Evaluation and Simulation of the Adsorption Capacity of Octocrylene Sunscreen on Commercial Carbon and Biochar from Spent Coffee Beans
Abstract
:1. Introduction
2. Material and Methods
2.1. Obtaining Octocrylene
2.2. Efficiency Removal
2.3. Adsorption Kinetics
2.4. Adsorption Isotherms
2.5. Assessment of the Phytotoxic, Cytotoxic, and Genotoxic Potential of Octocrylene in Aqueous Medium before and after Adsorption with Commercial Carbon and Activated Biochar, on Allium cepa L. (onion) Roots
3. Results and Discuss
3.1. Adsorption
3.2. Adsorption Kinetics
3.3. Adsorption Isotherms
3.4. Toxic Potential
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duis, K.; Junker, T.; Coors, A. Review of the Environmental Fate and Effects of Two UV Filter Substances Used in Cosmetic Products. Sci. Total Environ. 2022, 808, 151931. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Downs, C.A.; Li, Y.; Zhang, Z.; Li, Y.; Liu, B.; Gao, H.; Li, Q. Comparison of Toxicological Effects of Oxybenzone, Avobenzone, Octocrylene, and Octinoxate Sunscreen Ingredients on Cucumber Plants (Cucumis sativus L.). Sci. Total Environ. 2020, 714, 136879. [Google Scholar] [CrossRef]
- Pawlowski, S.; Lanzinger, A.C.; Dolich, T.; Füßl, S.; Salinas, E.R.; Zok, S.; Weiss, B.; Hefner, N.; Van Sloun, P.; Hombeck, H.; et al. Evaluation of the Bioaccumulation of Octocrylene after Dietary and Aqueous Exposure. Sci. Total Environ. 2019, 672, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Santo, D.E.; Dusman, E.; da Silva Gonzalez, R.; Romero, A.L.; dos Santos Gonçalves do Nascimento, G.C.; de Souza Moura, M.A.; Bressiani, P.A.; Filipi, Á.C.K.; Gomes, E.M.V.; Pokrywiecki, J.C.; et al. Prospecting Toxicity of Octocrylene in Allium cepa L. and Eisenia fetida Sav. Environ. Sci. Pollut. Res. 2023, 30, 8257–8268. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Gonçalves Nascimento, G.C.; da Cunha Barros, D.G.; Ratuchinski, L.S.; Okon, C.; Bressiani, P.A.; Santo, D.E.; Duarte, C.C.S.; Ferreira, P.M.P.; Junior, O.V.; Pokrywiecki, J.C.; et al. Adverse Effects of Octocrylene on Cultivated and Spontaneous Plants and in Soil Animal. Water. Air. Soil Pollut. 2023, 234, 757. [Google Scholar] [CrossRef]
- Trebše, P.; Polyakova, O.V.; Baranova, M.; Kralj, M.B.; Dolenc, D.; Sarakha, M.; Kutin, A.; Lebedev, A.T. Transformation of Avobenzone in Conditions of Aquatic Chlorination and UV-Irradiation. Water Res. 2016, 101, 95–102. [Google Scholar] [CrossRef]
- Hopkins, Z.R.; Snowberger, S.; Blaney, L. Ozonation of the Oxybenzone, Octinoxate, and Octocrylene UV-Filters: Reaction Kinetics, Absorbance Characteristics, and Transformation Products. J. Hazard. Mater. 2017, 338, 23–32. [Google Scholar] [CrossRef]
- Labille, J.; Slomberg, D.; Catalano, R.; Robert, S.; Apers-Tremelo, M.L.; Boudenne, J.L.; Manasfi, T.; Radakovitch, O. Assessing UV Filter Inputs into Beach Waters during Recreational Activity: A Field Study of Three French Mediterranean Beaches from Consumer Survey to Water Analysis. Sci. Total Environ. 2020, 706, 136010. [Google Scholar] [CrossRef]
