Adsorption and Diffusion Properties of Gas in Nanopores of Kerogen: Insights from Grand Canonical Monte Carlo and Molecular Dynamics Simulations
Abstract
:1. Introduction
2. Simulation Method
2.1. Kerogen Model
2.2. Simulation Details
3. Results and Discussion
3.1. Pore Volume and Special Surface Area
3.2. Gas Fugacity
3.3. Adsorption Isotherm of Pure Component
3.4. Isosteric Heat of Gas Adsorption
3.5. Energy Distribution
3.6. Adsorption Isotherm of Binary Components
3.7. Self-Diffusion Coefficient
3.8. Radial Distribution Function
3.9. Distribution of CH4, CO2, and N2 in Kerogen Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
GCMC | Grand canonical Monte Carlo |
MD | Molecular dynamics |
RDF | Radial distribution function |
MSD | Mean square displacement |
Ds | Self-diffusion coefficient (m2/s) |
N | Number of particles |
t | Time interval (s) |
ri(t) | Position of the i-th gas molecule at time t |
Mean square displacement of molecules | |
V | Adsorption capacity |
VL | Langmuir volume, the maximum adsorption capacity |
PL | Langmuir pressure, the pressure for half-maximal adsorption capacity |
P | Equilibrium pressure |
T | Temperature (K) |
ρ(r) | Local density |
ρ0 | Average bulk density |
CH4 | Methane |
CO2 | Carbon dioxide |
N2 | Nitrogen |
Tc | Critical temperature (K) |
Pc | Critical pressure (MPa) |
Vc | Critical volume (m3/mol) |
w | Acentric factor |
M | Molar mass (g/mol) |
ΔH | Isosteric heat of adsorption (kJ/mol) |
References
- Wang, Q.; Chen, X.; Jha, A.N.; Rogers, H. Natural gas from shale formation—The evolution, evidences and challenges of shale gas revolution in United States. Renew. Sustain. Energy Rev. 2014, 30, 1–28. [Google Scholar] [CrossRef]
- Etminan, S.R.; Javadpour, F.; Maini, B.B.; Chen, Z. Measurement of gas storage processes in shale and of the molecular diffusion coefficient in kerogen. Int. J. Coal Geol. 2014, 123, 10–19. [Google Scholar] [CrossRef]
- Mcglade, C.; Speirs, J.; Sorrell, S. Unconventional gas—A review of regional and global resource estimates. Energy 2013, 55, 571–584. [Google Scholar] [CrossRef]
- Hughes, J.D. Energy: A reality check on the shale revolution. Nature 2013, 494, 307–308. [Google Scholar] [CrossRef]
- Gasparik, M.; Bertier, P.; Gensterblum, Y.; Ghanizadeh, A.; Krooss, B.M.; Littke, R. Geological controls on the methane storage capacity in organic-rich shales. Int. J. Coal Geol. 2014, 123, 34–51. [Google Scholar] [CrossRef]
- Fang, H.; Zou, H.; Lu, Y. Mechanisms of shale gas storage: Implications for shale gas exploration in China. AAPG Bull. 2013, 97, 1325–1346. [Google Scholar]
- Zhang, T.; Ellis, G.S.; Ruppel, S.C.; Milliken, K.; Yang, R. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Org. Geochem. 2012, 47, 120–131. [Google Scholar] [CrossRef]
- Curtis, J.B. Fractured shale-gas systems. AAPG Bull. 2002, 86, 1921–1938. [Google Scholar]
- Montgomery, S.L.; Jarvie, D.M.; Bowker, K.A.; Pollastro, R.M. Mississippian Barnett Shale, Fort Worth basin, north-central Texas: Gas-shale play with multi–trillion cubic foot potential. AAPG Bull. 2005, 90, 963–966. [Google Scholar] [CrossRef]
- Liu, D.; Yuan, P.; Liu, H.; Li, T.; Tan, D.; Yuan, W.; He, H. High-pressure adsorption of methane on montmorillonite, kaolinite and illite. Appl. Clay Sci. 2013, 85, 25–30. [Google Scholar] [CrossRef]
