Influence of Drilling Fluid Temperature, Density, and Salinity on Borehole Stability in Permafrost Strata
Abstract
:1. Introduction
2. Mathematical Model
2.1. Governing Equations for Mass and Heat Transfer in Permafrost Strata
2.1.1. Governing Equation for Seepage in Permafrost Strata
2.1.2. Heat Transfer Equations of Permafrost Strata
2.1.3. Transfer Equation of Dilute Materials
2.1.4. Equation in Solid Mechanics
2.2. Equations for the Physical Parameters of Permafrost Strata
2.2.1. Seepage and Heat Transfer Equations
2.2.2. Physical Parameters of Heat Transfer
2.3. Mechanical Parameters
3. Verification and Establishment of Models
3.1. Model Verification
3.1.1. Verification of the Thermohydrosolid Coupling Model in the Drilling Process
3.1.2. Verification of the Freezing Model of Permafrost
3.2. Numerical Model for Stability of Borehole Walls in Permafrost Strata
4. Influences of the Mass and Heat Transfer Effects of Drilling Fluids on the Stability of Borehole Walls
5. Influences of Different Factors on the Stability of Borehole Walls in Permafrost Strata
5.1. Influences of Drilling Durations
5.2. Influences of Temperature of Drilling Fluids
5.3. Influences of Concentrations of Salt Components in Drilling Fluids
5.4. Influences of Density of Drilling Fluids
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wei, N.; Pei, J.; Li, H.; Zhou, S.; Zhao, J.; Kvamme, B.; Coffin, R.B.; Zhang, L.; Zhang, Y.; Xue, J. Classification of natural gas hydrate resources: Review, application and prospect. Gas Sci. Eng. 2024, 124, 205269. [Google Scholar] [CrossRef]
- Huang, Y.; Li, X.; Liu, X.; Zhai, Y.; Fang, F.; Guo, W.; Qian, C.; Han, L.; Cui, Y.; Jia, Y. Review of the productivity evaluation methods for shale gas wells. J. Pet. Explor. Prod. Technol. 2024, 14, 25–39. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, X.; Zhu, Y.; Li, B.; Huang, X.; Pang, S.; Zhang, S.; Lu, C.; Xiao, R. Effect of permafrost properties on gas hydrate petroleum system in the Qilian Mountains, Qinghai, Northwest China. Environ. Sci. Process. Impacts 2014, 16, 2711–2720. [Google Scholar] [CrossRef]
- Bird, K.J.; Charpentier, R.R.; Gautier, D.L.; Houseknecht, D.W.; Klett, T.R.; Pitman, J.K.; Moore, T.E.; Schenk, C.J.; Tennyson, M.E.; Wandrey, C.R. Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle; US Geological Survey Fact Sheet 2008-3049; US Geological Survey: Baltimore, MD, USA, 2008; 4p. [Google Scholar]
- Li, Y.; Cheng, Y.; Yan, C.; Xue, M.; Niu, C.; Gao, Y.; Wang, T. Simulating the effect of frozen soil thaw on wellhead stability during oil and gas drilling operations in arctic waters. J. Cold Reg. Eng. 2020, 34, 04020026. [Google Scholar] [CrossRef]
- Zhang, S.; Kuang, H.; Jin, Z.; Xu, G. An experimental study of the stress-strain characteristics of frozen silty clay with high moisture content. Hydrogeol. Eng. Geol. 2020, 47, 116–124. [Google Scholar]
- Sun, K.; Tang, L.; Zhou, A.; Ling, X. An elastoplastic damage constitutive model for frozen soil based on the super/subloading yield surfaces. Comput. Geotech. 2020, 128, 103842. [Google Scholar] [CrossRef]
- Yakushev, V.S. Permafrost impact on gas fields development in the Russian onshore Arctic (Yamal Peninsula). In Proceedings of the OTC Arctic Technology Conference, Copenhagen, Denmark, 23–25 March 2015. OTC-25504-MS. [Google Scholar]
- Li, Y.; Cheng, Y.F.; Yan, C.L.; Wang, Z.Y.; Song, L.F. Effects of creep characteristics of natural gas hydrate-bearing sediments on wellbore stability. Pet. Sci. 2021, 19, 220–233. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, Y.; Yan, C.; Song, L.; Zhou, X.; Niu, C. Influence of drilling fluid temperature on borehole shrinkage during drilling operation in cold regions. J. Pet. Sci. Eng. 2020, 190, 107050. [Google Scholar] [CrossRef]