- Boyd, A.; Stewart, C.B.; Philibert, D.A.; How, Z.T.; El-Din, M.G.; Tierney, K.B.; Blewett, T.A. A Burning Issue: The Effect of Organic Ultraviolet Filter Exposure on the Behaviour and Physiology of Daphnia magna. Sci. Total Environ. 2021, 750, 141707. [Google Scholar] [CrossRef]
- Giraldo, A.; Montes, R.; Rodil, R.; Quintana, J.B.; Vidal-Liñán, L.; Beiras, R. Ecotoxicological Evaluation of the UV Filters Ethylhexyl Dimethyl P-Aminobenzoic Acid and Octocrylene Using Marine Organisms Isochrysis galbana, Mytilus galloprovincialis and Paracentrotus lividus. Arch. Environ. Contam. Toxicol. 2017, 72, 606–611. [Google Scholar] [CrossRef]
- Stien, D.; Clergeaud, F.; Rodrigues, A.M.S.; Lebaron, K.; Pillot, R.; Romans, P.; Fagervold, S.; Lebaron, P. Metabolomics Reveal That Octocrylene Accumulates in Pocillopora damicornis Tissues as Fatty Acid Conjugates and Triggers Coral Cell Mitochondrial Dysfunction. Anal. Chem. 2019, 91, 990–995. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Liang, M.; Chen, R.; Hong, X.; Zha, J. Reproductive Toxicity and Estrogen Activity in Japanese Medaka (Oryzias latipes) Exposed to Environmentally Relevant Concentrations of Octocrylene. Environ. Pollut. 2020, 261, 114104. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Yeung, K.; Chan, K.M. Toxic Effects of Octocrylene on Zebrafish Larvae and Liver Cell Line (ZFL). Aquat. Toxicol. 2021, 236, 105843. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.T.; Dang, B.T.; Thuy, L.T.T.; Hoang, H.G.; Bui, X.T.; Le, V.G.; Lin, C.; Nguyen, M.K.; Nguyen, K.Q.; Nguyen, P.T.; et al. Advanced Treatment Technologies for the Removal of Organic Chemical Sunscreens from Wastewater: A Review. Curr. Pollut. Rep. 2022, 8, 288–302. [Google Scholar] [CrossRef]
- Rocha, B.C.d.S.; de Moraes, L.E.Z.; Santo, D.E.; Peron, A.P.; de Souza, D.C.; Bona, E.; Valarini, O. Removal of Bentazone Using Activated Carbon from Spent Coffee Grounds. J. Chem. Technol. Biotechnol. 2024, 99, 1342–1355. [Google Scholar] [CrossRef]
- Sultana, M.; Rownok, M.H.; Sabrin, M.; Rahaman, M.H.; Alam, S.M.N. A Review on Experimental Chemically Modified Activated Carbon to Enhance Dye and Heavy Metals Adsorption. Clean. Eng. Technol. 2022, 6, 100382. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Z.; Sun, R.; Lin, H.; Gong, L.; Fang, M.; Hu, W.H. HPV Infection and Anemia Status Stratify the Survival of Early T2 Laryngeal Squamous Cell Carcinoma. J. Voice 2015, 29, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Boehm, H.P. Surface Oxides on Carbon and Their Analysis: A Critical Assessment. Carbon 2002, 40, 145–149. [Google Scholar] [CrossRef]
- Boehm, H.P. Some Aspects of the Surface Chemistry of Carbon Blacks and Other Carbons. Carbon 1994, 32, 759–769. [Google Scholar] [CrossRef]
- Bagiu, I.C.; Sarac, I.; Radu, F.; Bostan, C.; Butnariu, M.; Bagiu, R.V. Ecotechnologies for Persistent Pollutants. In Bioremediation and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2020; Volume 3, pp. 105–138. [Google Scholar] [CrossRef]
