Evaluation of the Hydraulic Fracturing Tendencies of Consolidated Sandstone Reservoirs Based on the Catastrophe Theory
Abstract
:1. Introduction
2. Geological Background
3. Methodology
3.1. X-ray Diffraction Analysis
3.2. Uniaxial Compression Experiment
3.3. Geostress Experiment
3.4. Hydraulic Fracturing-Tendency Catastrophe Modeling of Sandstone Reservoirs
4. Mechanical Experiments
4.1. Preparation of Rock Specimens
4.2. Device and Process for Uniaxial Compressive Strength Testing
4.3. Specimen after Fracturing Rock
5. Experimental Results Analysis
5.1. Compressive Strength
5.2. Brittleness Index
5.3. Bulk Modulus
5.4. Shear Modulus
5.5. Horizontal-Stress Differential Coefficient
5.6. Fracture Toughness
6. Catastrophe Theory
6.1. Basic Principles
6.2. Normalized Formula for Catastrophe Models
6.3. Evaluation Principles and Methods
7. Establishment and Application of a Comprehensive Evaluative Model for Hydraulic Fracturing Tendency
7.1. Establishment of the Evaluation Model
7.1.1. Catastrophe Model
7.1.2. Dimensionalization of Control Variables
7.1.3. Parameter Normalization
7.2. Analytic Hierarchy Process (AHP)
7.3. Comprehensive Evaluation
7.4. Assessment of Post-Fracturing Effects
7.5. Directions for Future Research
8. Conclusions
- (1)
- In the case of sandstone reservoirs, a comprehensive analysis of compressive strength, bulk modulus, shear modulus, brittleness index, horizontal-stress differential coefficient, and fracture toughness is conducted. In accordance with catastrophe theory, a multilevel structure is proposed for the evaluation of sandstone reservoir hydraulic-fracturing tendency, comprising a target layer, a guideline layer, and an index layer. A catastrophe model was developed for the evaluation of sandstone reservoir hydraulic-fracturing tendency. The objective of this study is to quantitatively characterize the ease with which sandstone fractures can be modified using hydraulic fracturing-tendency evaluation values. A set of hydraulic fracturing-tendency evaluation methods suitable for sandstone reservoirs has been developed.
- (2)
- The results of the catastrophe model evaluation are in alignment with the results of the Analytic Hierarchy Process (AHP) for weight determination. This study demonstrates the efficacy of catastrophe theory in evaluating the hydraulic fracturing tendency of sandstone reservoirs. The evaluation results it provides are more accurate, in comparison to traditional methodologies. The catastrophe-theory evaluation methods are highly operational and practical. The model is not subject to the limitations of human subjectivity, and the influence of subjective interference is significantly reduced, thereby ensuring the credibility of the evaluation results.
- (3)
- Sandstone reservoirs are classified into three categories based on the characteristics of each parameter within the reservoir and the hydraulic fracturing-tendency evaluation values. Reservoirs with hydraulic fracturing-tendency evaluation values greater than 0.8 are classified as Class I reservoirs with good hydraulic-fracturing tendency. Those with hydraulic fracturing-tendency evaluation values between 0.7 and 0.8 are classified as Class II reservoirs with average hydraulic-fracturing tendency. Finally, reservoirs with hydraulic fracturing-tendency evaluation values less than 0.7 are classified as Class III reservoirs with poor hydraulic-fracturing tendency.
