Real-Time Temperature Prediction Model for Online Continuous Casting Control Using Simplified Boundary Condition Computing Method
Abstract
:1. Introduction
2. Related Work
3. Methods
3.1. On-Site Data Perception
3.2. Heat Transfer Model
3.2.1. Heat Conduction Equation
3.2.2. Initial Condition
3.2.3. Boundary Condition
- Boundary conditions in mold
- 2.
- Boundary conditions in secondary cooling zones
3.2.4. Solution of the Model
4. Experimentation and Field Application
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, J.; Xie, Z.; Meng, H.; Hu, Z.; Liu, W.; Ji, Z. 3D transient heat transfer simulation and optimization for initial stage of steel continuous casting process. ISIJ Int. 2023, 63, 862–869. [Google Scholar] [CrossRef]
- Thomas, B.G. Review on modeling and simulation of continuous casting. Steel Res. Int. 2018, 89, 1700312. [Google Scholar] [CrossRef]
- Miłkowska-Piszczek, K.; Rywotycki, M.; Falkus, J.; Kwinta, G. Experimental determination of the shell thickness within the primary cooling zone in the continuous casting process. Ironmak. Steelmak. 2021, 48, 1102–1109. [Google Scholar] [CrossRef]
- Zhang, C.-J.; Bao, Y.-P.; Wang, M.; Zhang, L.-C. Study of effective transient thermal resistances of different heat transfer sections during solidification of steel ingot. Steel Res. Int. 2017, 88, 1600268. [Google Scholar] [CrossRef]
- Moro, L.; Novak, J.S.; Benasciutti, D.; de Bona, F. How Material Properties Affect the Thermal Distortion of a Mold for Continuous Casting of Steel. Key Eng. Mater. 2018, 774, 429–434. [Google Scholar] [CrossRef]
- Wang, X.; Guo, Y.; Xiao, P.; Zhu, L.; Di, T. Influence of the Slag Rim on the Heat Transfer Behavior of a Mold. ISIJ Int. 2023, 63, 639–648. [Google Scholar]
- Wang, Z.; Li, Y.; Wang, X.; Li, X.; Yue, Q.; Xiao, H. Channel-type induction heating tundish technology for continuous casting: A review. Materials 2023, 16, 493. [Google Scholar] [CrossRef]
- Kwon, S.-H.; Hong, D.-G.; Yim, C.-H. Prediction of hot ductility of steels from elemental composition and thermal history by deep neural networks. Ironmak. Steelmak. 2020, 47, 1176–1187. [Google Scholar] [CrossRef]
- Kaitian, Z.; Zheng, Z.; Liu, J.; Zhang, L.; You, D. Comprehensive evaluation method for cooling effect on process thermal dissipation rate during continuous casting mold. ISIJ Int. 2023, 63, 649–659. [Google Scholar]
- Ma, J.; Wang, B.; Zhang, D.; Song, W. Optimization of secondary cooling water distribution for improving the billet quality for a small caster. ISIJ Int. 2018, 58, 915–920. [Google Scholar] [CrossRef]
- Ma, H.; Lee, J.; Tang, K.; Liu, R.; Lowry, M.; Silaen, A.; Zhou, C.Q. Modeling of spray cooling with a moving steel slab during the continuous casting process. Steel Res. Int. 2019, 90, 1800393. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, Q.; Zhang, L.; Yang, X.; Yang, W.; Ren, Y.; Zhang, H. Formation and control of transverse corner cracks in the continuous casting slab of a microalloyed steel. Steel Res. Int. 2021, 92, 2000649. [Google Scholar] [CrossRef]
- Brezina, M.; Mauder, T.; Klimes, L.; Stetina, J. Comparison of optimization-regulation algorithms for secondary cooling in continuous steel casting. Metals 2021, 11, 237. [Google Scholar] [CrossRef]
- Vynnycky, M. Applied mathematical modelling of continuous casting processes: A review. Metals 2018, 8, 928. [Google Scholar] [CrossRef]
