edible oils antioxidants. Foods 2013, 2, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Hannachi, H.; Elfalleh, W.; Marzouk, S. Oil, protein, antioxidants and free radical scavenging activity of stone from wild olive trees (Olea europaea L.). Pak. J. Pharm. Sci. 2013, 26, 503–510. [Google Scholar] [PubMed]
- Ghorbel, A.; Wedel, S.; Kallel, I.; Cavinato, M.; Sakavitsi, M.E.; Fakhfakh, J.; Halabalaki, M.; Jansen-Dürr, P.; Allouche, N. Extraction yield optimization of Oleaster (Olea europaea var. sylvestris) fruits using response surface methodology, LC/MS profiling and evaluation of its effects on antioxidant activity and autophagy in HFF cells. J. Food Meas. Charact. 2021, 15, 4946–4959. [Google Scholar]
- Ghanbari, R.; Anwar, F.; Alkharfy, K.M.; Gilani, A.H.; Saari, N. Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.). Int. J. Mol. Sci. 2012, 13, 3291–3340. [Google Scholar] [CrossRef]
- Carew, S.J.; Kelly, K.R.; Nawrocki, S.T. Autophagy as a target for cancer therapy: New developments. Cancer Manag. Res. 2012, 41, 357–365. [Google Scholar]
- Baccouri, B.; Guerfel, M.; Zarrouk, W.; Taamalli, W.; Daoud, D.; Zarrouk, M. Wild olive (Olea europaea L.) selection for quality oil production. J. Food Biochem. 2010, 35, 161–176. [Google Scholar] [CrossRef]
- Gharby, S.; Harhar, H.; El Monfalouti, H.; Kartah, B.; Maata, N.; Guillaume, D.; Charrouf, Z. Chemical and oxidative properties of olive and argan oils sold on the Moroccan market. A comparative study. Mediterr. J. Nutr. Metab. 2012, 5, 31–38. [Google Scholar] [CrossRef]
- Gagour, J.; Ghailassia, K.E.; Ibourkia, M.; Sakar, E.H.; Said Gharby, S. Physicochemical traits of olive fruit and oil from eight Moroccan wild olive (Olea europaea L. subsp. Oleaster) populations. Biocatal. Agric. Biotechnol. 2024, 56, 103021. [Google Scholar]
- Anwar, P.; Bendini, A.; Gulfraz, M.; Qureshi, R.; Valli, E.; Di Lecce, G.; Naqvi, S.M.; Toschi, T.G. Characterization of olive oils obtained from wild olive trees (Olea ferruginea Royle) in Pakistan. Food Res. Int. 2013, 54, 1965–1971. [Google Scholar] [CrossRef]
- Cavalloro, V.; Marrubini, G.; Rossino, G.; Martino, E.; Collina, S. Combining DoE and MASE: A winning strategy for the isolation of natural bioactive compounds from plant materials. Green Chem. 2024, 26, 244–258. [Google Scholar] [CrossRef]
- Boli, E.; Prinos, N.; Louli, V.; Pappa, G.; Stamatis, H.; Magoulas, K.; Voutsas, E. Recovery of bioactive extracts from olive leaves using conventional and microwave-assisted extraction with classical and deep eutectic solvents. Separations 2022, 9, 255. [Google Scholar] [CrossRef]
- Paulo, F.; Tavares, L.; Santos, L. Response surface modeling and optimization of the extraction of phenolic antioxidants from olive mill pomace. Molecules 2022, 27, 8620. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Ahmad, N.; Aljame, A.; Abuthayn, S.; Aqeel, M. Evaluation of solvent and temperature effect on green accelerated solvent extraction (ASE) and UHPLC quantification of phenolics in fresh olive fruit (Olea europaea). Food Chem. 2021, 342, 128248. [Google Scholar] [CrossRef] [PubMed]
- Belaj, A.; Muñoz-Diez, C.; Baldoni, L.; Satovic, Z.; Barranco, D. Genetic diversity and relationships of wild and cultivated olives at regional level in Spain. Sci. Hortic. 2010, 124, 23–330. [Google Scholar] [CrossRef]
- Rodrigues, N.; Pinho, T.; Casal, S.; Peres, A.M.; Baptista, P.; Pereira, J.A. Chemical characterization of oleaster, Olea Europaea var. sylvestris (mill.) lehr., oils from different locations of northeast Portugal. Appl. Sci. 2020, 10, 6414. [Google Scholar]
- Hannachi, H.; Sommerlatte, H.; Breton, C.; Msallem, M.; Mohamed El Gazzah, M.E.; Hadj, S.B.E.; Bervillé, A. Oleaster (var. sylvestris) and subsp. cuspidata are suitable genetic resources for improvement of the olive (Olea europaea subsp. europaea var. europaea). Genet. Resour. Crop Evol. 2009, 56, 393–403. [Google Scholar] [CrossRef]
- Faci, M.; Douzane, M.; Hedjal, M.; Daas, M.S.; Fougere, L.; Lesellier, E. Changes in secoiridoids content and chemical characteristics of cultivated and wild Algerian olive oil, in term of fruit maturation. PLoS ONE 2021, 16, e0260182. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Official Methods of Analysis, 20th ed.; Association of Official Agricultural Chemists: Rockville, MD, USA, 2016. [Google Scholar]