- (4)
- The hydraulic fracturing tendency of sandstone reservoirs is evaluated in accordance with established criteria. The optimal fracturing layers for the Yi70 well were identified as 1320–1323 m, 1350–1355 m, and 1355–1360 m; for the Yi10–1–26 well, 2487–2495 m, 2585–2587 m, and 2589–2591 m; and for the Yi76 well, 1921–1925 m and 1925–1930 m. The established hydraulic fracturing-tendency evaluation methodology has been demonstrated to be practical after field application.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Well Number | Core ID | Direction | Well Depth (m) | Stratum | Elastic Modulus (MPa) | Shear Modulus (MPa) | Poisson’s Ratio | Bulk Modulus (MPa) | Compressive Strength (MPa) |
---|---|---|---|---|---|---|---|---|---|
Yi 70 Well | 2-1/45 | 0 | 1351 m | Shan 1 | 2286.88 | 1067.594 | 0.071 | 888.538 | 15.47 |
Yi 70 Well | 2-1/45 | 45 | 1351 m | Shan 1 | 3299.28 | 1644.017 | 0.003 | 1107.332 | 18.07 |
Yi 70 Well | 2-1/45 | 90 | 1351 m | Shan 1 | 4985.05 | 2178.466 | 0.144 | 2334.914 | 19.02 |
Yi 70 Well | 2-14/45 | 0 | 1356 m | Shan 1 | 7691.18 | 3675.286 | 0.05 | 2825.590 | 32.19 |
Yi 70 Well | 2-14/45 | 45 | 1356 m | Shan 1 | 4196.23 | 2080.969 | 0.01 | 1422.182 | 17.48 |
Yi 70 Well | 2-14/45 | 90 | 1356 m | Shan 1 | 3295.44 | 1745.268 | −0.06 | 988.030 | 18.86 |
Yi 70 Well | 2-39/45 | 0 | 1321 m | Shan 1 | 2107.21 | 1048.718 | 0.005 | 709.012 | 18.07 |
Yi 70 Well | 2-39/45 | 45 | 1321 m | Shan 1 | 6189.07 | 3077.570 | 0.006 | 2086.020 | 28.51 |
Yi 70 Well | 2-39/45 | 90 | 1321 m | Shan 1 | 4653.56 | 2237.286 | 0.04 | 1686.071 | 25.96 |
Yi 10-1-26 Well | 1-72/120 | 0 | 2508 m | Shanxi | 10,091.86 | 4831.487 | 0.04 | 3691.661 | 44.65 |
Yi 10-1-26 Well | 1-72/120 | 45 | 2508 m | Shanxi | 7796.57 | 3754.470 | 0.04 | 2814.479 | 42.79 |
Yi 10-1-26 Well | 1-72/120 | 90 | 2508 m | Shanxi | 6180.82 | 3080.779 | 0.003 | 2073.239 | 23.41 |
Yi 10-1-26 Well | 1-77/120 | 0 | 2490 m | Shanxi | 7712.23 | 3761.997 | 0.025 | 2706.145 | 49.44 |
Yi 10-1-26 Well | 1-77/120 | 45 | 2490 m | Shanxi | 15,093.51 | 7414.816 | 0.02 | 5216.820 | 50.70 |
Yi 10-1-26 Well | 1-77/120 | 90 | 2490 m | Shanxi | 15,196.00 | 7070.040 | 0.075 | 5954.665 | 43.44 |
Yi 10-1-26 Well | 2-41/75 | 0 | 2585 m | Taiyuan | 16,161.60 | 7436.767 | 0.09 | 6515.744 | 31.85 |
Yi 10-1-26 Well | 2-41/75 | 45 | 2585 m | Taiyuan | 9153.41 | 4227.212 | 0.08 | 3655.608 | 20.80 |
Yi 10-1-26 Well | 2-41/75 | 90 | 2585 m | Taiyuan | 10,632.05 | 5003.672 | 0.06 | 4049.611 | 28.14 |
Yi 10-1-26 Well | 2-68/75 | 0 | 2590 m | Taiyuan | 10,565.45 | 5129.673 | 0.03 | 3745.309 | 34.63 |
Yi 10-1-26 Well | 2-68/75 | 45 | 2590 m | Taiyuan | 16,216.33 | 6774.773 | 0.20 | 8914.503 | 38.95 |
Yi 10-1-26 Well | 2-68/75 | 90 | 2590 m | Taiyuan | 12,497.17 | 5490.984 | 0.14 | 5753.312 | 34.82 |
Yi 76 Well | 2-54/55 | 0 | 1872 m | Box 8 | 8414.54 | 3330.482 | 0.26 | 5923.928 | 26.04 |
Yi 76 Well | 2-54/55 | 45 | 1872 m | Box 8 | 8023.51 | 3819.324 | 0.05 | 2974.208 | 34.73 |
Yi 76 Well | 2-54/55 | 90 | 1872 m | Box 8 | 10,245.28 | 5072.907 | 0.01 | 3483.396 | 34.02 |