- Ijanu, E.M.; Kamaruddin, M.A.; Norashiddin, F.A. Coffee Processing Wastewater Treatment: A Critical Review on Current Treatment Technologies with a Proposed Alternative. Appl. Water Sci. 2020, 10, 11. [Google Scholar] [CrossRef]
- Chen, S.S.; Yu, I.K.M.; Cho, D.W.; Song, H.; Tsang, D.C.W.; Tessonnier, J.P.; Ok, Y.S.; Poon, C.S. Selective Glucose Isomerization to Fructose via a Nitrogen-Doped Solid Base Catalyst Derived from Spent Coffee Grounds. ACS Sustain. Chem. Eng. 2018, 6, 16113–16120. [Google Scholar] [CrossRef]
- Jagadeesh, N.; Sundaram, B. Adsorption of Pollutants from Wastewater by Biochar: A Review. J. Hazard. Mater. Adv. 2023, 9, 100226. [Google Scholar] [CrossRef]
- Cheng, N.; Wang, B.; Wu, P.; Lee, X.; Xing, Y.; Chen, M.; Gao, B. Adsorption of Emerging Contaminants from Water and Wastewater by Modified Biochar: A Review. Environ. Pollut. 2021, 273, 116448. [Google Scholar] [CrossRef]
- Siregar, C.A.; Siregar, A.M.; Lubis, R.W.; Marpaung, D. Rancang Bangun Mesin Giling Kopi Untuk Menunjang Dan Membuka Unit Usaha Baru Mitra Deli Coffe. ABDI SABHA (J. Pengabdi. Kpd. Masy.) 2022, 174–180. [Google Scholar]
- Javier Sánchez, A. Characterization of Activated Carbon Produced from Coffee Residues by Chemical and Physical Activation; KTH, School of Chemical Science and Engineering: Stockholm, Sweden, 2011; Volume 66. [Google Scholar]
- Jagdale, P.; Ziegler, D.; Rovere, M.; Tulliani, J.M.; Tagliaferro, A. Waste Coffee Ground Biochar: A Material for Humidity Sensors. Sensors 2019, 19, 801. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.S.; Mello, F.V.C.; Thode Filho, S.; Carpes, R.M.; Honório, J.G.; Marques, M.R.C.; Felzenszwalb, I.; Ferraz, E.R.A. Impacts of Discarded Coffee Waste on Human and Environmental Health. Ecotoxicol. Environ. Saf. 2017, 141, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, F.M.; Yuan, Q. Organic Matter Removal from Landfill Leachate by Adsorption Using Spent Coffee Grounds Activated Carbon. Sustain. Mater. Technol. 2020, 23, e00141. [Google Scholar] [CrossRef]
- Haro, N.K.; Dávila, I.V.J.; Nunes, K.G.P.; de Franco, M.A.E.; Marcilio, N.R.; Féris, L.A. Kinetic, Equilibrium and Thermodynamic Studies of the Adsorption of Paracetamol in Activated Carbon in Batch Model and Fixed-Bed Column. Appl. Water Sci. 2021, 11, 38. [Google Scholar] [CrossRef]
- Debien, I.C.N.; Vardanega, R.; Santos, D.T.; Meireles, M.A.A. Pressurized Liquid Extraction as a Promising and Economically Feasible Technique for Obtaining Beta-Ecdysone-Rich Extracts from Brazilian Ginseng (Pfaffia glomerata) Roots. Sep. Sci. Technol. 2015, 50, 1647–1657. [Google Scholar] [CrossRef]
- Dean, J.R. Pressurized Liquid Extraction. In Extraction Techniques for Environmental Analysis; Wiley: Hoboken, NJ, USA, 2022; pp. 171–204. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 8th ed.; Wiley: Hoboken, NJ, USA, 2012; Volume 2, ISBN 9781118146927. [Google Scholar]