- AOAC Method 996-06. Fats (total, saturated and unsaturated) in foods. In AOAC Official Methods of Analysis; Association of Official Analytical Chemists Inc.: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Irakli, M.N.; Samanidou, V.F.; Papadoyannis, I.N. Development and validation of an HPLC method for the simultaneous determination of tocopherols, tocotrienols and carotenoids in cereals after solid-phase extraction. J. Sep. Sci. 2011, 34, 1375–1382. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagents. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Bao, J.S.; Cai, Y.; Sun, M.; Wang, G.Y.; Corke, H. Anthocyanins, flavonols, and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. J. Agric. Food Chem. 2005, 53, 2327–2332. [Google Scholar] [CrossRef] [PubMed]
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Re, R.; Pellergini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C.A. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Benzie, F.; Strain, J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–23. [Google Scholar]
- Nouska, C.; Irakli, M.; Georgiou, M.; Lytou, A.; Skendi, A.; Bouloumpasi, E.; Biliaderis, C.G.; Lazaridou, A. Physicochemical characteristics, antioxidant properties, aroma profile, and sensory qualities of value-added wheat breads fortified with post-distillation solid wastes of aromatic plants. Foods 2023, 12, 4007. [Google Scholar] [CrossRef]
- Georgiou, S.M.; Kosma, I.S.; Badeka, A.V.; Kontominas, M.G. Characterization and geographical differentiation of Kalamata table olives using physical, chemical, mechanical and sensory properties: A chemometric approach. Microchem. J. 2024, 199, 110085. [Google Scholar] [CrossRef]
- Hannachi, H.; Elfalleh, W.; Laajel, M.; Ennajeh, I.; Mechlouch, R.F.; Nagaz, K. Chemical profiles and antioxidant activities of leaf, pulp, and stone of cultivated and wild olive trees (Olea Europaea, L.). Int. J. Fruit Sci. 2020, 20, 350–370. [Google Scholar] [CrossRef]
- Elgadi, S.; Ouhammou, A.; Zine, H.; 1 Maata, N.; Babahmad, R.A.; Abderraouf El Antari Hindawi, A.E.A. Comparative oil composition study of the endemic Moroccan olive (Olea europaea subsp. maroccana) and wild olive (var. Sylvestris) in Central West Morocco. J. Food Qual. 2021, 2021, 8869060. [Google Scholar]
- Gulfraz, M.; Kasuar, R.; Arshad, G.; Mehmood, S.; Minhas, N.; Asad, M.J.; Ahmad, A.; Siddique, F. Isolation and characterization of edible oil from wild olive. Afr. J. Biotechnol. 2009, 8, 3734–3738. [Google Scholar]
- Lechhab, T.; Lechhab, W.; Cacciola, F.; Salmoun, F. Sets of internal and external factors influencing olive oil (Olea europaea L.) composition: A review. Eur. Food Res. Technol. 2022, 248, 1069–1088. [Google Scholar] [CrossRef]
- International Olive Council (IOC). Trade Standards Applying to Olive Oils Olive-Pomace Oils. 2019. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/12/trade-standard-REV-14-Eng.pdf (accessed on 10 May 2024).
- Leon, L.; La Rosa, R.D.; Velasco, L.; Belaj, A. Using wild olives in breeding programs: Implications on oil quality composition. Front. Plant Sci. 2018, 9, 232. [Google Scholar] [CrossRef] [PubMed]
- Criscuolo, G.; Guarino, F.; Angelini, C.; National, I. High biodiversity arises from the analyses of ancient olive trees of south of Italy. Plants 2019, 8, 297. [Google Scholar] [CrossRef] [PubMed]
- Gandul-Rojas, B.; Cepero, M.R.-L.; Mınguez-Mosquera, M.I. Chlorophyll and carotenoid patterns in olive fruits, Olea europaea cv. Arbequina. J. Agric. Food Chem. 1999, 47, 2207–2212. [Google Scholar] [CrossRef] [PubMed]
- Psomiadou, E.; Tsimidou, M. Stability of virgin olive oil. 1. Autoxidation studies. J. Agric. Food Chem. 2002, 50, 716. [Google Scholar] [CrossRef] [PubMed]
- Baccouri, B.; Zarrouk, W.; Baccouri, O.; Guerfel, M.; Nouairi, I.; Krichene, D.; Daoud, D.; Zarrouk, M. Composition, quality and oxidative stability of virgin olive oils from some selected wild olives (Olea europaea L. subsp. oleaster). Grasas Aceites 2008, 59, 346–351. [Google Scholar]
- Grigoriadou, D.; Androulaki, A.; Psomiadou, E.; Tsimidou, M.Z. Solid phase extraction in the analysis of squalene and tocopherols in olive oil. Food Chem. 2007, 105, 675–680. [Google Scholar] [CrossRef]
- Hamze, L.; Miserere, A.; Molina, M.S.; Maestri, D.; Searles, P.S.; Rousseaux, M.C. Influence of environmental growth temperature on tocopherol and sterol oil concentrations in olive fruit. J. Sci. Food Agric. 2022, 102, 2741–2749. [Google Scholar] [CrossRef] [PubMed]
- Baldioli, M.; Servili, M.; Perreti, G.; Montedoro, G.F. Antioxidant activity of tocopherols and phenolic compounds of virgin olive oil. J. Am. Oil Chem. Soc. 1996, 73, 1589–1593. [Google Scholar] [CrossRef]
