Nutraceutical Value of Eleven Aromatic Medicinal Plants and Azorean Camellia sinensis: Comparison of Antioxidant Properties and Phenolic and Flavonoid Contents
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Aromatic Medicinal Plants and Tea Samples
2.3. Yield Determination of Aromatic Medicinal Plants and Camellia sinensis Green Tea Extracts
2.4. Determination of the In Vitro Antioxidant Activity
2.4.1. Determination of DPPH Free Radical Scavenging Activity (FRSA)
2.4.2. Determination of Ferric Reducing Antioxidant Power (FRAP)
2.4.3. Determination of Ferrous Ion-Chelating (FIC) Activity
2.5. Determination of the Total Phenolic and Total Flavonoid Contents
2.6. Statistical Analysis
3. Results and Discussion
3.1. Yield Determinations of Aromatic Medicinal Plants and C. sinensis Green Tea Extracts
3.2. Antioxidant Activity Determination
3.3. Total Phenolic and Total Flavonoid Contents (TPC and TFC)
3.4. Pearson Correlation between Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal plants: Past history and future perspective. J. Herbmed Pharmacol. 2018, 7, 1–7. [Google Scholar] [CrossRef]
- Samarth, R.M.; Samarth, M.; Matsumoto, Y. Medicinally important aromatic plants with radioprotective activity. Future Sci. OA 2017, 3, FSO247. [Google Scholar] [CrossRef]
- Kumar, A.; Nirmal, P.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; Sneha, K.; et al. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules 2023, 28, 887. [Google Scholar] [CrossRef]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural polyphenols: An overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef]
- Lu, T.M.; Lee, C.C.; Mau, J.L.; Lin, S.D. Quality and antioxidant property of green tea sponge cake. Food Chem. 2010, 119, 1090–1095. [Google Scholar] [CrossRef]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef]
- Ahn, K. The worldwide trend of using botanical drugs and strategies for developing global drug. BMB Rep. 2017, 50, 111–116. [Google Scholar] [CrossRef]
- Rashid, H.M.; Mahmod, A.I.; Afifi, F.U.; Talib, W.H. Antioxidant and Antiproliferation Activities of Lemon Verbena (Aloysia citrodora): An In Vitro and In Vivo Study. Plants 2022, 11, 785. [Google Scholar] [CrossRef]
- Chukwuocha, U.M.; Fernández-Rivera, O.; Legorreta-Herrera, M. Exploring the antimalarial potential of whole Cymbopogon citratus plant therapy. J. Ethnopharmacol. 2016, 193, 517–523. [Google Scholar] [CrossRef]
- Avoseh, O.; Oyedeji, O.; Rungqu, P.; Nkeh-Chungag, B.; Oyedeji, A. Cymbopogon species; ethnopharmacology, phytochemistry and the pharmacological importance. Molecules 2015, 20, 7438–7453. [Google Scholar] [CrossRef]
- Miraj, S.; Kiani, S. Study of pharmacological effect of Mentha pulegium: A review. Der Pharm. Lett. 2016, 8, 242–245. [Google Scholar]
- Soussi, M.; Yaagoubi, E.W.; Nekhla, H.; Hanafi, L.E.; Squalli, W.; Benjelloun, M.; El Ghadraoui, L. A Multidimensional Review of Pimpinella anisum and Recommendation for Future Research to Face Adverse Climatic Conditions. Chem. Afr. 2023, 6, 1727–1746. [Google Scholar] [CrossRef]