- Valarini Junior, O.; Reitz Cardoso, F.A.; Machado Giufrida, W.; de Souza, M.F.; Cardozo-Filho, L. Production and Computational Fluid Dynamics-Based Modeling of PMMA Nanoparticles Impregnated with Ivermectin by a Supercritical Antisolvent Process. J. CO2 Util. 2019, 35, 47–58. [Google Scholar] [CrossRef]
- Gonçalves Júnior, D.R.; de Araújo, P.C.C.; Simões, A.L.G.; Voll, F.A.P.; Parizi, M.P.S.; de Oliveira, L.H.; Ferreira-Pinto, L.; Cardozo-Filho, L.; de Jesus Santos, E. Assessment of the Adsorption Capacity of Phenol on Magnetic Activated Carbon. Asia-Pac. J. Chem. Eng. 2022, 17, e2725. [Google Scholar] [CrossRef]
- Tan, K.L.; Hameed, B.H. Insight into the Adsorption Kinetics Models for the Removal of Contaminants from Aqueous Solutions. J. Taiwan Inst. Chem. Eng. 2017, 74, 25–48. [Google Scholar] [CrossRef]
- Karri, R.R.; Sahu, J.N.; Jayakumar, N.S. Optimal Isotherm Parameters for Phenol Adsorption from Aqueous Solutions onto Coconut Shell Based Activated Carbon: Error Analysis of Linear and Non-Linear Methods. J. Taiwan Inst. Chem. Eng. 2017, 80, 472–487. [Google Scholar] [CrossRef]
- Fiskesjö, G. The Allium Test as a Standard in Environmental Monitoring. Hereditas 1985, 102, 99–112. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, L. From Langmuir Kinetics to First- and Second-Order Rate Equations for Adsorption. Langmuir 2008, 24, 11625–11630. [Google Scholar] [CrossRef]
- Amin, F.R.; Huang, Y.; He, Y.; Zhang, R.; Liu, G.; Chen, C. Biochar Applications and Modern Techniques for Characterization. Clean Technol. Environ. Policy 2016, 18, 1457–1473. [Google Scholar] [CrossRef]
- Huang, Q.; Song, S.; Chen, Z.; Hu, B.; Chen, J.; Wang, X. Biochar-Based Materials and Their Applications in Removal of Organic Contaminants from Wastewater: State-of-the-Art Review. Biochar 2019, 1, 45–73. [Google Scholar] [CrossRef]
- Wang, H.; Lei, X.; Khu, S.T.; Song, L. Optimization of Pump Start-up Depth in Drainage Pumping Station Based on SWMM and PSO. Water 2019, 11, 2. [Google Scholar] [CrossRef]
- Fletcher, A.; Somorin, T.; Aladeokin, O. Production of High Surface Area Activated Carbon from Peanut Shell by Chemical Activation with Zinc Chloride: Optimisation and Characterization. Bioenergy Res. 2024, 17, 467–478. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for Preparation and Activation of Activated Carbon: A Review. Environ. Chem. Lett. 2020, 18, 393–415. [Google Scholar] [CrossRef]
- Anisuzzaman, S.M.; Joseph, C.G.; Krishnaiah, D.; Bono, A.; Suali, E.; Abang, S.; Fai, L.M. Removal of Chlorinated Phenol from Aqueous Media by Guava Seed (Psidium guajava) Tailored Activated Carbon. Water Resour. Ind. 2016, 16, 29–36. [Google Scholar] [CrossRef]
- Grilla, E.; Vakros, J.; Konstantinou, I.; Manariotis, I.D.; Mantzavinos, D. Activation of Persulfate by Biochar from Spent Malt Rootlets for the Degradation of Trimethoprim in the Presence of Inorganic Ions. J. Chem. Technol. Biotechnol. 2020, 95, 2348–2358. [Google Scholar] [CrossRef]