- Perkins, T.K.; Rochon, J.A.; Knowles, C.R. Studies of pressures generated upon refreezing of thawed permafrost around a wellbore. J. Pet. Technol. 1974, 26, 1159–1166. [Google Scholar] [CrossRef]
- Wang, K. Simulation and Analysis of Wellbore Stability in Permafrost Formation with FLAC. Master’s Thesis, University of Alaska Fairbanks, Fairbanks, AK, USA, 2015. [Google Scholar]
- Wang, X.; Wang, Z.; Deng, X.; Sun, B.; Zhao, Y.; Fu, W. Coupled thermal model of wellbore and permafrost in Arctic regions. Appl. Therm. Eng. 2017, 123, 1291–1299. [Google Scholar] [CrossRef]
- Kutasov, I.M.; Eppelbaum, L.V. Time of refreezing of surrounding the wellbore thawed formations. Int. J. Therm. Sci. 2017, 122, 133–140. [Google Scholar] [CrossRef]
- Li, Y.; Yan, C.; Cheng, Y.; Han, S.C.; Gao, Q.; Wei, J. Numerical simulation of wellbore stability in frozen soil during drilling operation. In Proceedings of the 53rd US Rock Mechanics/Geomechanics Symposium, New York, NY, USA, 23–26 June 2019. [Google Scholar]
- Eppelbaum, L.V.; Kutasov, I.M. Well drilling in permafrost regions: Dynamics of the thawed zone. Polar Res. 2019, 38, 1–9. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, J.; Huang, X.; Lv, K.; Geng, Y. A temperature-sensitive polymer with thinner effect as a rheology modifier in deepwater water-based drilling fluids. J. Mol. Liq. 2024, 393, 123536. [Google Scholar] [CrossRef]
- Deng, X.; Pan, S.; Wang, Z.; Ke, K.; Zhang, J. Application of the Darcy-Stefan model to investigate the thawing subsidence around the wellbore in the permafrost region. Appl. Therm. Eng. 2019, 156, 392–401. [Google Scholar] [CrossRef]
- Razali, S.Z.; Yunus, R.; Rashid, S.A.; Lim, H.; Jan, B.M. Review of biodegradable synthetic-based drilling fluid: Progression, performance and future prospect. Renew. Sustain. Energy Rev. 2018, 90, 171–186. [Google Scholar] [CrossRef]
- Liang, L.; Xiong, J.; Liu, X. Experimental study on crack propagation in shale formations considering hydration and wettability. J. Nat. Gas Sci. Eng. 2015, 23, 492–499. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Y.; Li, Z.; Wang, Y.; You, Z. Multiphysics responses of coal seam gas extraction with borehole sealed by active support sealing method and its applications. J. Nat. Gas Sci. Eng. 2022, 100, 104466. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Z.; Ma, P.; Jiang, Y. Analysis of effect factor in shale wellbore stability. In Proceedings of the 47th US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 23–26 June 2013. [Google Scholar]
- Sun, J.; Ning, F.; Lei, H.; Gai, X.; Sánchez, M.; Lu, J.; Li, Y.; Liu, L.; Liu, C.; Wu, N.; et al. Wellbore stability analysis during drilling through marine gas hydrate-bearing sediments in Shenhu area: A case study. J. Pet. Sci. Eng. 2018, 170, 345–367. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, Y.; Yan, C.; Song, L.; Liu, H.; Tian, W.; Ren, X. Mechanical study on the wellbore stability of horizontal wells in natural gas hydrate reservoirs. J. Nat. Gas Sci. Eng. 2020, 79, 103359. [Google Scholar] [CrossRef]
- Wang, H.N.; Chen, X.P.; Jiang, M.J.; Guo, Z.Y. Analytical investigation of wellbore stability during drilling in marine methane hydrate-bearing sediments. J. Nat. Gas Sci. Eng. 2019, 68, 102885. [Google Scholar] [CrossRef]
- Harlan, R.L. Analysis of coupled heat-fluid transport in partially frozen soil. Water Resour. Res. 1973, 9, 1314–1323. [Google Scholar] [CrossRef]