- Ranjbar, T.; Nekooeian, A.A.; Tanideh, N.; Koohi-Hosseinabadi, O.; Masoumi, S.J.; Amanat, S.; Azarpira, N.; Monabati, A. A comparison of the effects of Stevia extract and metformin on metabolic syndrome indices in rats fed with a high-fat, high-sucrose diet. J. Food Biochem. 2020, 44, e13242. [Google Scholar] [CrossRef] [PubMed]
- Husseini, Y.; Sahraei, H.; Meftahi, G.H.; Dargahian, M.; Mohammadi, A.; Hatef, B.; Zardooz, H.; Ranjbaran, M.; Hosseini, S.B.; Alibeig, H.; et al. Analgesic and anti-inflammatory activities of hydro-alcoholic extract of Lavandula officinalis in mice: Possible involvement of the cyclooxygenase type 1 and 2 enzymes. Rev. Bras. Farmacogn. 2016, 26, 102–108. [Google Scholar] [CrossRef]
- Rita, I.; Pereira, C.; Barros, L.; Ferreira, I.C.F.R. Exploring reserve lots of Cymbopogon citratus, Aloysia citrodora and Thymus × citriodorus as improved sources of phenolic compounds. Food Chem. 2018, 257, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Busi, M.; Arredondo, F.; González, D.; Echeverry, C.; Vega-Teijido, M.A.; Carvalho, D.; Rodríguez-Haralambides, A.; Rivera, F.; Dajas, F.; Abin-Carriquiry, J.A. Purification, structural elucidation, antioxidant capacity and neuroprotective potential of the main polyphenolic compounds contained in Achyrocline satureioides (Lam) D.C. (Compositae). Bioorg. Med. Chem. 2019, 27, 2579–2591. [Google Scholar] [CrossRef]
- Veenstra, J.P.; Johnson, J.J. Rosemary (Salvia rosmarinus): Health-promoting benefits and food preservative properties. Int. J. Nutr. 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Gazwi, H.S.S.; Yassien, E.E.; Hassan, H.M. Mitigation of lead neurotoxicity by the ethanolic extract of Laurus leaf in rats. Ecotoxicol. Environ. Saf. 2020, 192, 110297. [Google Scholar] [CrossRef]
- Bala, R.; Kaur, R.; Kaur, B.; Kaur, P. Hibiscus rosa-sinensis Linn.: A phytochemical and pharmacological review. Int. J. Health Sci. 2022, 6, 5165–5193. [Google Scholar] [CrossRef]
- Tong, T.; Liu, Y.-J.; Kang, J.; Zhang, C.-M.; Kang, S.-G. Antioxidant Activity and Main Chemical Components of a Novel Fermented Tea. Molecules 2019, 24, 2917. [Google Scholar] [CrossRef]
- Paiva, L.; Lima, E.; Motta, M.; Marcone, M.; Baptista, J. Variability of antioxidant properties, catechins, caffeine, L-theanine and other amino acids in different plant parts of Azorean Camellia sinensis. Curr. Res. Food Sci. 2020, 3, 227–334. [Google Scholar] [CrossRef]
- Oktay, M.; Gülçin, Í.; Küfrevioǧlu, Ö.I. Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. LWT—Food Sci. Technol. 2003, 36, 263–271. [Google Scholar] [CrossRef]
- Wang, T.; Jónsdóttir, R.; Ólafsdóttir, G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 2009, 116, 240–248. [Google Scholar] [CrossRef]
- Wang, S.; Meckling, K.; Marcone, M.F.; Kakuda, Y.; Tsao, R. Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. J. Agric. Food Chem. 2011, 59, 960–968. [Google Scholar] [CrossRef]
- Mahboubi, M.; Kazempour, N.; Nazar, A.R.B. Total Phenolic, Total Flavonoids, Antioxidant and Antimicrobial Activities of Scrophularia Striata Boiss Extracts. Jundishapur J. Nat. Pharm. Prod. 2013, 8, 15–19. [Google Scholar] [CrossRef]