- Mrozik, W.; Minofar, B.; Thongsamer, T.; Wiriyaphong, N.; Khawkomol, S.; Plaimart, J.; Vakros, J.; Karapanagioti, H.; Vinitnantharat, S.; Werner, D. Valorisation of Agricultural Waste Derived Biochars in Aquaculture to Remove Organic Micropollutants from Water—Experimental Study and Molecular Dynamics Simulations. J. Environ. Manag. 2021, 300, 113717. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.; Yoon, Y.; Lee, G.; Kim, Y.; Han, J.; Park, C.M. Enhanced Adsorption of Bisphenol A and Sulfamethoxazole by a Novel Magnetic CuZnFe2O4–Biochar Composite. Bioresour. Technol. 2019, 281, 179–187. [Google Scholar] [CrossRef] [PubMed]
- do Nascimento, R.F.; de Lima, A.C.A.; Vidal, C.B.; Melo, D.d.Q.; Raulino, G.S.C. Adsorção: Aspectos Teóricos e Aplicações Ambientais; Imprensa Universitária: Fortaleza, Brazil, 2020; p. 308. [Google Scholar]
- Benaouda, B.; Iman, G.; Michalkiewicz, B. Study on Anionic Dye Toxicity Reduction from Simulated Media by MnO2/Agro-Biomass Based-AC Composite Adsorbent. Ind. Crops Prod. 2024, 208, 117789. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption Kinetic Models: Physical Meanings, Applications, and Solving Methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- McCabe, W.C.; Smith, J.C.; Harriot, P. Unit Operations of Chemical Engineering; McGraw-Hill: New York, NY, USA, 1993; Volume 30. [Google Scholar] [CrossRef]
- Karapınar, H.S. Adsorption Performance of Activated Carbon Synthesis by ZnCl2, KOH, H3PO4 with Different Activation Temperatures from Mixed Fruit Seeds. Environ. Technol. 2022, 43, 1417–1435. [Google Scholar] [CrossRef] [PubMed]
- Mozaffari Majd, M.; Kordzadeh-Kermani, V.; Ghalandari, V.; Askari, A.; Sillanpää, M. Adsorption Isotherm Models: A Comprehensive and Systematic Review (2010–2020). Sci. Total Environ. 2022, 812, 151334. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Silva, A.; Fernandez-Lodeiro, J.; Casimiro, T.; Lodeiro, C.; Aguiar-Ricardo, A. Supercritical CO2-Assisted Spray Drying of Strawberry-Like Gold-Coated Magnetite Nanocomposites in Chitosan Powders for Inhalation. Materials 2017, 10, 74. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Castro-Puyana, M.; Mendiola, J.A.; Ibañez, E. Compressed Fluids for the Extraction of Bioactive Compounds. TrAC Trends Anal. Chem. 2013, 43, 67–83. [Google Scholar] [CrossRef]
- Leme, D.M.; Marin-Morales, M.A. Allium Cepa Test in Environmental Monitoring: A Review on Its Application. Mutat. Res. Rev. Mutat. Res. 2009, 682, 71–81. [Google Scholar] [CrossRef]
- Frâncica, L.S.; Gonçalves, E.V.; Santos, A.A.; Vicente, Y.S.; Silva, T.S.; Gonzalez, R.S.; Almeida, P.M.; Feitoza, L.L.; Bueno, P.A.A.; Souza, D.C.; et al. Antiproliferative, Genotoxic and Mutagenic Potential of Synthetic Chocolate Food Flavoring. Braz. J. Biol. 2022, 82, 243628. [Google Scholar] [CrossRef] [PubMed]
Run (R) | Adsorbent Mass (mg) x1 | Octocrylene Concentration (µg∙L−1) x2 | ER (%) | |
---|---|---|---|---|
Commercial Carbon | Biochar | |||
R1 | 5 (−1) | 200 (−1) | 90.2 ± 0.1 | 95.1 ± 0.3 |
R2 | 5 (−1) | 600 (1) | 98.2 ± 0.1 | 99.2 ± 0.1 |
R3 | 15 (1) | 200 (−1) | 92.4 ± 0.3 | 93.0 ± 0.4 |
R4 | 15 (1) | 600 (1) | 95.3 ± 0.2 | 95.9 ± 0.2 |
R5 | 2.9 (−1.41) | 400 (0) | 90.8 ± 1.8 | 89.5 ± 0.5 |