Yi 76 Well | 4-2/59 | 0 | 1923 m | Shan 1 | 11,596.78 | 5761.990 | 0.006 | 3915.057 | 38.88 |
Yi 76 Well | 4-2/59 | 45 | 1923 m | Shan 1 | 9289.83 | 4390.623 | 0.06 | 3502.300 | 30.15 |
Yi 76 Well | 4-2/59 | 90 | 1923 m | Shan 1 | 18,535.96 | 8905.547 | 0.04 | 6726.130 | 47.47 |
Yi 76 Well | 5-23/88 | 0 | 1928 m | Shan 1 | 27,823.17 | 13,535.175 | 0.03 | 9820.613 | 75.48 |
Yi 76 Well | 5-23/88 | 45 | 1928 m | Shan 1 | 31,847.76 | 15,012.575 | 0.06 | 12,082.848 | 67.52 |
Yi 76 Well | 5-23/88 | 90 | 1928 m | Shan 1 | 27,406.86 | 13,236.828 | 0.035 | 9828.543 | 92.62 |
References
- Qun, L.E.I.; Yun, X.U.; Bo, C.A.I.; Baoshan, G.; Xin, W.; Guoqiang, B.I.; Hui, L.I.; Shuai, L.I.; Bin, D.; Haifeng, F.U.; et al. Progress and prospects of horizontal well fracturing technology for shale oil and gas reservoirs. Pet. Explor. Dev. 2022, 49, 191–199. [Google Scholar]
- Barati, R.; Liang, J. A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells. J. Appl. Polym. Sci. 2014, 131, e40735. [Google Scholar] [CrossRef]
- Qi, E.; Xiong, F.; Cao, Z.; Zhang, Y.; Xue, Y.; Zhang, Z.; Ji, M. Simulation of Gas Fracturing in Reservoirs Based on a Coupled Thermo-Hydro-Mechanical-Damage Model. Appl. Sci. 2024, 14, 1763. [Google Scholar] [CrossRef]
- Li, D.; Li, N.; Jia, J.; Yu, H.; Fan, Q.; Wang, L.; Mohsen, A. Development status and research recommendations for thermal extraction technology in deep hot dry rock reservoirs. Deep. Undergr. Sci. Eng. 2024, in press. [Google Scholar] [CrossRef]
- Yan, W.; Wang, C.; Yin, S.; Wen, Z.; Zheng, J.; Fu, X.; Feng, Z.; Zhang, Z.; Zhu, J. A log-based method for fine-scale evaluation of lithofacies and its applications to the Gulong shale in the Songliao Basin, Northeast China. Energy Geosci. 2024, 5, 100291. [Google Scholar] [CrossRef]
- Ezazi, M.; Ghorbani, E.; Shafiei, A.; Teshnizi, E.S.; O’kelly, B.C. Laboratory Hydraulic Tensile Strength Correlation with Strength-Based Brittleness Indices for Carbonate Reservoirs. Geosciences 2024, 14, 52. [Google Scholar] [CrossRef]
- Li, X.; He, M.; Huang, X.; Wu, K.; Zuo, X.; Xue, J.; Lu, J. Fracture extension behavior and micro-mechanical damage mechanism under different CO2 fracturing methods in continental shale reservoirs. Fuel 2024, 365, 131144. [Google Scholar] [CrossRef]
- Wang, L.; Yu, F.; Shi, J.; Peng, J.; Zhao, W.; Liu, Y.; Yan, J. Study on engineering geological characteristics of southwest shale oil based on nuclear magnetic resonance imbibition flooding technology. Acta Geophys. 2024, 1–15. [Google Scholar] [CrossRef]
- Mukhopadhyay, P. Advances in Well Logging Techniques for Shale Reservoirs Exploration. In Unconventional Shale Gas Exploration and Exploitation: Current Trends in Shale Gas Exploitation; Springer International Publishing: Cham, Switzerland, 2024; pp. 31–47. [Google Scholar]
- Yuan, J.L.; Deng, J.G.; Zhang, D.Y.; Li, D.H.; Yan, W.; Chen, C.G.; Cheng, L.J.; Chen, Z.J. Hydraulic fracturing tendency ecaluation of shale-gas reservoirs. Acta Pet. Sin. 2013, 34, 523–527. [Google Scholar]