- Yakoubi, R.; Megateli, S.; Sadok, T.H.; Gali, L. Photoprotective, antioxidant, anticholinesterase activities and phenolic contents of different Algerian Mentha pulegium extracts. Biocat. Agric. Biotechnol. 2021, 34, 102038. [Google Scholar] [CrossRef]
- Brindisi, M.; Bouzidi, C.; Frattaruolo, L.; Tundis, R.; Loizzo, M.R.; Dugay, A.; Deguin, B.; Cappello, A.R.; Cappello, M.S. Chemical Profile, Antioxidant, Anti-Inflammatory, and Anti-Cancer Effects of Italian Salvia rosmarinus Spenn. Methanol Leaves Extracts. Antioxidants 2020, 9, 826. [Google Scholar] [CrossRef]
- Sharma, K.R.; Thakur, K. Determination of Phenolic and Flavonoid Content, Antioxidant and α-Amylase Inhibitory Activity of Leaf and Flower Extracts of Clerodendrum infortunatum and Hibiscus rosa sinensis Growing in Bara Nepal. J. Balkumari Coll. 2022, 11, 20–26. [Google Scholar]
- Farzaneh, V.; Gominho, J.; Pereira, H.; Carvalho, I.S. Screening of the Antioxidant and Enzyme Inhibition Potentials of Portuguese Pimpinella anisum L. Seeds by GC-MS. Food Anal. Methods 2018, 11, 2645–2656. [Google Scholar] [CrossRef]
- Salgueiro, A.C.F.; Folmer, V.; Rosa, H.S.; Costa, M.T.; Boligon, A.A.; Paula, F.R.; Roos, D.H.; Puntel, G.O. In vitro and in silico antioxidant and toxicological activities of Achyrocline satureioides. J. Ethnopharmacol. 2016, 194, 6–14. [Google Scholar] [PubMed]
- Dias, M.I.; Barros, L.; Dueñas, M.; Alves, R.C.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Nutritional and antioxidant contributions of Laurus nobilis L. leaves: Would be more suitable a wild or a cultivated sample? Food Chem. 2014, 156, 339–346. [Google Scholar] [CrossRef]
- Mokhtari, R.; Fard, M.K.; Rezaei, M.; Moftakharzadeh, S.A.; Mohseni, A. Antioxidant, Antimicrobial Activities, and Characterization of Phenolic Compounds of Thyme (Thymus vulgaris L.), Sage (Salvia officinalis L.), and Thyme–Sage Mixture Extracts. J. Food Qual. 2023, 2023, 2602454. [Google Scholar] [CrossRef]
- Roriz, C.L.; Barros, L.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Pterospartum tridentatum, Gomphrena globosa and Cymbopogon citratus: A phytochemical study focused on antioxidant compounds. Food Res. Int. 2014, 62, 684–693. [Google Scholar] [CrossRef]
- Arfaoui, L. Dietary Plant Polyphenols: Effects of Food Processing on Their Content and Bioavailability. Molecules 2021, 26, 2959. [Google Scholar] [CrossRef]
- Fernández-Fernández, A.M.; Dumay, E.; Lazennec, F.; Migues, I.; Heinzen, H.; Lema, P.; López-Pedemonte, T.; Medrano-Fernandez, A. Antioxidant, Antidiabetic, and Antiobesity Properties, TC7-Cell Cytotoxicity and Uptake of Achyrocline satureioides (Marcela) Conventional and High Pressure-Assisted Extracts. Foods 2021, 10, 893. [Google Scholar] [CrossRef]
- Irfan, S.; Ranjha, M.; Nadeem, M.; Safdar, M.; Jabbar, S.; Mahmood, S.; Murtaza, M.A.; Ameer, K.; Ibrahim, S.A. Antioxidant Activity and Phenolic Content of Sonication- and Maceration-Assisted Ethanol and Acetone Extracts of Cymbopogon citratus Leaves. Separations 2022, 9, 244. [Google Scholar] [CrossRef]