- Duan, S.; Gu, M.; Du, X.; Xian, X. Adsorption Equilibrium of CO2 and CH4 and Their Mixture on Sichuan Basin Shale. Energy Fuels 2016, 30, 2248–2256. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, T.; Wiggins-Camacho, J.D.; Ellis, G.S.; Lewan, M.D.; Zhang, X. Experimental investigation of changes in methane adsorption of bitumen-free Woodford Shale with thermal maturation induced by hydrous pyrolysis. Mar. Pet. Geol. 2015, 59, 114–128. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Guo, P.; Meng, W. Analyzing the Adaption of Different Adsorption Models for Describing the Shale Gas Adsorption Law. Chem. Eng. Technol. 2016, 39, 1921–1932. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, T.; Milliken, K.L.; Qu, J.; Zhang, X. Experimental investigation of main controls to methane adsorption in clay-rich rocks. Appl. Geochem. 2012, 27, 2533–2545. [Google Scholar] [CrossRef]
- Guo, S. Experimental study on isothermal adsorption of methane gas on three shale samples from Upper Paleozoic strata of the Ordos Basin. J. Pet. Sci. Eng. 2013, 110, 132–138. [Google Scholar] [CrossRef]
- Luo, X.; Wang, S.; Wang, Z.; Jing, Z.; Lv, M.; Zhai, Z.; Han, T. Adsorption of methane, carbon dioxide and their binary mixtures on Jurassic shale from the Qaidam Basin in China. Int. J. Coal Geol. 2015, 150, 210–223. [Google Scholar] [CrossRef]
- Bi, H.; Jiang, Z.; Li, J.; Li, P.; Chen, L.; Pan, Q.; Wu, Y. The Ono–Kondo model and an experimental study on supercritical adsorption of shale gas: A case study of on Longmaxi shale in southeastern Chongqing, China. J. Nat. Gas Sci. Eng. 2016, 35, 114–121. [Google Scholar] [CrossRef]
- Chareonsuppanimit, P.; Mohammad, S.A.; Robinson, R.L., Jr.; Gasem, K.A. High-pressure adsorption of gases on shales: Measurements and modeling. Int. J. Coal Geol. 2012, 95, 34–46. [Google Scholar] [CrossRef]
- Kim, C.; Jang, H.; Lee, J. Experimental investigation on the characteristics of gas diffusion in shale gas reservoir using porosity and permeability of nanopore scale. J. Pet. Sci. Eng. 2015, 133, 226–237. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, Z.; Sun, M.; Li, J.; Hu, G.; Wang, X. New insights into natural gas diffusion coefficient in rocks. Pet. Explor. Dev. 2012, 39, 597–604. [Google Scholar] [CrossRef]
- Javadpour, F. Nanopores and Apparent Permeability of Gas Flow in Mudrocks (Shales and Siltstone). J. Can. Pet. Technol. 2009, 48, 16–21. [Google Scholar] [CrossRef]
- Wu, K.; Li, X.; Wang, C.; Yu, W.; Chen, Z. Model for Surface Diffusion of Adsorbed Gas in Nanopores of Shale Gas Reservoirs. Ind. Eng. Chem. Res. 2015, 54, 3225–3236. [Google Scholar] [CrossRef]
- Rezlerová, E.; Brennan, J.K.; Lísal, M. Methane and carbon dioxide in dual-porosity organic matter: Molecular simulations of adsorption and diffusion. AICHE J. 2021, 67, e16655. [Google Scholar] [CrossRef]
- Zhang, C.; Yao, Y.; Swennen, R.; Zhang, Y. Re-evaluating the methane adsorption behavior in shale kerogen: Unifying experiment and molecular simulation. Phys. Fluids 2024, 36, 022002. [Google Scholar] [CrossRef]
- Tesson, S.; Firoozabadi, A. Methane adsorption and self-diffusion in shale kerogen and slit nanopores by molecular simulations. J. Phys. Chem. C 2018, 122, 23528–23542. [Google Scholar] [CrossRef]
- Dawass, N.; Vasileiadis, M.; Peristeras, L.D.; Papavasileiou, K.D.; Economou, I.G. Prediction of Adsorption and Diffusion of Shale Gas in Composite Pores Consisting of Kaolinite and Kerogen using Molecular Simulation. J. Phys. Chem. C 2023, 127, 9452–9462. [Google Scholar] [CrossRef]