- Talhaoui, N.; Gomez-Caravaca, A.M.; Leon, L.; De la Rosa, R.; Fernandez-Gutierrez, A.; Segura-Carretero, A. From olive fruits to olive oil: Phenolic compound transfer in six different olive cultivars grown under the same agronomical conditions. Int. J. Mol. Sci. 2016, 17, 337. [Google Scholar] [CrossRef] [PubMed]
- Putnik, P.; Lorenzo, J.M.; Barba, F.J.; Roohinejad, S.; Rezek, J.A.; Granato, D.; Montesano, D.; Bursac, K.D. Novel food processing and extraction technologies of high-added value compounds from plant materials. Foods 2018, 7, 106. [Google Scholar] [CrossRef] [PubMed]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Baccouri, O.; Guerfel, M.; Baccouri, B.; Cerretani, L.; Bendini, A.; Lercker, G.; Zarrouk, M.; Ben Miled, D.D. Chemical composition and oxidative stability of Tunisian monovarietal virgin olive oils with regard to fruit ripening. Food Chem. 2008, 109, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Serrano-García, I.; Olmo-García, L.; Polo-Megías, D.; Alicia Serrano, A.; León, L.; Raúl de la Rosa, R.; Gómez-Caravaca, A.M.; Carrasco-Pancorbo, A. Fruit phenolic and triterpenic composition of progenies of Olea europaea subsp. cuspidata, an interesting phytochemical source to be included in olive breeding programs. Plants 2022, 11, 1791–1812. [Google Scholar]
- Kabbash, E.M.; Abdel-Shakour, Z.T.; El-Ahmady, S.H.; Wink, M.; Ayoub, I.M. Comparative metabolic profiling of olive leaf extracts from twelve different cultivars collected in both fruiting and flowering seasons. Sci. Rep. 2023, 13, 612. [Google Scholar] [CrossRef]
- Lama-Muñoz, A.; Contreras, M.M.; Espínola, F.; Moya, M.; Romero, I.; Castro, E. Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chem. 2020, 320, 126626. [Google Scholar] [CrossRef]
- Martínez-Navarro, M.E.; Kaparakou, E.H.; Kanakis, C.D.; Cebrián-Tarancón, C.; Alonso, G.L.; Salinas, M.R.; Petros, A.; Tarantilis, P.A. Quantitative determination of the main phenolic compounds, antioxidant activity, and toxicity of aqueous extracts of olive leaves of Greek and Spanish genotypes. Horticulturae 2023, 9, 55. [Google Scholar] [CrossRef]
- Jerman, T.; Trebše, P.; Vodopivec, B.M. Ultrasound-assisted solid liquid extraction (USLE) of olive fruit (Olea europaea) phenolic compounds. Food Chem. 2010, 123, 175–182. [Google Scholar] [CrossRef]
- Ullah, S.; Anwar, F.; Rehman, M.F.; Qadir, R.; Akram, M.S. Response surface methodology-based optimized ultrasonic-assisted extraction and characterization of selected high-value components from gemlik olive fruit. Chem. Biodivers. 2023, 20, e202300107. [Google Scholar] [CrossRef] [PubMed]
- Macedo, G.A.; Santana, Á.L.; Crawford, L.M.; Wang, S.C.; Dias, F.F.G.; de Moura Bell, J.M.L.N. Integrated Microwave- and enzyme-assisted extraction of phenolic compounds from olive pomace. LWT-Food Sci. Technol. 2021, 138, 110621. [Google Scholar] [CrossRef]
- da Rosa, G.S.; Martiny, T.R.; Dotto, G.L.; Vanga, S.K.; Parrine, D.; Gariepy, Y.; Lefsrud, M.; Raghavan, V. Eco-friendly extraction for the recovery of bioactive compounds from Brazilian olive leaves. Sustain. Mater Technol. 2021, 28, e00276. [Google Scholar] [CrossRef]
- Silva, A.R.; Manuel Ayuso, M.; Oludemi, T.; Gonçalvese, A.; Melgara, B.; Barros, L. Response surface methodology and artificial neural network modeling as predictive tools for phenolic compounds recovery from olive pomace. Sep. Purif. Technol. 2024, 330, 125351. [Google Scholar] [CrossRef]
- da Rosa, G.S.; Vanga, S.K.; Gariepy, Y.; Raghavan, V. Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.). Sep. Purif. Technol. 2024, 330, 125351. [Google Scholar] [CrossRef]
- Culina, P.; Repajic, M.; Ivona Elez Garofulic, I.E.; Dragovic-Uzelac, V.; Pedisic, S. Evaluation of polyphenolic profile and antioxidant activity of sea buckthorn (Elaeagnus rhamnoides (L.) a. nelson) leaf and berry extracts obtained via optimized microwave-assisted and accelerated solvent extraction. Processes 2024, 12, 126. [Google Scholar]
- Bouloumpasi, E.; Skendi, A.; Christaki, S.; Biliaderis, C.G. Optimizing conditions for the recovery of lignans from sesame cake using three green extraction methods: Microwave-, ultrasound- and accelerated-assisted solvent extraction. Ind. Crops Prod. 2024, 207, 117770. [Google Scholar] [CrossRef]
- Cepo, D.V.; Albahari, P.; Koncic, M.Z.; Radic, K. Solvent extraction and chromatographic determination of polyphenols in olive pomace. Food Health Dis. 2017, 6, 7–14. Available online: https://hrcak.srce.hr/en/file/269677 (accessed on 10 May 2024).