- Falkus, J.; Miłkowska-Piszczek, K. Developing continuous-casting-process control based on advanced mathematical modelling. Mater. Tehnol. 2015, 49, 903–912. [Google Scholar] [CrossRef]
- Han, Y.; Yan, W.; Zhang, J.; Chen, W.; Chen, J.; Liu, Q. Optimization of thermal soft reduction on continuous-casting billet. ISIJ Int. 2020, 60, 106–113. [Google Scholar] [CrossRef]
- Siddiqui, I.H.; Albaqami, A.; Arifudin, L.; Alluhydan, K.; Alnaser, I.A. Simulation of inclusion particle motion behavior under interfacial tension in continuous casting mold. Materials 2022, 15, 7458. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, B.; Liu, S.; Zhong, L.; Shen, S.; Chen, Z.; Zhang, J. Thermomechanical analysis of the effects of water distribution on cracks during vertical continuous casting under soft reduction conditions. Adv. Mater. Sci. Eng. 2020, 1, 5353690. [Google Scholar] [CrossRef]
- Huo, W.; Zhang, C.; Zhang, Y.; Li, X. Numerical Simulation of Mold Slag Entrapment Behavior in Nonoriented Silicon Steel Production Process. Processes 2024, 12, 167. [Google Scholar] [CrossRef]
- Chen, X.; Deng, W.; Niu, S. Industrial application of mechanical reduction on continuous casting of bearing steel bloom. Processes 2021, 9, 2280. [Google Scholar] [CrossRef]
- Ji, C.; Deng, S.; Guan, R.; Zhu, M. Real-time heat transfer model based on distributed thermophysical property calculation for the continuous casting process. Steel Res. Int. 2018, 90, 1800476. [Google Scholar] [CrossRef]
- Yang, J.; Meng, X.; Zhu, M. Transient thermo-fluid and solidification behaviors in continuous casting mold: Oscillation behaviors. ISIJ Int. 2018, 58, 2071–2078. [Google Scholar] [CrossRef]
- Ding, Z.; Xue, Y.; Zhang, L.; Li, C.; Wang, S.; Ni, G. Study on Mushy Zone Coefficient in Solidification Heat Transfer Mathematical Model of Thin Slab with High Casting Speed. Processes 2023, 11, 3108. [Google Scholar] [CrossRef]
- Preuler, L.; Louhenkilpi, S.; Bernhard, C.; Ilie, S.; Taferner, M. Utilization of Experimental Data as Boundary Conditions for the Solidification Model Tempsimu-3D. Berg-Und Hüttenmännische Monatshefte BHM 2020, 165, 237–242. [Google Scholar] [CrossRef]
- Bernhard, M.; Santos, G.; Preuler, L.; Taferner, M.; Wieser, G.; Laschinger, J.; Ilie, S.; Bernhard, C. A Near-Process 2D Heat-Transfer Model for Continuous Slab Casting of Steel. Steel Res. Int. 2022, 93, 2200089. [Google Scholar] [CrossRef]
- Kong, Y.; Chen, D.; Liu, Q.; Chen, H.; Long, M. Research on the On-Line Simulation of a Three-Dimensional Temperature Field Model of Slab Continuous Casting. Steel Res. Int. 2018, 89, 1800091. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, G.; Zeng, J.; Wu, C. Investigation of Solidification Heat Transfer in Slab Continuous Casting Process Based on Different Roll Contact Calculation Methods. Materials 2024, 17, 482. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, Z. An Automated Control System for the Continuous Casting of Blooms. In Proceedings of the Third International Conference on Intelligent Networks and Intelligent Systems IEEE, Shenyang, China, 1–3 November 2010; Volume 3, pp. 261–264. [Google Scholar]
- Petrus, B.; Chen, Z.; Bentsman, J.; Thomas, B.G. Investigating dynamic thermal behavior of continuous casting of steel with Conoffline. Metall. Mater. Trans. 2020, 51, 2917–2934. [Google Scholar] [CrossRef]
- Nozaki, T.; Matsuno, J.I.; Murata, K.; Ooi, H.; Kodama, M. A secondary cooling pattern for preventing surface cracks of continuous casting slab. Trans. Iron Steel Inst. Jpn. 1978, 18, 330–338. [Google Scholar] [CrossRef]