- Yuan, S.; Gang, H.-Z.; Liu, Y.-F.; Zhou, L.; Irfan, M.; Yang, S.-Z.; Mu, B.-Z. Adsorption and Diffusion Behaviors of CO2 and CH4 Mixtures in Different Types of Kerogens and Their Roles in Enhanced Energy Recovery. Sustainability 2022, 14, 14949. [Google Scholar] [CrossRef]
- Wang, S.; Feng, Q.; Javadpour, F.; Yang, Y.-B. Breakdown of fast mass transport of methane through calcite nanopores. J. Phys. Chem. C 2016, 120, 14260–14269. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Tang, H.; Han, S.; Song, H.; Wang, P.; Zhao, Y.; Zhu, J. Insights into Carbon Dioxide Hydrate Nucleation on the External Basal Surface of Clay Minerals from Molecular Dynamics Simulations. ACS Sustain. Chem. Eng. 2022, 10, 6358–6369. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Liu, C.; Song, H.; Yuan, P.; Zhang, B.; Liu, D.; Du, P. Effects of Layer-charge Distribution of 2:1 Clay Minerals on Methane Hydrate Formation: A Molecular Dynamics Simulation Study. Langmuir 2020, 36, 3323–3335. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, M.; Song, H.; Yuan, P.; Liu, D.; Zhang, B.; Bu, H. Methane Hydrate Formation in the Stacking of Kaolinite Particles with Different Surface Contacts as Nanoreactors: A Molecular Dynamics Simulation Study. Appl. Clay Sci. 2020, 186, 105439. [Google Scholar] [CrossRef]
- Collell, J.; Ungerer, P.; Galliero, G.; Yiannourakou, M.; Montel, F.; Pujol, M. Molecular Simulation of Bulk Organic Matter in Type II Shales in the Middle of the Oil Formation Window. Energ. Fuel 2014, 28, 7457–7466. [Google Scholar] [CrossRef]
- Ungerer, P.; Collell, J.; Yiannourakou, M. Molecular Modeling of the Volumetric and Thermodynamic Properties of Kerogen: In fluence of Organic Type and Maturity. Energ. Fuel 2015, 29, 91–105. [Google Scholar] [CrossRef]
- Yao, S.; Jiao, K.; Li, M. Advances in research of coal and kerogen nanostructure. Adv. Earth Sci. 2012, 27, 367–378. [Google Scholar]
- Liu, X.; Luo, D.; Xiong, J.; Liang, L. Construction of the average molecular modeling of the kerogen from Longmaxi formation. Chem. Ind. Eng. Prog. 2017, 36, 530–537. [Google Scholar]
- Wang, Z.H.; Li, Y.; Meng, W.J.; Guo, P.; Luo, Q.; Ran, Z.L. Density functional theory study on the adsorption of methane on kerogen with different functional groups. Appl. Ecol. Env. Res. 2017, 15, 861–869. [Google Scholar] [CrossRef]
- Wang, Q.; Pan, S.; Bai, J.; Chi, M.; Cui, D.; Wang, Z.; Liu, Q.; Xu, F. Theoretical study of structural and spatial properties of kerogen. Energ. Fuel 2019, 33, 9559–9569. [Google Scholar] [CrossRef]
- Sun, H.; Ren, P.; Fried, J.R. The COMPASS Forcefield: Parameterization and Validation for Polyphosphazenes. Comput. Theor. Polym. Sci. 1998, 8, 229. [Google Scholar] [CrossRef]
- Mosher, K.; He, J.; Liu, Y.; Rupp, E.; Wilcox, J. Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems. Int. J. Coal Geol. 2013, 109, 36–44. [Google Scholar] [CrossRef]
- Connolly, M.L. Analytical molecular surface calculation. J. Appl. Crystallogr. 1983, 6, 548–558. [Google Scholar] [CrossRef]
- Zeitler, T.R.; Allendorf, M.D.; Greathouse, J.A. Grand Canonical Monte Carlo Simulation of Low-Pressure Methane Adsorption in Nanoporous Framework Materials for Sensing Applications. J. Phys. Chem. C 2011, 116, 3492–3502. [Google Scholar] [CrossRef]