- Chaji, S.; Zenasni, W.; Tomao, V.; Fabiano-Tixier, A.-S.; Ajal, E.A.; Hanine, H.; Bajoub, A. Exploring the potential of advanced eco-friendly extraction techniques for a rapid recovery of oleuropein-rich extracts from “Picholine Marocaine” olive tree leaves. Sustain. Chem. Pharm. 2023, 36, 101248. [Google Scholar] [CrossRef]
- Goulas, V.; Charisiadis, P.; Gerothanassis, I.P.; Manganaris, G.A. Classification, biotransformation and antioxidant activity of olive fruit biophenols: A review. Curr. Bioact. Compd. 2012, 8, 232–239. [Google Scholar] [CrossRef]
- Kabach, I.; Bouchmaa, N.; Ben Mrid, R.; Zouaoui, Z.; El Maadoudi, M.; Kounnoun, A.; Asraoui, F.; El Mansouri, F.; Zyad, A.; Cacciola, F.; et al. Olea europaea var. Oleaster a promising nutritional food with in vitro antioxidant antiglycation, antidiabetic and antiproliferative effects. J. Food Meas. Charact. 2023, 17, 882–894. [Google Scholar]
- Saavedra, R.N.; Tapia, F.; Sepúlveda, B.; Aparicio, R. Influence of agroclimatic parameters on phenolic and volatile compounds of chilean virgin olive oils and characterization based on geographical origin, cultivar and ripening stage. J. Sci. Food Agric. 2015, 96, 583–592. [Google Scholar]
- Baccouri, B.; Rajhi, I.; Theresa, S.; Najjar, Y.; Mohamed, S.N.; Willenberg, I. The potential of wild olive leaves (Olea europaea L. subsp. oleaster) addition as a functional additive in olive oil production: The effects on bioactive and nutraceutical compounds using LC–ESI–QTOF/MS. Eur. Food Res. Technol. 2022, 248, 2809–2823. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Huang, L.; Zhang, C.; You, F.; Zhang, Y.-L. Reduced pressure extraction of oleuropein from olive leaves (Olea europaea L.) with ultrasound assistance. Food Bioprod. Process. 2015, 93, 29–38. [Google Scholar] [CrossRef]
- Kosma, I.S.; Kontominas, M.G.; Badeka, A.V. The application of chemometrics to volatile compound analysis for the recognition of specific markers for cultivar differentiation of Greek virgin olive oil samples. Foods 2020, 9, 1672. [Google Scholar] [CrossRef] [PubMed]
- Lamini, G.F.; CIoni, P.L.; MorellI, I. Volatiles from leaves, fruits, and virgin oil from Olea europaea cv. olivastra seggianese from Italy. J. Agric. Food Chem. 2003, 51, 1382–1386. [Google Scholar] [CrossRef] [PubMed]
- Pouliarekou, E.; Badeka, A.; Tasioula-Margari, M.; Kontakos, S.; Longobardi, F.; Kontominasin, M.G. Characterization and classification of Western Greek olive oils according to cultivar and geographical origin based on volatile compounds. J. Chromatogr. A 2011, 1218, 7534–7542. [Google Scholar] [CrossRef]
- Temime, S.B.; Campeol, E.; Cioni, P.L.; Daoud, D.; Zarrouk, M. Volatile compounds from Chetoui olive oil and variations induced by growing area. Food Chem. 2006, 99, 315–325. [Google Scholar] [CrossRef]
- Sansone-Land, A.; Takeoka, G.R.; Shoemaker, C.F. Volatile constituents of commercial imported and domestic black-ripe table olives (Olea europaea). Food Chem. 2014, 149, 285–295. [Google Scholar] [CrossRef]