- Köksal, E.; Bursal, E.; Gülçin, İ.; Korkmaz, M.; Çağlayan, C.; Gören, A.C.; Alwasel, S.H. Antioxidant activity and polyphenol content of Turkish thyme (Thymus vulgaris) monitored by liquid chromatography and tandem mass spectrometry. Int. J. Food Prop. 2017, 20, 514–525. [Google Scholar] [CrossRef]
- Duda, S.C.; Mãrghitaş, L.A.; Dezmirean, D.; Duda, M.; Mãrgãoan, R.; Bobiş, O. Changes in major bioactive compounds with antioxidant activity of Agastache foeniculum, Lavandula angustifolia, Melissa officinalis and Nepeta cataria: Effect of harvest time and plant species. Ind. Crops Prod. 2015, 77, 499–507. [Google Scholar] [CrossRef]
- Mak, Y.W.; Chuah, L.O.; Ahmad, R.; Bhat, R. Antioxidant and antibacterial activities of hibiscus (Hibiscus rosa-sinensis L.) and Cassia (Senna bicapsularis L.) flower extracts. J. King Saud. Univ. Sci. 2013, 25, 275–282. [Google Scholar] [CrossRef]
Species | Local Name | Geographical Distribution | Traditional Applications | References |
---|---|---|---|---|
Aloysia citrodora | Lemon verbena | South America, North Africa, and Southern Europe | Anxiety; insomnia; gastrointestinal, respiratory, and cardiovascular problems; and rheumatism. | [8] |
Cymbopogon citratus | Lemon grass | Asia, Africa, and South and North America | Anti-fungal, anti-bacterial, antiprotozoal, antioxidant, anti-inflammatory, anti-carcinogenic, anti-rheumatic, and cardio-protective activities. | [9,10] |
Mentha pulegium | Pennyroyal | Europe, North Africa, and the Middle East | Colds, influenza, abdominal cramps, tuberculosis and smallpox, and latent menstruation promotion. | [11] |
Pimpinella anisum | Anise | Mediterranean region | Diuretic and carminative, useful for epilepsy and melancholy. Used in cosmetics and perfumes. | [12] |
Stevia rebaudiana | Honey leaf, or Sweet-leaf | South America, particularly Brazil and Paraguay | Anti-diabetic, anti-hypertensive, anti-tumor, anti-cariogenic, anti-inflammatory, and bactericidal effects. | [13] |
Lavandula angustifolia | Lavanda | Southern Europe and the Mediterranean area | Anti-inflammatory, anxiolytic, antidepressant, sedative, and neuroprotective properties. Used in cosmetics and perfumes. | [14] |
Thymus citriodorus | Lemon thyme | Southern Europe, cultivated in the Mediterranean area | Cytoprotective, antioxidant, and anti-bacterial. Used for culinary purposes. | [15] |
Achyrocline satureioides | Marcela | Brazil, Argentina, Uruguay, and Paraguay | Digestive ailments, anti-inflammatory, anti-atherosclerotic, sedative, neuroprotective, and antioxidant. | [16] |
Salvia rosmarinus | Rosemary | Mediterranean region | Antioxidant and anti-inflammatory properties. Used as a spice for cooking. | [17] |
Laurus nobilis | Laurel | Europe | Antioxidant, anti-inflammatory, anti-viral, anti-bacterial, anti-fungal, and immunomodulatory activity. Used in the culinary and food industries as a flavoring agent. | [18] |
Hibiscus rosa-sinensis | Hibiscus | China and tropical regions | Antioxidant, analgesic, anti-cancer, and anti-fungal properties. | [19] |
Aromatic Medicinal Plants | Yield (%) | FRSA (EC50, µg/mL) | FRAP (EC50, µg/mL) | FIC (%) |
---|---|---|---|---|
Aloysia citrodora | 30.90 | 14.14 ± 0.14 b | 11.42 ± 0.18 c | 51.90 ± 0.88 e |