- Peng, D.Y.; Robinson, D.B. A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam. 1976, 15, 92–94. [Google Scholar] [CrossRef]
- Smith, J.M.; Ness, H.C.V.H.C. Introduction to Chemical Engineering Thermodynamics; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Micaand and Platinum. J. Chem. Phys. 2015, 40, 1361–1403. [Google Scholar]
- Fu, X.; Shen, W.; Yao, T. Physical Chemistry, 4th ed.; Higher Education: Beijing, China, 1993. [Google Scholar]
- Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids; Clarendon: Oxford, UK, 1987. [Google Scholar]
- Park, S.H.; Sposito, G. Monte Carlo Simulation of Total Radial Distribution Functions for Interlayer Water in Li-, Na-, and K-Montmorillonite Hydrates. J. Steroid Biochem. 2000, 104, 177–182. [Google Scholar] [CrossRef]
System | Temperature | Pressure |
---|---|---|
Pure CH4 | 303.15 K | 5 MPa, 10 MPa, 15 MPa, 20 MPa, 25 MPa, 30 MPa |
333.15 K | ||
348.15 K | ||
363.15 K | ||
Pure CO2 | 333.15 K | |
Pure N2 | 333.15 K | |
CH4:CO2 = 0.2:0.8 | 333.15 K | 2.5 MPa, 5 MPa, 10 MPa, 15 MPa, 20 MPa, 25 MPa, 30 MPa |
CH4:CO2 = 0.4:0.6 | ||
CH4:CO2 = 0.5:0.5 | ||
CH4:CO2 = 0.6:0.4 | ||
CH4:CO2 = 0.8:0.2 | ||
CH4:N2 = 0.2:0.8 | 333.15 K | 2.5 MPa, 5 MPa, 10 MPa, 15 MPa, 20 MPa, 25 MPa, 30 MPa |
CH4:N2 = 0.4:0.6 | ||
CH4:N2 = 0.5:0.5 | ||
CH4:N2 = 0.6:0.4 | ||
CH4:N2 = 0.8:0.2 |
Probe Molecule | Pore Volume Å3/uc | Special Surface Area Å2/uc |
---|---|---|
CH4 | 7086.27 | 4379.37 |
CO2 | 8285.23 | 4881.91 |
N2 | 7459.88 | 4549.75 |
Critical Parameters | CH4 | CO2 | N2 |
---|---|---|---|
Critical temperature/K | 190.560 | 304.140 | 126.190 |
Critical pressure/MPa | 4.599 | 7.377 | 3.396 |
Critical volume/cm3 | 98.600 | 94.340 | 90.100 |
Acentric factor KJ/(Kg°C) | 0.011 | 0.224 | 0.037 |
Molar mass/g/mol | 16.040 | 44.010 | 28.010 |
Parameters | CH4 | CO2 | N2 | |||
---|---|---|---|---|---|---|
303.15 K | 333.15 K | 348.15 K | 363.15 K | 333.15 K | 333.15 K | |
VL (mmol/g) | 7.048 | 6.569 | 6.548 | 6.421 | 7.413 | 6.576 |
PL (MPa) | 2.170 | 2.885 | 3.704 | 4.329 | 1.504 | 6.480 |
R2 | 0.9988 | 0.9972 | 0.9994 | 0.9986 | 0.9980 | 0.9979 |
ARE | 1.02% | 1.3% | 0.66% | 0.89% | 0.85% | 1.26% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, S.; Liu, X.; Li, Y.; Zheng, Q.; Wang, N.; Qiao, Y.; Zhang, Y.; Yi, C. Adsorption and Diffusion Properties of Gas in Nanopores of Kerogen: Insights from Grand Canonical Monte Carlo and Molecular Dynamics Simulations. Processes 2024, 12, 1438. https://doi.org/10.3390/pr12071438
Xiao S, Liu X, Li Y, Zheng Q, Wang N, Qiao Y, Zhang Y, Yi C. Adsorption and Diffusion Properties of Gas in Nanopores of Kerogen: Insights from Grand Canonical Monte Carlo and Molecular Dynamics Simulations. Processes. 2024; 12(7):1438. https://doi.org/10.3390/pr12071438
Chicago/Turabian StyleXiao, Shouheng, Xiugang Liu, Yun Li, Qiang Zheng, Ning Wang, Yun Qiao, Youyin Zhang, and Chuanjun Yi. 2024. "Adsorption and Diffusion Properties of Gas in Nanopores of Kerogen: Insights from Grand Canonical Monte Carlo and Molecular Dynamics Simulations" Processes 12, no. 7: 1438. https://doi.org/10.3390/pr12071438
APA StyleXiao, S., Liu, X., Li, Y., Zheng, Q., Wang, N., Qiao, Y., Zhang, Y., & Yi, C. (2024). Adsorption and Diffusion Properties of Gas in Nanopores of Kerogen: Insights from Grand Canonical Monte Carlo and Molecular Dynamics Simulations. Processes, 12(7), 1438. https://doi.org/10.3390/pr12071438