- Angerosa, F.; Mostallino, R.; Basti, C.; Vito, R. Virgin olive oil odour notes: Their relationships with volatile compounds from the lipoxygenase pathway and secoiridoid compounds. Food Chem. 2000, 68, 283–287. [Google Scholar] [CrossRef]
Composition | Units | Values | IOC 2019 * |
---|---|---|---|
Moisture | g/100 g fresh WOF | 62.08 ± 1.10 | |
Crude protein | g/100 g WOF dw | 5.22 ± 0.15 | |
Oil | g/100 g WOF dw | 21.44 ± 0.25 | |
Ash | g/100 g WOF dw | 2.61 ± 0.03 | |
Carbohydrates | g/100 g WOF dw | 66.48 ± 0.35 | |
Fatty acids | g/100 g oil | ||
Myristic (C14:0) | 0.07 ± 0.01 | ≤0.05 | |
Palmitic (C16:0) | 12.79 ± 0.41 | 7.5–20.0 | |
Palmitoleic (C16:1) | 1.00 ± 0.04 | 0.3–3.5 | |
Heptadecanoic (C17:0) | 0.08 ± 0.01 | ≤0.3 | |
cis-10 Heptadecenoic(C17:1) | 0.24 ± 0.01 | ≤0.3 | |
Stearic (C18:0) | 2.56 ± 0.11 | 0.5–5 | |
Oleic (C18:1) | 71.55 ± 0.22 | 55.0–83.0 | |
Linoleic (C18:2) | 8.26 ± 0.08 | 2.5–20.10 | |
Linolenic acid (C18:3) | 1.38 ± 0.06 | ≤1.0 | |
Arachidic (C20:0) | 0.42 ± 0.02 | ≤0.6 | |
cis-11-Eicosenoic (C20:1) | 0.26 ± 0.02 | ≤0.4 | |
cis-11,14-Eicosadienoic (C20:2) | 0.59 ± 0.01 | - | |
Heneicosanoic (C21:0) | 0.10 ± 0.01 | - | |
Eicosapentaenoic (C20:5) | 0.08 ± 0.01 | - | |
Behenic (C22:0) | 0.20 ± 0.01 | ≤0.2 | |
Tricosanoic (C23:0) | 0.07 ± 0.01 | - | |
Lignoceric (C24:0) | 0.33 ± 0.04 | ≤0.2 | |
Saturated fatty acids | 16.76 ± 0.08 | ||
Monounsaturated fatty acids | 72.80 ± 0.10 | ||
Polyunsaturated fatty acids | 10.81 ± 0.09 |
Chemical Composition | Value (mg/kg dw of Olive Fruit) | |
---|---|---|
Chlorophylls | Chlorophyll a | 86.61 ± 0.99 |
Chlorophyll b | 61.80 ± 2.34 | |
Total Chlorophylls | 148.41 ± 3.33 | |
Carotenoids | Total carotenoids | 85.90 ± 1.22 |
Tocopherols | δ-tocopherol | 0.99 ± 0.01 |
(β+γ)-tocopherol | 1.68 ± 0.12 | |
α-tocopherol | 104.39 ± 1.26 | |
Total tocopherols | 107.05 ± 1.38 |
Peak | Rt (min) | UV (nm) | [M-H]− | Compound | Family | Reference |
---|---|---|---|---|---|---|
1 | 2.96 | 280 | 191 | quinic acid | organic acid | standard solution |
2 | 3.68 | 280 | 191 | citric acid | organic acid | standard solution |
3 | 3.86 | 278 | 315 (153) | hydroxytyrosol glucoside | simple phenols | [17,60,64] |
4 | 4.81 | 281 | 153 | hydroxytyrosol | simple phenols | standard solution |
5 | 5.00 | 282 | 389 | oleoside/secologanoside (A) | secoiridoid | [17,60,61] |
6 | 6.03 | 278 | 137 | tyrosol | simple phenols | standard solution |
7 | 7.02 | 240, 280 | 403 | elenolic acid glucoside | secoiridoid | [61,62] |
8 | 7.52 | 283, 321 | 377 | oleuropein aglycone (A) | secoiridoid | [30,60,61] |
9 | 9.02 | 290, 353 | 609 | rutin | flavonoid | standard solution |
10 | 9.71 | 290, 336 | 623 | verbascoside | secoiridoid | standard solution |
11 | 9.92 | 250, 345 | 447 | luteolin-7-glucoside | flavonoid | standard solution |
12 | 10.72 | 237, 280 | 509 | dimethyl ligstroside | secoiridoid | [60] |
13 | 11.41 | 278 | 389 | oleoside/secologanoside (B) | secoiridoid | [60,61] |
14 | 12.68 | 281 | 539 | oleuropein | secoiridoid | standard solution |