- Zhu, G.Z.; He, C.L.; Fan, J.Y. Log Evaluation Method for Gas Bearing and Hydraulic fracturing tendency of deep Shale Gas Reservoirs in Southern Sichuan. Well Logging Technol. 2022, 46, 433–438. [Google Scholar]
- Chen, C.; Lei, Z.D.; Fang, M.J.; Qi, Y. Tight Sandstone Reservoir Compressibility Evaluation and Limit Parameter Fracturing Technology. Sci. Technol. Eng. 2022, 22, 6400–6407. [Google Scholar]
- Zhao, J.Z.; Xu, W.J.; Li, Y.M.; Hu, J.Y.; Li, J.Q. A new method for evaluating the compressibility of shale-gas reservoirs. Nat. Gas Geosci. 2015, 26, 1165–1172. [Google Scholar]
- Xiao, J.F.; Hu, P.J.; Han, L.X. Mechanical Properties and Compressibility Evaluation of Qiongzhusi shale in Weiyuan Area in Southern Sichuan. Drill. Prod. Technol. 2022, 45, 61–66. [Google Scholar]
- Sun, Y.H.; Wang, F.; Wu, X.; Duan, Z.X.; Han, Z.X. CT scan-based quantitative characterization and hydraulic fracturing tendency evaluation of fractures in shale reservoirs. Prog. Geophys. 2023, 38, 2147–2159. [Google Scholar]
- Chen, J.B.; Wei, B.; Xie, Q.; Wang, H.Q.; Li, T.T.; Wang, H. Multi-fracture simulation of shale horizontal wells based on extended finite element method. Appl. Math. Mech. 2016, 37, 73–83. [Google Scholar]
- Wang, L.; Yang, J.; Peng, J.L.; Chen, G.; Han, H.; Zhang, X. Experimental Evaluation on Compressibility of Shale Oil Reservoir in Da’anzhai Section in Central Sichuan Area. Drill. Prod. Technol. 2023, 46, 163–168. [Google Scholar]
- Sun, J.; Han, Z.; Qin, R.; Zhang, J. Log evaluation method of fracturing performance in tight gas reservoir. Acta Pet. Sin. 2015, 36, 74–80. [Google Scholar]
- Zhang, C.; Xia, F.G.; Xia, Y.Q.; Zhou, X.L. Comprehensive Evaluation of Hydraulic fracturing tendency of Tight Sandstone Reservoirs Based on Analytic Hierarchy Process. Drill. Prod. Technol. 2021, 44, 61–64. [Google Scholar]
- Zhai, W.B.; Li, J.; Zhou, Y.C.; Liu, G.H.; Huang, T.; Song, X.F. New evaluation method of shale reservoir hydraulic fracturing tendency based on logging data. Lithol. Reserv. 2018, 30, 112–123. [Google Scholar]
- Ren, L.; Li, Y.B.; Peng, S.R.; Zhao, C.N.; Wu, J.F.; Li, Z.X. Predicting economic benefit of deep shale gas fracturing prediction based on comprehensive hydraulic fracturing tendency. Oil Drill. Prod. Technol. 2023, 45, 229–236. [Google Scholar]
- Longinos, S.N.; Tuleugaliyev, M.; Hazlett, R. Influence of subsurface temperature on cryogenic fracturing efficacy of granite rocks from Kazakhstan. Geothermics 2024, 118, 102919. [Google Scholar] [CrossRef]
- Tuzingila, R.M.; Kong, L.; Kasongo, R.K. A review on experimental techniques and their applications in the effects of mineral content on geomechanical properties of reservoir shale rock. Rock Mech. Bull. 2024, 3, 100110. [Google Scholar] [CrossRef]
- Lou, Y.S.; Jing, Y.Q. Rock Mechanics and Petroleum Engineering; Petroleum Industry Press: Beijing, China, 2006. [Google Scholar]
