Machine Learning-Based Two-Dimensional Ultraviolet Spectroscopy for Monitoring Protein Structures and Dynamics
Abstract
:1. Introduction
2. Materials and Methods
3. Result and Discussions
3.1. Comparison with Traditional 1DUV Spectroscopy
3.2. Identify the Secondary and Quaternary Structures of Proteins
3.3. Probing Mutations of Proteins
3.4. Monitoring the Aggregation Process of Proteins
3.5. Tracking the Folding Path of Proteins
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marsh, J.A.; Teichmann, S.A. Structure, dynamics, assembly, and evolution of protein complexes. Annu. Rev. Biochem. 2015, 84, 551–575. [Google Scholar] [CrossRef] [PubMed]
- Mangubat-Medina, A.E.; Martin, S.C.; Hanaya, K.; Ball, Z.T. A vinylogous photocleavage strategy allows direct photocaging of backbone amide structure. J. Am. Chem. Soc. 2018, 140, 8401–8404. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Thompson, M.C.; Zhang, Y.; Liu, L.; Fraser, J.S.; Kelly, M.J.S.; Kortemme, T. Expanding the space of protein geometries by computational design of de novo fold families. Science 2020, 369, 1132–1136. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Chang, Y.C.; Lin, B.L.; Huang, C.H.; Tsai, M.D. Temperature-resolved Cryo-EM uncovers structural bases of temperature-dependent enzyme functions. J. Am. Chem. Soc. 2019, 141, 19983–19987. [Google Scholar] [CrossRef]
- Hendricks, N.G.; Julian, R.R. Leveraging ultraviolet photodissociation and spectroscopy to investigate peptide and protein three-dimensional structure with mass spectrometry. Analyst 2016, 141, 4534–4540. [Google Scholar] [CrossRef]
- Ianeselli, A.; Orioli, S.; Spagnolli, G.; Faccioli, P.; Cupellini, L.; Jurinovich, S.; Mennucci, B. Atomic detail of protein folding revealed by an Ab initio reappraisal of circular dichroism. J. Am. Chem. Soc. 2018, 140, 3674–3682. [Google Scholar] [CrossRef]
- Kurki, M.; Nesterenko, A.M.; Alsaker, N.E.; Ferreira, T.M.; Kyllonen, S.; Poso, A.; Bartos, P.; Miettinen, M.S. Solid-state NMR validation of OPLS4: Structure of pc-lipid bilayers and its modulation by dehydration. J. Phys. Chem. B 2024, 128, 4C04719. [Google Scholar] [CrossRef]
- Lins, J.; Miloslavina, Y.A.; Avrutina, O.; Theiss, F.; Hofmann, S.; Kolmar, H.; Buntkowsky, G. Enhancing sensitivity of nuclear magnetic resonance in biomolecules: Parahydrogen-induced hyperpolarization in synthetic disulfide-rich miniproteins. J. Am. Chem. Soc. 2024, 146, 4C11589. [Google Scholar] [CrossRef]
- Carpenter, B.P.; Talosig, A.R.; Mulvey, J.T.; Merham, J.G.; Esquivel, J.; Rose, B.; Ogata, A.F.; Fishman, D.A.; Patterson, J.P. Role of molecular modification and protein folding in the nucleation and growth of protein-metal-organic frameworks. Chem. Mater. 2022, 34, 8336–8344. [Google Scholar] [CrossRef]
- Schmuser, L.; Trefz, M.; Roeters, S.J.; Beckner, W.; Pfaendtner, J.; Otzen, D.; Woutersen, S.; Bonn, M.; Schneider, D.; Weidner, T. Membrane structure of aquaporin observed with combined experimental and theoretical sum frequency generation spectroscopy. Langmuir 2021, 37, 13452–13459. [Google Scholar] [CrossRef]
- Tsoukalou, A.; Abdala, P.M.; Stoian, D.; Huang, X.; Willinger, M.G.; Fedorov, A.; Muller, C.R. Structural evolution and dynamics of an In2O3 catalyst for CO2 hydrogenation to methanol: An operando XAS-XRD and in situ TEM study. J. Am. Chem. Soc. 2019, 141, 13497–13505. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zeng, F. Molecular structure characterization of CS2–NMP extract and residue for malan bituminous coal via solid-state 13C NMR, FTIR, XPS, XRD, and camd techniques. Energy Fuels 2020, 34, 12142–12157. [Google Scholar] [CrossRef]
- Stager, M.A.; Peroza, C.; Villaumie, J.; Bilham, C.; Desmond, C.; Harris, M.; Sambasivan, R.; Rowe, G.; Chen, L.; Tucker, C. Optimizing industrial solid-phase peptide synthesis: Integration of Raman spectroscopy as process analytical technology. Org. Process Res. Dev. 2024, 28, 4C00432. [Google Scholar] [CrossRef]