15 | 14.00 | 282 | 583 (537) | lucidumoside C | secoiridoid | [61] |
16 | 14.50 | 238, 278 | 523 (377) | ligstroside | secoiridoid | [17,60] |
17 | 15.21 | 253, 366 | 285 | luteolin | flavonoid | standard solution |
18 | 15.81 | 283, 321 | 377 (307) | oleuropein aglycone (B) | secoiridoid | [30,60,61] |
Parameters | Phenolic Components | Antioxidant Activity (mg TE/g dw) | |||||
---|---|---|---|---|---|---|---|
Time (min) | Temp. (°C) | TPC (mg GAE/g dw) | TFC (mg CATE/g dw) | Oleuropein (mg/g dw) | ABTS | DPPH | FRAP |
Ultrasound-assisted extraction (UAE) | |||||||
10 | 30 | 60.23 ± 0.64 c | 116.14 ± 5.46 a | 65.43 ± 0.81 c | 96.74 ± 1.14 c | 106.22 ± 1.57 b | 49.89 ± 0.40 b |
20 | 30 | 63.98 ± 1.12 ab | 116.82 ± 3.86 a | 67.27 ± 1.03 bc | 109.66 ± 2.28 ab | 109.70 ± 2.95 ab | 60.81 ± 0.56 a |
30 | 30 | 63.07 ± 0.16 b | 122.50 ± 2.25 a | 67.31 ± 0.98 bc | 110.88 ± 2.86 ab | 111.92 ± 1.38 ab | 60.92 ± 0.24 a |
40 | 30 | 63.64 ± 0.00 ab | 120.45 ± 2.57 a | 69.27 ± 1.03 b | 110.88 ± 2.86 ab | 113.73 ± 2.75 a | 62.29 ± 0.08 a |
20 | 45 | 64.89 ± 0.16 a | 116.59 ± 3.54 a | 72.00 ± 1.41 a | 118.69 ± 1.88 a | 111.37 ± 5.31 ab | 62.17 ± 2.49 a |
20 | 60 | 63.52 ± 0.16 ab | 116.14 ± 0.32 a | 69.47 ± 0.75 b | 104.01 ± 1.14 bc | 109.84 ± 0.79 ab | 62.86 ± 0.72 a |
Microwave-assisted extraction (MAE) | |||||||
30 | 40 | 58.00 ± 0.56 b | 123.00 ± 0.36 b | 46.05 ± 1.36 b | 95.03 ± 2.36 b | 102.56 ± 0.65 b | 53.60 ± 0.45 b |
30 | 60 | 59.91 ± 0.13 a | 128.00 ± 1.54 a | 48.90 ± 1.56 a | 99.36 ± 0.46 b | 100.31 ± 9.47 a | 55.84 ± 0.58 a |
30 | 90 | 61.73 ± 0.90 a | 131.82 ± 0.26 a | 52.68 ± 1.87 a | 112.93 ± 3.20 a | 107.17 ± 9.87 a | 55.52 ± 0.39 a |
Accelerated-solvent extraction (ASE) | |||||||
30 | 60 | 56.82 ± 0.96 a | 114.55 ± 1.93 a | 44.49 ± 2.11 a | 99.77 ± 0.29 a | 98.80 ± 5.38 ab | 55.23 ± 0.56 a |
30 | 90 | 59.18 ± 1.54 a | 111.00 ± 0.39 a | 43.68 ± 1.87 a | 100.10 ± 2.74 a | 103.72 ± 3.85 ab | 53.79 ± 0.77 a |
30 | 120 | 43.27 ± 3.15 b | 81.77 ± 1.35 b | 25.25 ± 1.06 b | 71.56 ± 1.60 b | 89.59 ± 1.58 b | 35.60 ± 0.79 b |
Phenolic Compound | UAE | MAE | ASE |
---|---|---|---|
secoiridoids | |||
oleoside/secologanoside (A) | 3.23 ± 0.06 | 3.23 ± 0.09 | 3.24 ± 0.12 |
oleoside/secologanoside (B) | 4.94 ± 0.20 | 6.01 ± 0.13 | 5.03 ± 0.10 |
oleuropein aglycone (A) | 0.40 ± 0.01 | 0.64 ± 0.02 | 0.71 ± 0.01 |
oleuropein aglycone (B) | 4.31 ± 0.22 | 4.29 ± 0.20 | 3.89 ± 0.11 |
elenolic acid glucoside | 1.12 ± 0.07 | 1.08 ± 0.05 | 1.08 ± 0.04 |
verbascoside | 1.27 ± 0.02 | 1.09 ± 0.03 | 0.77 ± 0.03 |
oleuropein | 72.03 ± 0.71 | 52.68 ± 0.93 | 44.49 ± 1.05 |
dimethyl ligstroside | 1.63 ± 0.07 | 1.36 ± 0.12 | 0.62 ± 0.01 |
ligstroside | 1.14 ± 0.03 | 0.56 ± 0.03 | 0.53 ± 0.01 |
lucidumoside C | 0.39 ± 0.01 | 0.40 ± 0.02 | 0.24 ± 0.01 |
total secoiridoids | 89.83 ± 0.51 a | 71.34 ± 0.53 b | 61.89 ± 0.93 c |
flavonoids | |||
rutin | 3.75 ± 0.07 | 4.69 ± 0.08 | 3.29 ± 0.07 |
luteolin-7-glucoside | 13.40 ± 0.09 | 18.35 ± 0.25 | 14.78 ± 0.15 |
luteolin | 0.11 ± 0.00 | 0.05 ± 0.00 | 0.07 ± 0.00 |