- Salah, M.; Ibrahim Mohamed, M.; Ibrahim, M.; Mazher, I.; Pieprzica, C. A newly developed approach to evaluate rock brittleness and hydraulic fracturing tendency for hydraulic fracturing optimization in shale gas. In Proceedings of the SPE Western Regional Meeting, San Jose, CA, USA, 23–26 April 2019. [Google Scholar]
- Ghadimipour, A.; Perumalla, S.; Chakrabarti, P.; Ben Boudiaf, M.; Saha, S. De-Risking the Full Development Cycle of Tight Naturally Fractured Prospects by Integration of Advanced GeoMechanical and Natural Fracture Characterization: A North African Perspective. In Proceedings of the International Petroleum Technology Conference, Dhahran, Saudi Arabia, 12–14 February 2024. [Google Scholar]
- Yao, T.; Qian, L.; Mo, Z.; Gao, Y.; Zhang, J.; Zhang, R.; Hu, Q.; Xing, X. A new brittleness index based on crack characteristic stress and its engineering applications. Eng. Geol. 2024, 330, 107411. [Google Scholar] [CrossRef]
- Liang, W.; Wang, J.; Leung, C.; Goh, S.; Sang, S. Opportunities and challenges for gas coproduction from coal measure gas reservoirs with coal-shale-tight sandstone layers: A review. Deep. Undergr. Sci. Eng. 2024, in press. [Google Scholar] [CrossRef]
- Jiao, W.; Huang, Y.; Zhang, H.; Zhang, Y.; Zhao, D.; Wen, L.; Guo, P.; Zhang, J. Characteristics of Typical Shale Reservoir Development and Its Gas-Bearing Influencing Factors. Chem. Technol. Fuels Oils 2024, 60, 132–141. [Google Scholar] [CrossRef]
- Tang, X.; Zhu, H.; Zhao, P.; Zeng, B.; Zhao, M.; Dusseault, M.B.; McLennan, J.D. A numerical study of complex fractures propagation path in naturally fractured gas shale: Reorientation, deflection and convergence. Gas Sci. Eng. 2024, 121, 205186. [Google Scholar] [CrossRef]
- Luo, T.; Wang, J.; Chen, L.; Sun, C.; Liu, Q.; Wang, F. Quantitative characterization of the brittleness of deep shales by integrating mineral content, elastic parameters, in situ stress conditions and logging analysis. Int. J. Coal Sci. Technol. 2024, 11, 10. [Google Scholar] [CrossRef]
- Gong, Y.; El-Monier, I.; Mehana, M. Machine Learning and Data Fusion Approach for Elastic Rock Properties Estimation and Fracturability Evaluation. Energy AI 2024, 16, 100335. [Google Scholar] [CrossRef]
- Blake, O.O.; Ramsook, R.; Faulkner, D.R.; Iyare, U.C. Relationship Between the Static and Dynamic Bulk Moduli of Argillites. Pure Appl. Geophys. 2021, 178, 1339–1354. [Google Scholar] [CrossRef]
- Wang, H.Q.; Chen, J.B.; Zhang, J.; Xie, Q.; Wei, B.; Zhao, Y.R. A New Method of Hydraulic fracturing tendency Evaluation of Shale Gas Reservoir Based on Weight Allocation. Pet. Drill. Tech. 2016, 44, 88–94. [Google Scholar]
- Li, Y.; Ding, W.; Han, J.; Chen, X.; Huang, C.; Li, J.; Ding, S. Quantitative Prediction of the Development and Opening Sequence of Fractures in an Ultradeep Carbonate Reservoir: A Case Study of the Middle Ordovician in the Shunnan Area, Tarim Basin, China. SPE J. 2024, 29, 3091–3117. [Google Scholar] [CrossRef]
- Zhou, Z.-L.; Hou, Z.-K.; Guo, Y.-T.; Zhao, H.; Wang, D.; Qiu, G.-Z.; Guo, W.-H. Experimental study of hydraulic fracturing for deep shale reservoir. Eng. Fract. Mech. 2024, in press. [Google Scholar] [CrossRef]