- Wei, J.; Cheng, Y.; Yan, C.; Li, Q.; Han, S.; Ansari, U. Decomposition prevention through thermal sensitivity of hydrate formations around wellbore. Appl. Therm. Eng. 2019, 159, 113921. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, Y.; Yan, C.; Wang, Z.; Zhang, Q.; Zhou, P. Stratum Settlement during Depressurization of Horizontal Wells in Gas Hydrate Reservoirs. Energy Fuels 2021, 35, 14692–14708. [Google Scholar] [CrossRef]
- Taylor, G.S.; Luthin, J.N. A model for coupled heat and moisture transfer during soil freezing. Can. Geotech. J. 1978, 15, 548–555. [Google Scholar] [CrossRef]
- Meng, X.; Zhou, J.; Wei, C.; Zhang, K.; Shen, Z.; Yang, Z. Effects of salinity on soil freezing temperature and unfrozen water content. Rock Soil Mech. 2020, 41, 952–960. [Google Scholar]
- Ghassemi, A.; Zhang, Q. A transient fictitious stress boundary element method for porothermoelastic media. Eng. Anal. Bound. Elem. 2004, 28, 1363–1373. [Google Scholar] [CrossRef]
- Li, S.; Zhang, M.; Pei, W.; Lai, Y. Experimental and numerical simulations on heat-water-mechanics interaction mechanism in a freezing soil. Appl. Therm. Eng. 2018, 132, 209–220. [Google Scholar] [CrossRef]
Parameter | Value | Unit | Parameter | Value | Unit |
---|---|---|---|---|---|
Heat conductivity of water | 0.55 | W·m−1·K−1 | Internal friction angle of thawed soils | 5.1786 | ° |
Heat conductivity of ice | 2.22 | W·m−1·K−1 | Parameter a1 | −22.813 | |
Heat conductivity of soils | 1.383 | W·m−1·K−1 | Parameter a2 | −216.96 | |
Specific heat capacity of water | 4200 | J·kg−1·K−1 | Parameter a3 | −0.0274 | |
Specific heat capacity of ice | 1930 | J·kg−1·K−1 | Parameter a4 | −0.3158 | |
Specific heat capacity of soils | 982 | J·kg−1·K−1 | Parameter a5 | −0.5589 | |
Water density | 1000 | kg/m3 | Parameter a6 | −4.534 | |
Ice density | 920 | kg/m3 | Depth of strata | 500 | m |
Soil density | 2650 | kg/m3 | Initial strata temperature | −5 | °C |
Phase-change latent heat of water | 334 | kJ/kg | Initial strata pressure | 4.9 | MPa |
Initial permeability of soils | 1 × 10−8 | m2 | Overburden pressure | 9.80 | MP |
Initial porosity of soils | 0.37 | Maximum horizontal geostress | 7.11 | MPa | |
Compressibility of water | 4.9 × 10−4 | MPa−1 | Minimum horizontal geostress | 5.80 | MPa |
Compressibility of ice | 4.5 × 10−4 | MPa−1 | Initial ionic concentration | 0 | mol/L |
Compressibility of soils | 1.5 × 10−4 | MPa−1 | Density of drilling fluids | 1.03 | kg/m3 |
Elastic modulus of thawed soils | 106.21 | MPa | Temperature of drilling fluids | 10 | °C |
Cohesion of thawed soils | 0.504 | MPa | Ionic concentration of drilling fluids | 0.5 | mol/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Shi, J.; Cui, Q.; Song, L. Influence of Drilling Fluid Temperature, Density, and Salinity on Borehole Stability in Permafrost Strata. Processes 2025, 13, 297. https://doi.org/10.3390/pr13020297
Li Y, Shi J, Cui Q, Song L. Influence of Drilling Fluid Temperature, Density, and Salinity on Borehole Stability in Permafrost Strata. Processes. 2025; 13(2):297. https://doi.org/10.3390/pr13020297
Chicago/Turabian StyleLi, Yang, Jihui Shi, Qiang Cui, and Lifang Song. 2025. "Influence of Drilling Fluid Temperature, Density, and Salinity on Borehole Stability in Permafrost Strata" Processes 13, no. 2: 297. https://doi.org/10.3390/pr13020297
APA StyleLi, Y., Shi, J., Cui, Q., & Song, L. (2025). Influence of Drilling Fluid Temperature, Density, and Salinity on Borehole Stability in Permafrost Strata. Processes, 13(2), 297. https://doi.org/10.3390/pr13020297