total flavonoids | 17.25 ± 0.16 b | 23.08 ± 0.17 a | 18.15 ± 0.22 b |
simple phenols | |||
hydroxytyrosol glucoside | 1.92 ± 0.06 | 2.34 ± 0.08 | 2.68 ± 0.05 |
organic acids | |||
quinic acid | 1.27 ± 0.03 | 0.90 ± 0.02 | 1.27 ± 0,02 |
citric acid | 0.08 ± 0.01 | 0.11 ± 0.01 | 0.15 ± 0.02 |
total organic acids | 1.35 ± 0.02 | 1.01 ± 0.01 | 1.42 ± 0.05 |
No. | Volatile Compound | RI (exp) 1 | RI (lit) 2 | % Area 3 | Odor Description 4 |
---|---|---|---|---|---|
Aldehydes | |||||
1 | 2-Methyl-butanal | 646 | 664 | 0.07 ± 0.01 | Musty, coffee, nutty |
2 | Hexanal | 803 | 801 | 3.80 ± 0.25 | Green, apple |
3 | (E)-2-Hexenal | 861 | 853 | 4.78 ± 0.02 | Apple-like, green, leaf |
4 | Heptanal | 904 | 902 | 0.21 ± 0.02 | Fresh, fatty, green, herb, wine |
5 | (E,E)-2,4-heptadienal | 1001 | 998 | 0.24 ± 0.01 | Fatty, nut |
6 | Octanal | 1005 | 1005 | 0.27 ± 0.01 | Fatty, lemon |
7 | Benzene acetaldehyde | 1053 | 1050 | 0.45 ± 0.04 | Pungent, honey, fruity, |
8 | Nonanal | 1106 | 1102 | 1.00 ± 0.07 | Rose, fresh, orris, orange, fatty |
9 | Decanal | 1208 | 1204 | 0.17 ± 0.01 | Soap, orange peel, tallow |
Total Aldehydes | 10.95 ± 0.14 | ||||
Ketones | |||||
10 | Acetoin | 695 | 709 | 3.31 ± 0.18 | Creamy, fatty |
11 | 6-Methyl-5-Heptene-2-one | 989 | 986 | 1.79 ± 0.02 | Citrus-like, fruity |
Total Ketones | 5.09 ± 0.20 | ||||
Alcohols | |||||
12 | 1-Methoxy-2-propanol | 649 | 672 | 0.24 ± 0.03 | - |
13 | 3-Methyl-1-butanol | 721 | 727 | 0.19 ± 0.01 | Fermented |
14 | 2,3-Butanediol | 785 | 785 | 2.42 ± 0.05 | Creamy |
15 | 2,3-Butanediol isomer | 797 | 806 | 0.67 ± 0.01 | Creamy |
16 | 1-Hexanol | 875 | 867 | 0.62 ± 0.01 | Herbal, pungent, alcoholic |
17 | 1-Hexanol 2-ethyl- | 1032 | 1029 | 0.25 ± 0.01 | Herbal, pungent, alcoholic |
18 | Benzyl alcohol | 1043 | 1034 | 0.49 ± 0.02 | Floral, sweet, phenolic |
19 | Phenethyl alcohol | 1119 | 1110 | 0.47 ± 0.06 | Floral, sweet, bready |
Total Alcohols | 5.32 ± 0.01 | ||||
Terpenoids | |||||
20 | α-Thujene | 926 | 931 | 0.33 ± 0.01 | Woody, green, herbal |
21 | α-Pinene | 933 | 939 | 0.80 ± 0.01 | Fresh, herbal, pine |
22 | Camphene | 951 | 953 | 0.08 ± 0.00 | Camphor, citrus, green, spicy |
23 | m-Cymene | 964 | 961 | 0.14 ± 0.01 | - |
24 | Sabinene | 974 | 976 | 0.22 ± 0.01 | Pepper, wood |
25 | α-Phellandrene | 1005 | 1005 | 5.04 ± 0.07 | Citrus, herbal, terpenic, green |
26 | α-Terpinene | 1018 | 1018 | 0.09 ± 0.01 | Woody, terpenic, citrus |
27 | p-Cymene | 1027 | 1025 | 1.50 ± 0.02 | Solvent, citrus |
28 | Limonene | 1029 | 1031 | 1.58 ± 0.01 | Citrus, lemon, orange |
29 | 1,8-Cineole | 1035 | 1033 | 1.23 ± 0.01 | Herbal, medicinal |
30 | cis-β-Ocimene | 1038 | 1040 | 0.46 ± 0.04 | Floral, herbal, sweet |
31 | β-Ocimene | 1050 | 1050 | 13.63 ± 0.13 | Floral, herbal, sweet |
32 | γ-Terpinene | 1060 | 1062 | 0.31 ± 0.01 | Terpy, citrus, lime-Iike, oily |
33 | Linalool | 1101 | 1098 | 0.47 ± 0.04 | Floral, citrus, terpenic |
34 | allo-Ocimene | 1130 | 1129 | 0.10 ± 0.00 | Terpenic, sweet, fresh floral |
35 | Neo-Allo-Ocimene | 1142 | 1138 | 0.30 ± 0.01 | - |