- Xia, X.; Wu, Z.; Song, H.; Wang, W.; Cui, H.; Tang, M. Numerical study of hydraulic fracturing on single-hole shale under fluid–solid coupling. Géoméch. Geophys. Geo-Energy Geo-Resources 2024, 10, 23. [Google Scholar] [CrossRef]
- Chen, J.G.; Deng, J.G.; Yuan, J.L.; Yan, W.; Wei, B.H.; Tan, Q. Determination of fracture toughness of modes I and II of shale formation. Rock Mech. Eng. 2015, 34, 1101–1105. [Google Scholar]
- Zeeman, E.C. Catastrophe theory. Sci. Am. 1976, 234, 65–83. [Google Scholar] [CrossRef]
- Graf, W.L. Catastrophe theory as a model for change in fluvial systems. In Adjustments of the Fluvial System; Routledge: London, UK, 2020; pp. 13–32. [Google Scholar]
- Pan, R.; Liu, J.; Cheng, H.; Fan, H. Study on the Vertical Stability of Drilling Wellbore under Optimized Constraints. Appl. Sci. 2024, 14, 2317. [Google Scholar] [CrossRef]
- Karman, A.; Pawłowski, M. Circular economy competitiveness evaluation model based on the catastrophe progression method. J. Environ. Manag. 2021, 303, 114223. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X. Risk Assessment of Maritime Traffic Safety Based on Catastrophe Theory. Front. Soc. Sci. Technol. 2023, 5, 80–84. [Google Scholar]
- Cheng, H.; Yang, X.; Lan, Y. Investigating rock mutation characteristics and damage state warning model based on energy conversion. Energy Sci. Eng. 2024, 12, 1221–1232. [Google Scholar] [CrossRef]
- Teng, H.; Qian, Y.; Lan, Y.; Cui, W. Swallowtail-type diffraction catastrophe beams. Opt. Express 2021, 29, 3786–3794. [Google Scholar] [CrossRef] [PubMed]
- Teng, H.; Hu, J.; Cai, Y.; Lan, Y.; Qian, Y. Caustics and wavefront of Swallowtail-Gauss catastrophe beams. Results Phys. 2022, 42, 105991. [Google Scholar] [CrossRef]
- Faeq, I.R.; Abdalrahman, S.O. The Stability and Catastrophic Behavior of Finite Periodic Solutions in Non-Linear Differential Equations. Tikrit J. Pure Sci. 2023, 28, 146–152. [Google Scholar] [CrossRef]
- Wei, X.; Wang, X.; Chen, T.; Ding, Z.; Wu, X. Comparison of the Fold and Cusp Catastrophe Models for Tensile Cracking and Sliding Rockburst. Math. Probl. Eng. 2021, 2021, 1–10. [Google Scholar] [CrossRef]
- Zhai, W.; Li, J.; Zhou, Y. Application of catastrophe theory to hydraulic fracturing tendency evaluation of deep shale reservoir. Arab. J. Geosci. 2019, 12, 76–79. [Google Scholar] [CrossRef]
- Liang, G.L.; Xu, W.Y.; He, Y.Z.; Zhao, Y. Application of catastrophe progression method to comprehensive evaluation of slope stability. Rock Soil Mech. 2008, 29, 1895–1899. [Google Scholar]
Well Number | Well Depth (m) | Stratigraphic Unit | Brittleness Index 1 | Brittleness Index 2 | Brittleness Index |
---|---|---|---|---|---|
Yi 70 Well | 1320–1323 m | Shan 1 | 0.78 | 0.79 | 0.61 |
Yi 70 Well | 1350–1355 m | Shan 1 | 1.67 | 0.49 | 0.82 |
Yi 70 Well | 1355–1360 m | Shan 1 | 0.87 | 0.28 | 0.24 |
Yi 10-1-26 Well | 2487–2495 m | Shanxi | 0.67 | 0.94 | 0.63 |
Yi 10-1-26 Well | 2503–2512 m | Shanxi | 0.63 | 0.27 | 0.17 |