- Kocer, A.; Ercan, U.; Yetgin, Z.; Karaomerlioglu, F. Development of a New Correlation Model for Heat Transfer in Solar Air Heater with Corrugated Absorber Plates Using Swarm Optimization. Appl. Sci. 2024, 14, 10556. [Google Scholar] [CrossRef]
Sensors/Devices | Accuracy | Signal/Parameter Range | Reading Frequency | Writing Frequency |
---|---|---|---|---|
Electromagnetic flowmeters for cooling water | ±0.5% | 4~20 mA DC | 1 s | |
Temperature sensor for cooling water | ±0.05 °C | 10–65 °C | 1 s | |
Temperature measurement device for molten steel | ±2 °C | 800–1650 °C | 1 s | |
Position coders | - | - | 1 s | |
Water flow regulating valves | ±0.5% | 4~20 mA DC | 3 s |
Type | Heat Transfer by | Calculation Method |
---|---|---|
1 | Roll contact | |
2 | Radiation | |
3 | Spray water | |
4 | water accumulation evaporation |
Items | Unit | Values |
---|---|---|
Radius of the machine | m | 9.5 |
Number of strands | 2 | |
Slab width | mm | 1200–1800 |
Slab thickness | mm | 230 |
Length of caster | m | 34.545 |
Length of each secondary cooling zone | mm | Zone 1: 540; Zone 2: 948; Zone 3: 2208; Zone 4: 1855; Zone 5: 1855; Zone 6: 3871; Zone 7: 4017; Zone 8: 4215; Zone 9: 6300; Zone 10: 7666 |
Casting speed | m/min | 0.7–1.5 |
Composition | C | S1 | Mn | P | S | Ni | Cr | N | Ti |
---|---|---|---|---|---|---|---|---|---|
Mass fraction (%) | 0.15 | 0.30 | 1.35 | 0.02 | 0.003 | 0.02 | 0.06 | 0.004 | 0.012 |
Zone | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
−0.0004 | 0 | 0.0001 | −0.0003 | −0.0004 | −0.0013 | −0.0094 | −0.0102 | −0.0197 | 0.1373 | |
0.038 | 0.0114 | 0.0131 | 0.0570 | 0.0397 | 0.0647 | 0.1697 | 0.2190 | 0.2319 | 0.1995 | |
−0.3208 | −0.1799 | −0.1484 | −0.2383 | −0.1870 | −0.2016 | −0.3245 | −0.0557 | −0.2741 | −0.5919 | |
- | 0.071 | 0.049 | 0.015 | 0.003 | 0.006 | 0.003 | 0.029 | 0.016 | 0.018 | 0.021 |
Item | Pos 1 | Pos 2 | Pos 3 | Pos 4 | Pos 5 |
---|---|---|---|---|---|
Distance from center (mm) | 0 | 100 | 350 | 630 | 750 |
Test time1 (°C) | 861 | 866 | 862 | 866 | 817 |
Test time2 (°C) | 860 | 870 | 853 | 857 | 814 |
Test time3 (°C) | 866 | 862 | 858 | 860 | 810 |
Test time4 (°C) | 865 | 864 | 860 | 871 | 820 |
Test time5 (°C) | 871 | 867 | 868 | 869 | 813 |
Test time6 (°C) | 868 | 872 | 861 | 858 | 814 |
Average of tested (°C) | 865 | 867 | 860 | 864 | 815 |
Model-predicted temperature (°C) | 879 | 875 | 869 | 871 | 820 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; Sharif, J.M. Real-Time Temperature Prediction Model for Online Continuous Casting Control Using Simplified Boundary Condition Computing Method. Processes 2025, 13, 305. https://doi.org/10.3390/pr13020305
Guo S, Sharif JM. Real-Time Temperature Prediction Model for Online Continuous Casting Control Using Simplified Boundary Condition Computing Method. Processes. 2025; 13(2):305. https://doi.org/10.3390/pr13020305
Chicago/Turabian StyleGuo, Shengrong, and Johan Mohamad Sharif. 2025. "Real-Time Temperature Prediction Model for Online Continuous Casting Control Using Simplified Boundary Condition Computing Method" Processes 13, no. 2: 305. https://doi.org/10.3390/pr13020305
APA StyleGuo, S., & Sharif, J. M. (2025). Real-Time Temperature Prediction Model for Online Continuous Casting Control Using Simplified Boundary Condition Computing Method. Processes, 13(2), 305. https://doi.org/10.3390/pr13020305