36 | Carvacrol | 1301 | 1298 | 0.15 ± 0.04 | Spicy, woody, herbal |
37 | α-Copaene | 1376 | 1376 | 9.64 ± 0.08 | Woody, spicy |
38 | β-Caryophyllene | 1422 | 1418 | 0.81 ± 0.01 | Spicy, woody, terpenic |
39 | α-Muurolene | 1498 | 1500 | 1.90 ± 0.03 | - |
40 | α-Farnesene | 1502 | 1508 | 8.03 ± 0.32 | Woody, green, floral, herbal |
Total Terpenoids | 46.84 ± 0.25 | ||||
Hydrocarbons | |||||
41 | Toluene | 755 | 756 | 8.33 ± 0.27 | Sweet |
42 | Octane | 793 | 801 | 0.12 ± 0.01 | Gasoline-like |
43 | m-Xylene | 873 | 867 | 0.30 ± 0.02 | Plastic |
44 | p-Xylene | 873 | 875 | 0.31 ± 0.00 | - |
45 | o-Xylene | 893 | 892 | 0.52 ± 0.01 | Geranium |
46 | n-Nonane | 896 | 900 | 0.26 ± 0.00 | Gasoline-like |
47 | Benzene, 1-ethyl-4-methyl- | 968 | 969 | 0.11 ± 0.01 | - |
48 | 1,3,5-Trimethy-lbenzene | 994 | 996 | 0.31± 0.02 | - |
49 | Decane | 997 | 1000 | 0.40 ± 0.01 | - |
50 | Undecane | 1097 | 1100 | 0.39 ± 0.01 | - |
51 | 4,8-dimethyl-(E)-Nona-1,3,7-triene | 1113 | 1114 | 8.09 ± 0.14 | - |
52 | Cosmene | 1130 | 1130 | 0.33 ± 0.01 | - |
53 | Dodecane | 1196 | 1199 | 0.23 ± 0.00 | - |
54 | Cyclosativene | 1370 | 1368 | 0.45 ± 0.00 | - |
55 | Heptadecane | 1396 | 1400 | 0.09 ± 0.01 | - |
Total Hydrocarbons | 20.21 ± 0.44 | ||||
Esters | |||||
56 | Methyl hexanoate | 930 | 932 | 0.12 ± 0.01 | Fruity, pineapple, ether |
57 | Isopropyl myristate | 1823 | 1825 | 0.26 ± 0.01 | - |
Total Esters | 0.38 ± 0.03 | ||||
Miscellaneous Compounds | |||||
58 | 2-Butoxyethanol | 905 | 909 | 0.72 ± 0.08 | - |
59 | epi-ligulyl oxide | 1542 | 1544 | 0.30 ± 0.07 | - |
60 | n-Octyl ether | 1596 | 1657 | 0.14 ± 0.00 | - |
Total Miscellaneous Compounds | 1.16 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irakli, M.; Samara, T.; Bouloumpasi, E.; Kadoglidou, K.; Chatzopoulou, P.; Spanos, I. Valuable Nutrients, Aroma Profile, and Functional Bioactives Extracted by Eco-Friendly Extraction Techniques from Wild Olive Fruits (Olea europaea L. var. sylvestris). Processes 2024, 12, 1181. https://doi.org/10.3390/pr12061181
Irakli M, Samara T, Bouloumpasi E, Kadoglidou K, Chatzopoulou P, Spanos I. Valuable Nutrients, Aroma Profile, and Functional Bioactives Extracted by Eco-Friendly Extraction Techniques from Wild Olive Fruits (Olea europaea L. var. sylvestris). Processes. 2024; 12(6):1181. https://doi.org/10.3390/pr12061181
Chicago/Turabian StyleIrakli, Maria, Theano Samara, Elisavet Bouloumpasi, Kalliopi Kadoglidou, Paschalina Chatzopoulou, and Ioannis Spanos. 2024. "Valuable Nutrients, Aroma Profile, and Functional Bioactives Extracted by Eco-Friendly Extraction Techniques from Wild Olive Fruits (Olea europaea L. var. sylvestris)" Processes 12, no. 6: 1181. https://doi.org/10.3390/pr12061181
APA StyleIrakli, M., Samara, T., Bouloumpasi, E., Kadoglidou, K., Chatzopoulou, P., & Spanos, I. (2024). Valuable Nutrients, Aroma Profile, and Functional Bioactives Extracted by Eco-Friendly Extraction Techniques from Wild Olive Fruits (Olea europaea L. var. sylvestris). Processes, 12(6), 1181. https://doi.org/10.3390/pr12061181