- Biter, A.B.; Pollet, J.; Chen, W.H.; Strych, U.; Hotez, P.J.; Bottazzi, M.E. A method to probe protein structure from UV absorbance spectra. Anal. Biochem. 2019, 587, 113450. [Google Scholar] [CrossRef]
- Prasad, S.; Mandal, I.; Singh, S.; Paul, A.; Mandal, B.; Venkatramani, R.; Swaminathan, R. Near UV-visible electronic absorption originating from charged amino acids in a monomeric protein. Chem. Sci. 2017, 8, 5416–5433. [Google Scholar] [CrossRef]
- Van, Q.N.; Issaq, H.J.; Jiang, Q.; Li, Q.; Muschik, G.M.; Waybright, T.J.; Lou, H.; Dean, M.; Uitto, J.; Veenstra, T.D. Comparison of 1D and 2D NMR spectroscopy for metabolic profiling. J. Proteome Res. 2008, 7, 630–639. [Google Scholar] [CrossRef]
- Zondlo, N.J. SAR by 1D NMR. J. Med. Chem. 2019, 62, 9415–9417. [Google Scholar] [CrossRef]
- Soenarjo, A.L.; Lan, Z.; Sazanovich, I.V.; Chan, Y.S.; Ringholm, M.; Jha, A.; Klug, D.R. The transition from unfolded to folded g-quadruplex DNA analyzed and interpreted by two-dimensional infrared spectroscopy. J. Am. Chem. Soc. 2023, 145, 19622–19632. [Google Scholar] [CrossRef]
- Lai, Z.; Preketes, N.K.; Jiang, J.; Mukamel, S.; Wang, J. Two-dimensional infrared (2DIR) spectroscopy of the peptide Beta3s folding. J. Phys. Chem. Lett. 2013, 4, 1913–1917. [Google Scholar] [CrossRef]
- Ren, H.; Lai, Z.; Biggs, J.D.; Wang, J.; Mukamel, S. Two-dimensional stimulated resonance Raman spectroscopy study of the Trp-cage peptide folding. Phys. Chem. Chem. Phys. 2013, 15, 19457–19464. [Google Scholar] [CrossRef]
- Zhuang, W.; Hayashi, T.; Mukamel, S. Coherent multidimensional vibrational spectroscopy of biomolecules: Concepts, simulations, and challenges. Angew. Chem. Int. Ed. 2009, 48, 3750–3781. [Google Scholar] [CrossRef] [PubMed]
- Ramos, S.; Thielges, M.C. Site-specific 1D and 2D IR spectroscopy to characterize the conformations and dynamics of protein molecular recognition. J. Phys. Chem. B 2019, 123, 3551–3566. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Wu, Y.; Zhang, L. Advancements of two dimensional correlation spectroscopy in protein researches. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2018, 197, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Silbey, R.J. Principles of nonlinear optical spectroscopy by shaul mukamel (university of rochester). Oxford university press: New york. 1995. XVIII + 543 pp. ISBN 0-19-509278-3. J. Am. Chem. Soc. 1996, 118, 12872. [Google Scholar] [CrossRef]
- Dong, H.; Lewis, N.H.; Oliver, T.A.; Fleming, G.R. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy. J. Chem. Phys. 2015, 142, 174201. [Google Scholar] [CrossRef]
- Li, Q.; Giussani, A.; Segarra-Marti, J.; Nenov, A.; Rivalta, I.; Voityuk, A.A.; Mukamel, S.; Roca-Sanjuan, D.; Garavelli, M.; Blancafort, L. Multiple decay mechanisms and 2DUV spectroscopic fingerprints of singlet excited solvated adenine-uracil monophosphate. Chemistry 2016, 22, 7497–7507. [Google Scholar] [CrossRef]
- Tumbic, G.W.; Hossan, M.Y.; Thielges, M.C. Protein dynamics by two-dimensional infrared spectroscopy. Annu. Rev. Anal. Chem. 2021, 14, 299–321. [Google Scholar] [CrossRef]
- Jiang, J.; Mukamel, S. Two-dimensional near-ultraviolet spectroscopy of aromatic residues in amyloid fibrils: A first principles study. Phys. Chem. Chem. Phys. 2011, 13, 2394–2400. [Google Scholar] [CrossRef]
- Consani, C.; Aubock, G.; van Mourik, F.; Chergui, M. Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy. Science 2013, 339, 1586–1589. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with alphafold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Slabinski, L.; Jaroszewski, L.; Rodrigues, A.P.; Rychlewski, L.; Wilson, I.A.; Lesley, S.A.; Godzik, A. The challenge of protein structure determination--lessons from structural genomics. Protein Sci. 2007, 16, 2472–2482. [Google Scholar] [CrossRef] [PubMed]