Yi 10-1-26 Well | 2585–2587 m | Taiyuan | 0.98 | 0.27 | 0.27 |
Yi 10-1-26 Well | 2589–2591 m | Taiyuan | 0.97 | 0.35 | 0.34 |
Yi 76 Well | 1870–1875 m | Box 8 | 0.06 | 0.50 | 0.03 |
Yi 76 Well | 1921–1925 m | Shan 1 | 0.76 | 0.31 | 0.24 |
Yi 76 Well | 1925–1930 m | Shan 1 | 0.78 | 0.50 | 0.39 |
Well Number | Well Depth (m) | Stratum | Maximum Earth Stress | Minimum Earth Stress | Horizontal Stress Differential Coefficient |
---|---|---|---|---|---|
Yi 70 Well | 1320–1323 m | Shan 1 | 17.21 | 10.19 | 0.69 |
Yi 70 Well | 1350–1355 m | Shan 1 | 18.91 | 10.99 | 0.72 |
Yi 70 Well | 1355–1360 m | Shan 1 | 41.88 | 26.12 | 0.60 |
Yi 10-1-26 Well | 2487–2495 m | Shanxi | 22.43 | 15.67 | 0.43 |
Yi 10-1-26 Well | 2503–2512 m | Shanxi | 39.41 | 17.09 | 1.31 |
Yi 10-1-26 Well | 2585–2587 m | Taiyuan | 33.56 | 17.24 | 0.95 |
Yi 10-1-26 Well | 2589–2591 m | Taiyuan | 25.53 | 18.25 | 0.39 |
Yi 76 Well | 1870–1875 m | Box 8 | 34.65 | 24.35 | 0.42 |
Yi 76 Well | 1921–1925 m | Shan 1 | 41.21 | 26.79 | 0.54 |
Yi 76 Well | 1925–1930 m | Shan 1 | 82.13 | 64.87 | 0.27 |
Well Number | Well Depth (m) | The Clay Content | Fracture Toughness |
---|---|---|---|
Yi 70 Well | 1350–1355 m | 0.173 | 0.9941 |
Yi 70 Well | 1320–1323 m | 0.173 | 0.9941 |
Yi 70 Well | 1355–1360 m | 0.173 | 0.9941 |
Yi 76 Well | 1870–1875 m | 0.143 | 0.9972 |
Yi 76 Well | 1925–1930 m | 0.114 | 0.9935 |
Yi 76 Well | 1921–1925 m | 0.175 | 0.993 |
Yi 10-1-26 Well | 2487–2495 m | 0.2412 | 0.993 |
Yi 10-1-26 Well | 2585–2587 m | 0.102 | 0.833 |
Yi 10-1-26 Well | 2589–2591 m | 0.097 | 0.934 |
Yi 10-1-26 Well | 2503–2512 m | 0.243 | 0.993 |
Category | Potential Function | Bifurcation Set |
---|---|---|
Fold catastrophe | ||
Cusp catastrophe | , | |
Swallowtail catastrophe | , , | |
Butterfly catastrophe | , , , |
Well Number | Well Depth (m) | Compressive Strength | Bulk Modulus | Shear Modulus | Brittleness Index | Horizontal-Stress Difference Coefficient | Fracture Toughness |
---|---|---|---|---|---|---|---|
Yi 70 Well | 1320–1323 m | 0.24 | 0.29 | 0.59 | 0.73 | 0.60 | 0.02 |
Yi 70 Well | 1350–1355 m | 0.27 | 0.85 | 0.52 | 1 | 0.57 | 0.02 |
Yi 70 Well | 1355–1360 m | 0.91 | 0.76 | 0.17 | 0.27 | 0.68 | 0.02 |
Yi 10-1-26 Well | 2487–2495 m | 0.17 | 0.23 | 0.90 | 0.76 | 0.85 | 0.03 |
Yi 10-1-26 Well | 2503–2512 m | 0.08 | 0.54 | 0.38 | 0.18 | 0 | 0.03 |
Yi 10-1-26 Well | 2585–2587 m | 0.34 | 0.86 | 0.24 | 0.30 | 0.35 | 1 |
Yi 10-1-26 Well | 2589–2591 m | 0.96 | 0.62 | 0.22 | 0.39 | 0.88 | 0.38 |
Yi 76 Well | 1870–1875 m | 0.08 | 0.83 | 0.28 | 0 | 0.86 | 0 |
Yi 76 Well | 1921–1925 m | 0.50 | 0.87 | 0.30 | 0.27 | 0.74 | 0.03 |
Yi 76 Well | 1925–1930 m | 0.68 | 0.99 | 0.17 | 0.46 | 1 | 0.02 |
Well Number | Well Depth (m) | Stratum | A1 | A2 | A | B1 | B2 | B3 | B4 | B | S |
---|---|---|---|---|---|---|---|---|---|---|---|
Yi 70 Well | 1320–1323 m | Shan 1 | 0.854 | 0.839 | 0.847 | 0.490 | 0.843 | 0.376 | 0.781 | 0.623 | 0.887 |
Yi 70 Well | 1350–1355 m | Shan 1 | 1 | 0.804 | 0.902 | 0.520 | 0.829 | 0.376 | 0.968 | 0.673 | 0.913 |