Cymbopogon citratus | 19.87 | 35.30 ± 0.61 d | 39.50 ± 0.05 f | 80.60 ± 1.43 b |
Mentha pulegium | 34.80 | 14.22 ± 0.23 b | 12.07 ± 0.14 c | 53.71 ± 0.42 e |
Pimpinella anisum | 16.53 | 94.48 ± 0.17 e | 75.00 ± 0.14 h | 36.71 ± 2.77 g |
Stevia rebaudiana | 45.56 | 20.40 ± 0.91 c | 15.10 ± 0.14 c d | 42.80 ± 2.51 f |
Lavandula angustifolia | 27.57 | 23.43 ± 0.25 c | 11.11 ± 0.06 c | 58.11 ± 1.59 d |
Thymus citriodorus | 24.49 | 24.10 ± 0.01 c | 12.19 ± 0.13 c | 68.48 ± 0.24 c |
Achyrocline satureioides | 26.49 | 16.27 ± 0.27 b | 7.85 ± 0.07 b | 51.86 ± 1.11 e |
Salvia rosmarinus | 19.44 | 15.48 ± 0.03 b | 8.13 ± 0.17 b | 69.44 ± 0.66 c |
Laurus nobilis | 25.24 | 22.89 ± 0.17 c | 28.93 ± 0.45 e | 77.76 ± 1.15 b |
Hibiscus rosa-sinensis | 60.90 | 92.55 ± 0.35 e | 55.76 ± 0.69 g | 4.65 ± 0.43 h |
Camellia sinensis (green tea) | 39.50 | 3.43 ± 0.06 a | 5.12 ± 0.21 a | 61.10 ± 0.34 d |
Ascorbic acid | - | 2.11 ± 0.04 a | 3.91 ± 0.27 a | - |
EDTA | - | - | - | 98.16 ± 0.15 a |
Aromatic Medicinal Plants | TPC (mg GAE/g DE) | TFC (mg RE/g DE) |
---|---|---|
Aloysia citrodora | 187.15 ± 1.11 b | 204.64 ± 1.47 b |
Cymbopogon citratus | 82.85 ± 2.19 e | 49.74 ± 1.46 g |
Mentha pulegium | 199.15 ± 1.23 b | 92.84 ± 1.11 e |
Pimpinella anisum | 47.37 ± 1.15 f | 28.08 ± 1.03 |
Stevia rebaudiana | 163.66 ± 2.55 c | 74.55 ± 1.42 f |
Lavandula angustifolia | 99.09 ± 0.75 e | 16.45 ± 1.47 i |
Thymus citriodorus | 157.04 ± 2.25 c d | 168.39 ± 1.27 c |
Achyrocline satureioides | 179.81 ± 1.09 b c | 265.75 ± 1.10 a |
Salvia rosmarinus | 186.31 ± 0.92 b | 132.84 ± 1.10 d |
Laurus nobilis | 147.98 ± 0.35 d | 30.89 ± 2.13 h |
Hibiscus rosa-sinensis | 28.98 ± 0.19 g | 20.20 ± 0.64 i |
Camellia sinensis (Green tea) | 294.43 ± 2.5 a | 49.90 ± 1.72 g |
FRSA | FIC Activity | TPC | TFC | |
---|---|---|---|---|
FRSA | 1 | – | – | – |
FIC activity | 0.356 | 1 | – | – |
TPC | 0.937 | 0.428 | 1 | – |
TFC | 0.201 | 0.150 | 0.414 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paiva, L.S.; Motta, M.H.; Baptista, J.A.B. Nutraceutical Value of Eleven Aromatic Medicinal Plants and Azorean Camellia sinensis: Comparison of Antioxidant Properties and Phenolic and Flavonoid Contents. Processes 2024, 12, 1375. https://doi.org/10.3390/pr12071375
Paiva LS, Motta MH, Baptista JAB. Nutraceutical Value of Eleven Aromatic Medicinal Plants and Azorean Camellia sinensis: Comparison of Antioxidant Properties and Phenolic and Flavonoid Contents. Processes. 2024; 12(7):1375. https://doi.org/10.3390/pr12071375
Chicago/Turabian StylePaiva, Lisete Sousa, Madalena Hintze Motta, and José António Bettencourt Baptista. 2024. "Nutraceutical Value of Eleven Aromatic Medicinal Plants and Azorean Camellia sinensis: Comparison of Antioxidant Properties and Phenolic and Flavonoid Contents" Processes 12, no. 7: 1375. https://doi.org/10.3390/pr12071375
APA StylePaiva, L. S., Motta, M. H., & Baptista, J. A. B. (2024). Nutraceutical Value of Eleven Aromatic Medicinal Plants and Azorean Camellia sinensis: Comparison of Antioxidant Properties and Phenolic and Flavonoid Contents. Processes, 12(7), 1375. https://doi.org/10.3390/pr12071375