- Thrall, E.S.; Lee, S.E.; Schrier, J.; Zhao, Y. Machine learning for functional group identification in vibrational spectroscopy: A pedagogical lab for undergraduate chemistry students. J. Chem. Educ. 2021, 98, 3269–3276. [Google Scholar] [CrossRef]
- Oppermann, M.; Spekowius, J.; Bauer, B.; Pfister, R.; Chergui, M.; Helbing, J. Broad-band ultraviolet CD spectroscopy of ultrafast peptide backbone conformational dynamics. J. Phys. Chem. Lett. 2019, 10, 2700–2705. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, K.; Ogunlade, B.; Herndon, L.; Tadesse, L.F.; Kirane, A.R.; Dionne, J.A. From genotype to phenotype: Raman spectroscopy and machine learning for label-free single-cell analysis. ACS Nano 2024, 18, 18101–18117. [Google Scholar] [CrossRef] [PubMed]
- Dixon, K.; Bonon, R.; Ivander, F.; Ale Ebrahim, S.; Namdar, K.; Shayegannia, M.; Khalvati, F.; Kherani, N.P.; Zavodni, A.; Matsuura, N. Using machine learning and silver nanoparticle-based surface-enhanced Raman spectroscopy for classification of cardiovascular disease biomarkers. ACS Appl. Nano Mater. 2023, 6, 15385–15396. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Liu, Z.-P. Machine learning for atomic simulation and activity prediction in heterogeneous catalysis: Current status and future. ACS Catal. 2020, 10, 13213–13226. [Google Scholar] [CrossRef]
- Toyao, T.; Maeno, Z.; Takakusagi, S.; Kamachi, T.; Takigawa, I.; Shimizu, K.-i. Machine learning for catalysis informatics: Recent applications and prospects. ACS Catal. 2019, 10, 2260–2297. [Google Scholar] [CrossRef]
- Grassano, J.S.; Pickering, I.; Roitberg, A.E.; Gonzalez Lebrero, M.C.; Estrin, D.A.; Semelak, J.A. Assessment of embedding schemes in a hybrid machine learning/classical potentials (ML/MM) approach. J. Chem. Inf. Model. 2024, 64, 4047–4058. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, S.; Zhong, K.; Zhang, Y.; Chong, Y.; Zhao, L.; Zhou, H.; Guo, S.; Zhang, G.; Jiang, B.; et al. A machine-learning protocol for ultraviolet protein-backbone absorption spectroscopy under environmental fluctuations. J. Phys. Chem. B 2021, 125, 6171–6178. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, J.; Zhang, Y.; Ye, S.; Zhang, G.; Chen, X.; Jiang, B.; Jiang, J. Accurate machine learning prediction of protein circular dichroism spectra with embedded density descriptors. JACS Au 2021, 1, 2377–2384. [Google Scholar] [CrossRef]
- Ye, S.; Zhong, K.; Huang, Y.; Zhang, G.; Sun, C.; Jiang, J. Artificial intelligence-based amide-II infrared spectroscopy simulation for monitoring protein hydrogen bonding dynamics. J. Am. Chem. Soc. 2024, 146, 2663–2672. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.; Kinzel, V. Near- and far-ultraviolet circular dichroism of the catalytic subunit of adenosine cyclic 5′-monophosphate dependent protein kinase. Biochemistry 1984, 23, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- Kasha, M.; Rawls, H.R.; Ashraf El-Bayoumi, M. The exciton model in molecular spectroscopy. Pure Appl. Chem. 1965, 11, 371–392. [Google Scholar]
- Abramavicius, D.; Palmieri, B.; Mukamel, S. Extracting single and two-exciton couplings in photosynthetic complexes by coherent two-dimensional electronic spectra. J. Chem. Phys. 2008, 357, 79–84. [Google Scholar] [CrossRef]
- Frenkel, J. On the transformation of light into heat in solids. I. Phys. Rev. 1931, 37, 17–44. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, Y.; Zhang, Y.; Yu, Y.J.; Kuang, Y.M.; Zhang, L.; Meng, Q.S.; Luo, Y.; Yang, J.L.; Dong, Z.C.; et al. Visualizing coherent intermolecular dipole-dipole coupling in real space. Nature 2016, 531, 623–627. [Google Scholar] [CrossRef]
- Abramavicius, D.; Palmieri, B.; Voronine, D.V.; Sanda, F.; Mukamel, S. Coherent multidimensional optical spectroscopy of excitons in molecular aggregates; quasiparticle versus supermolecule perspectives. Chem. Rev. 2009, 109, 2350–2408. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, S.; Zhang, J.; Hu, C.; Jiang, J.; Jiang, B. Efficient and accurate simulations of vibrational and electronic spectra with symmetry-preserving neural network models for tensorial properties. J. Phys. Chem. B 2020, 124, 7284–7290. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Kocincova, L.; Jaresova, M.; Byska, J.; Parulek, J.; Hauser, H.; Kozlikova, B. Comparative visualization of protein secondary structures. BMC Bioinform. 2017, 18, 23. [Google Scholar] [CrossRef]