Yi 70 Well | 1355–1360 m | Shan 1 | 0.520 | 0.554 | 0.537 | 0.954 | 0.879 | 0.376 | 0.947 | 0.789 | 0.829 |
Yi 10-1-26 Well | 2487–2495 m | Shanxi | 0.874 | 0.965 | 0.919 | 0.412 | 0.947 | 0.416 | 0.745 | 0.630 | 0.908 |
Yi 10-1-26 Well | 2503–2512 m | Shanxi | 0.424 | 0.724 | 0.574 | 0.283 | 0 | 0.416 | 0.884 | 0.396 | 0.746 |
Yi 10-1-26 Well | 2585–2587 m | Taiyuan | 0.548 | 0.621 | 0.585 | 0.583 | 0.705 | 1 | 0.970 | 0.815 | 0.850 |
Yi 10-1-26 Well | 2589–2591 m | Taiyuan | 0.624 | 0.604 | 0.614 | 0.980 | 0.958 | 0.785 | 0.909 | 0.908 | 0.876 |
Yi 76 Well | 1870–1875 m | Box 8 | 0 | 0.654 | 0.327 | 0.283 | 0.951 | 0 | 0.963 | 0.549 | 0.696 |
Yi 76 Well | 1921–1925 m | Shan 1 | 0.520 | 0.669 | 0.595 | 0.707 | 0.905 | 0.416 | 0.973 | 0.750 | 0.841 |
Yi 76 Well | 1925–1930 m | Shan 1 | 0.678 | 0.554 | 0.616 | 0.825 | 1 | 0.376 | 0.998 | 0.780 | 0.853 |
Well Number | Well Depth (m) | Stratum | Compressive Strength | Bulk Modulus | Shear Modulus | Brittleness Index | Horizontal-Stress Difference Coefficient | Fracture Toughness | Hydraulic Fracturing- Tendency Index |
---|---|---|---|---|---|---|---|---|---|
Yi 70 Well | 1320–1323 m | Shan 1 | 0.24 | 0.29 | 0.59 | 0.73 | 0.60 | 0.02 | 0.45 |
Yi 70 Well | 1350–1355 m | Shan 1 | 0.27 | 0.85 | 0.52 | 1 | 0.57 | 0.02 | 0.58 |
Yi 70 Well | 1355–1360 m | Shan 1 | 0.91 | 0.76 | 0.17 | 0.27 | 0.68 | 0.02 | 0.44 |
Yi 10-1-26 Well | 2487–2495 m | Shanxi | 0.17 | 0.23 | 0.90 | 0.76 | 0.85 | 0.03 | 0.52 |
Yi 10-1-26 Well | 2503–2512 m | Shanxi | 0.08 | 0.54 | 0.38 | 0.18 | 0 | 0.03 | 0.16 |
Yi 10-1-26 Well | 2585–2587 m | Taiyuan | 0.34 | 0.86 | 0.24 | 0.30 | 0.35 | 1 | 0.48 |
Yi 10-1-26 Well | 2589–2591 m | Taiyuan | 0.96 | 0.62 | 0.22 | 0.39 | 0.88 | 0.38 | 0.57 |
Yi 76 Well | 1870–1875 m | Box 8 | 0.08 | 0.83 | 0.28 | 0 | 0.86 | 0 | 0.26 |
Yi 76 Well | 1921–1925 m | Shan 1 | 0.50 | 0.87 | 0.30 | 0.27 | 0.74 | 0.03 | 0.40 |
Yi 76 Well | 1925–1930 m | Shan 1 | 0.68 | 0.99 | 0.17 | 0.46 | 1 | 0.02 | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, H.; Wang, P.; Qu, Z.; Huang, H.; Wang, L.; Wei, Y.; He, Y. Evaluation of the Hydraulic Fracturing Tendencies of Consolidated Sandstone Reservoirs Based on the Catastrophe Theory. Processes 2024, 12, 1439. https://doi.org/10.3390/pr12071439
Feng H, Wang P, Qu Z, Huang H, Wang L, Wei Y, He Y. Evaluation of the Hydraulic Fracturing Tendencies of Consolidated Sandstone Reservoirs Based on the Catastrophe Theory. Processes. 2024; 12(7):1439. https://doi.org/10.3390/pr12071439
Chicago/Turabian StyleFeng, Haowei, Ping Wang, Zhan Qu, Hai Huang, Liang Wang, Yongsheng Wei, and Yawen He. 2024. "Evaluation of the Hydraulic Fracturing Tendencies of Consolidated Sandstone Reservoirs Based on the Catastrophe Theory" Processes 12, no. 7: 1439. https://doi.org/10.3390/pr12071439
APA StyleFeng, H., Wang, P., Qu, Z., Huang, H., Wang, L., Wei, Y., & He, Y. (2024). Evaluation of the Hydraulic Fracturing Tendencies of Consolidated Sandstone Reservoirs Based on the Catastrophe Theory. Processes, 12(7), 1439. https://doi.org/10.3390/pr12071439