R6 | 17.1 (1.41) | 400 (0) | 91.5 ± 1.5 | 91.0 ± 0.6 |
R7 | 10(0) | 117.2 (−1.41) | 93.2 ± 0.7 | 94.6 ± 0.1 |
R8 | 10(0) | 682.8 (1.41) | 98.5 ± 1.8 | 99.1 ± 0.1 |
R9 | 10(0) | 400 (0) | 98.5 ± 0.1 | 98.4 ± 0.1 |
R10 | 10(0) | 400 (0) | 96.4 ± 0.2 | 97.9 ± 0.1 |
Variable | Commercial Carbon | Biochar | ||||||
---|---|---|---|---|---|---|---|---|
ER(%) | p-Value | Standard-Error | Confidence Interval | ER(%) | p-Value | Standard-Error | Confidence Interval | |
A | 97.48 | 0.000 | 0.735 | 95.4–99.5 | 98.16 | 0.000 | 1.469 | 94.823–100.0 |
x1 | 0.11 | 0.890 | 0.367 | −0.965–1.073 | −0.81 | 0.608 | 0.160 | −2.442–1.628 |
x2 | 4.55 | 0.003 | 0.367 | 1.253–3.295 | −3.35 | 0.084 | 0.734 | −0.363–3.716 |
x1x2 | 2.62 | 0.065 | 0.520 | −2.574–0.134 | −0.60 | 0.787 | 1.039 | −3.184–2.588 |
x12 | −6.02 | 0.003 | 0.483 | −4.351–(−1.665) | −6.75 | 0.025 | 0.965 | −6.054–(−0.691) |
x22 | −1.34 | 0.234 | 0.487 | −2.024–0.681 | −0.20 | 0.992 | 0.972 | −2.802–2.599 |
TR | ARL/SD | MI/SD (%) |
---|---|---|
Co | 100 ± 1.0 | 100 ± 0.9 |
OCS before adsorption | 51.9 ± 1.1 | 52.7 ± 0.9 |
OCS after adsorption on commercial carbon | 89.1 ± 1.1 | 85.5 ± 1.3 |
OCS after adsorption on biochar | 94.7 ± 0.9 * | 97.3 ± 1.0 * |
TR | Number and Type of Cellular Changes | |||
---|---|---|---|---|
Micronucleus | Chromosome Bridges | Chromosomal Derangements | CAI ± SD (%) | |
Co | 3 | 0 | 0 | 0.15 |
OCS before adsorption | 87 | 42 | 72 | 10.1 |
OCS after adsorption on commercial carbon | 1 | 6 | 0 | 0.35 |
OCS after adsorption on biochar | 2 | 1 | 0 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, S.A.F.d.; Rocha, B.C.d.S.; Moraes, L.E.Z.d.; Villaça, J.M.P.; Scapin, D.; Santo, D.E.; Gonzalez, R.d.S.; Junior, O.V.; Peron, A.P. Evaluation and Simulation of the Adsorption Capacity of Octocrylene Sunscreen on Commercial Carbon and Biochar from Spent Coffee Beans. Processes 2024, 12, 1249. https://doi.org/10.3390/pr12061249
Rocha SAFd, Rocha BCdS, Moraes LEZd, Villaça JMP, Scapin D, Santo DE, Gonzalez RdS, Junior OV, Peron AP. Evaluation and Simulation of the Adsorption Capacity of Octocrylene Sunscreen on Commercial Carbon and Biochar from Spent Coffee Beans. Processes. 2024; 12(6):1249. https://doi.org/10.3390/pr12061249
Chicago/Turabian StyleRocha, Sandra Andreola Franco da, Bianca Caroline da Silva Rocha, Luiz Eduardo Zani de Moraes, João Marcos Pires Villaça, Diane Scapin, Diego Espirito Santo, Regiane da Silva Gonzalez, Osvaldo Valarini Junior, and Ana Paula Peron. 2024. "Evaluation and Simulation of the Adsorption Capacity of Octocrylene Sunscreen on Commercial Carbon and Biochar from Spent Coffee Beans" Processes 12, no. 6: 1249. https://doi.org/10.3390/pr12061249
APA StyleRocha, S. A. F. d., Rocha, B. C. d. S., Moraes, L. E. Z. d., Villaça, J. M. P., Scapin, D., Santo, D. E., Gonzalez, R. d. S., Junior, O. V., & Peron, A. P. (2024). Evaluation and Simulation of the Adsorption Capacity of Octocrylene Sunscreen on Commercial Carbon and Biochar from Spent Coffee Beans. Processes, 12(6), 1249. https://doi.org/10.3390/pr12061249