- Chakrabarti, P. On the pathway of the formation of secondary structures in proteins. Proteins 2023, 93, 396–399. [Google Scholar] [CrossRef] [PubMed]
- Abramavicius, D.; Jiang, J.; Bulheller, B.M.; Hirst, J.D.; Mukamel, S. Simulation study of chiral two-dimensional ultraviolet spectroscopy of the protein backbone. J. Am. Chem. Soc. 2010, 132, 7769–7775. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Ma, Z.; Li, Y.; Liu, B.; Li, Z.; Ding, X.; Gao, Y.; Ma, W.; Tang, X.; Li, X.; et al. Gamma-S crystallin gene (CRYGS) mutation causes dominant progressive cortical cataract in humans. J. Med. Genet. 2005, 42, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Golchert, K.J.; Kingsley, C.N.; Brubaker, W.D.; Martin, R.W.; Mukamel, S. Exploring the aggregation propensity of Gammas-crystallin protein variants using two-dimensional spectroscopic tools. J. Phys. Chem. B 2013, 117, 14294–14301. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Piszczek, G.; Wingfield, P.T.; Sergeev, Y.V.; Hejtmancik, J.F. The G18V CRYGS mutation associated with human cataracts increases Gammas-crystallin sensitivity to thermal and chemical stress. Biochemistry 2009, 48, 7334–7341. [Google Scholar] [CrossRef]
- Kreutzer, A.G.; Guaglianone, G.; Yoo, S.; Parrocha, C.M.T.; Ruttenberg, S.M.; Malonis, R.J.; Tong, K.; Lin, Y.F.; Nguyen, J.T.; Howitz, W.J.; et al. Probing differences among Abeta oligomers with two triangular trimers derived from Abeta. Proc. Natl. Acad. Sci. USA 2023, 120, E2219216120. [Google Scholar] [CrossRef]
- Lam, A.R.; Jiang, J.; Mukamel, S. Distinguishing amyloid fibril structures in Alzheimer’s disease (AD) by two-dimensional ultraviolet (2DUV) spectroscopy. Biochemistry 2011, 50, 9809–9816. [Google Scholar] [CrossRef]
- Sian, A.K.; Frears, E.R.; El-Agnaf, O.M.A.; Patel, B.P.; Manca, M.F.; Siligardi, G.; Hussain, R.; Austen, B.M. Oligomerization of β-amyloid of the Alzheimer’s and the Dutch-cerebral-haemorrhage types. Biochem. J. 2000, 349, 299–308. [Google Scholar] [CrossRef]
- Jiang, J.; Mukamel, S. Probing amyloid fibril growth by two-dimensional near-ultraviolet spectroscopy. J. Phys. Chem. B 2011, 115, 6321–6328. [Google Scholar] [CrossRef]
- Jiang, J.; Lai, Z.; Wang, J.; Mukamel, S. Signatures of the protein folding pathway in two-dimensional ultraviolet spectroscopy. J. Phys. Chem. Lett. 2014, 5, 1341–1346. [Google Scholar] [CrossRef]
- Besley, N.A.; Hirst, J.D. Theoretical studies toward quantitative protein circular dichroism calculations. J. Am. Chem. Soc. 1999, 121, 9636–9644. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, S.; Jiang, J.; Yan, T.; Yin, H.; Wang, L.; Zhang, J. Machine Learning-Based Two-Dimensional Ultraviolet Spectroscopy for Monitoring Protein Structures and Dynamics. Processes 2025, 13, 290. https://doi.org/10.3390/pr13020290
Jiang S, Jiang J, Yan T, Yin H, Wang L, Zhang J. Machine Learning-Based Two-Dimensional Ultraviolet Spectroscopy for Monitoring Protein Structures and Dynamics. Processes. 2025; 13(2):290. https://doi.org/10.3390/pr13020290
Chicago/Turabian StyleJiang, Songnan, Jiale Jiang, Tong Yan, Huamei Yin, Lu Wang, and Jinxiao Zhang. 2025. "Machine Learning-Based Two-Dimensional Ultraviolet Spectroscopy for Monitoring Protein Structures and Dynamics" Processes 13, no. 2: 290. https://doi.org/10.3390/pr13020290
APA StyleJiang, S., Jiang, J., Yan, T., Yin, H., Wang, L., & Zhang, J. (2025). Machine Learning-Based Two-Dimensional Ultraviolet Spectroscopy for Monitoring Protein Structures and Dynamics. Processes, 13(2), 290. https://doi.org/10.3390/pr13020290