A New Model to Predict Mudstone Failure Behavior from Brittle to Ductile Caused by Confining Pressures
Abstract
:1. Introduction
2. Rock Physical–Mechanical Property Test in the Laboratory
2.1. Rock Sample Description and Preparation
2.2. Experimental Methods
2.3. Results
3. Numerical Simulation of Mechanical Deformation of Mudstone with High Confining Pressure
3.1. Deformation and Numerical Modelling Methodologies
3.2. Numerical Modelling Results
- (1)
- Numerical Model Calibration by Comparison between Numerical Results and Experimental Tests
- (2)
- Mechanical Failure Behavior of Mudstone under High Confining Pressure
4. Discussions
4.1. Mudstone Failure Mechanism with Increasing Confining Pressure
- (1)
- Failure Mechanism At Low Confining Pressures
- (2)
- Failure Mechanism At High Confining Pressures
4.2. A New Model to Predict Brittle–Ductile Failure Behavior of Mudstone
4.3. Predicting the Brittle–Ductile Failure Behavior of Mudstone from the Kuqa Depression with Increasing Confining Pressure Based on the New Model
5. Conclusions
- (1)
- Laboratory experiments and numerical modeling are performed to study the mudstone caprocks from the Dongqiu Anticline of the Kuqa Depression in northern China. Based on the code FLAC3D, by adjusting the numerical model grid number and loading rate in the numerical experiments, the numerical model captures the stress–strain behavior and failure modes demonstrated by the laboratory experiments, and a reasonable numerical model is constructed for the mudstone specimen.
- (2)
- A new model to predict brittle–ductile failure behavior of rocks is proposed by exploring the failure mechanism of mudstone under varying confining pressures. At low confining pressure, a shear dilatancy fracture appears in rock deformation, and the failure modes mainly develop high-angle shear fractures (fracture angle θ > 45°) or high-angle conjugate shear fractures, exhibiting obvious brittle failure. At high confining pressures, a shear compaction fracture develops, and the fracture modes are shown as low-angle shear fractures (fracture angle θ <45°) or low-angle conjugate shear fractures, which are regarded as brittle–ductile transition failure behavior. In the ductile failure region, cataclastic or ductile flow occurs. The critical confining pressure values at the beginning of the brittle–ductile transition predicted by the new model are greater than those predicted by the conventional model. However, the new model provides a better understanding of the failure behavior as confining pressure increases.
- (3)
- Based on the new model, the brittle–ductile failure behavior of mudstone from the Kuqa Depression is predicted with increasing confining pressure. The brittle failure mainly occurs at confining pressure less than 60 MPa with peak strain less than 5%. The brittle–ductile transition failure is exhibited in rock deformation at confining pressure greater than 60 MPa with peak strain greater than 5%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, T.T.; Zhang, T.; Ranjith, P.G.; Li, Y.W.; Song, Z.L.; Wang, S.; Zhao, W.C. A new approach to the evaluation of rock mass rupture and brittleness under triaxial stress condition. J. Pet. Sci. Eng. 2020, 184, 106482. [Google Scholar] [CrossRef]
- Gui, J.; Guo, J.; Sang, Y.; Chen, Y.; Ma, T.; Ranjith, P.G. Evaluation on the anisotropic brittleness index of shale rock using geophysical logging. Petroleum 2023, 9, 545–557. [Google Scholar] [CrossRef]
- Xu, W.; Qu, X.; Yan, L.; Ning, Y. Experimental Study on Mechanical Properties and Permeability Characteristics of Calcareous Mudstone under Different Confining Pressures. Materials 2024, 17, 2731. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-L.; Zhu, Q.-Z.; Zhao, L.-Y.; Yu, Q.-J.; Zhang, J.; Cao, Y.-J. Experimental investigation and micromechanics-based constitutive modeling of the transition from brittle to ductile behavior in saturated low-porosity rocks. Appl. Math. Model. 2024, 126, 506–525. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, S.; Guo, P.; Zhang, S. Mechanical Deformation, Acoustic Emission Characteristics, and Microcrack Development in Porous Sandstone During the Brittle–Ductile Transition. Rock Mech. Rock Eng. 2023, 56, 9099–9120. [Google Scholar] [CrossRef]
- Rutter, E.H.; Glover, C.T. The deformation of porous sandstones; are Byerlee friction and the critical state line equivalent. J. Struct. Geol. 2012, 44, 129–140. [Google Scholar] [CrossRef]
- Li, Q.; Cheng, Y.; Li, Q.; Zhang, C.; Ansari, U.; Song, B. Establishment and evaluation of strength criterion for clayey silt hydrate-bearing sediments. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 40, 742–750. [Google Scholar] [CrossRef]
- He, M.; Zuo, J.; Yuan, Z.; Ma, X.; Zhang, Z.; Ma, C. Criterion for residual strength and brittle-ductile transition of brittle rock under triaxial stress conditions. Geoenergy Sci. Eng. 2024, 243, 213340. [Google Scholar] [CrossRef]
- Shen, Y.; Yuan, J.; Hou, X.; Hao, J.; Bai, Z. The strength changes and failure modes of high-temperature granite subjected to cooling shocks. Geomech. Geophys. Geo-Energy Geo-Resour. 2021, 7, 23. [Google Scholar] [CrossRef]
- Sitzia, F.; Pires, V.; Lisci, C. Exploring the Mechanical Properties of Stone Heritage: Investigating the Effects of Low Temperatures on Ductile—Brittle Transition. Geoheritage 2023, 15, 123. [Google Scholar] [CrossRef]
- Qiu, G.; Chang, X.; Li, J.; Guo, Y.; Wang, L.; Ma, H.; Guo, W.; Bi, Z. Study on rock brittleness characteristics of deep volcanic reservoir under different confining pressures. J. Pet. Explor. Prod. Technol. 2023, 14, 453–476. [Google Scholar] [CrossRef]
- Wang, J.; Du, J.; Li, W.; Chen, X.; Zhang, H.; Wang, T.; Li, Z.; Hao, R. Brittleness index evaluation of gas-bearing sandstone under triaxial compression conditions. Geomech. Geophys. Geo-Energy Geo-Resour. 2023, 9, 160. [Google Scholar] [CrossRef]
- Iyare, U.C.; Blake, O.O.; Ramsook, R. Modelling the Failure Behaviour of Mudstones under High Pressures. Rock Mech. Rock Eng. 2021, 54, 2815–2828. [Google Scholar] [CrossRef]
- Lei, W.; Liu, X.; Ding, Y.; Xiong, J.; Liang, L. The investigation on shale mechanical characteristics and brittleness evaluation. Sci. Rep. 2023, 13, 22936. [Google Scholar] [CrossRef]
- Wang, H.; Wu, T.; Fu, X.; Liu, B.; Wang, S.; Jia, R. Quantitative determination of the brittle–ductile transition characteristics of caprocks and its geological significance in the kuqa depression, tarim basin, western China. J. Pet. Sci. Eng. 2019, 173, 492–500. [Google Scholar] [CrossRef]
- Paterson, M.S.; Wong, T.F. Experimental Rock Deformation—The Brittle Field, 2nd ed.; Spinger: New York, NY, USA, 2005. [Google Scholar]
- Engelder, T.; Behr, R.A. Skempton’s poroelastic relaxation: The mechanism that accounts for the distribution of pore pressure and exhumation-related fractures in black shale of the appalachian basin. AAPG Bull. 2021, 105, 669–694. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, W.; Fu, X.; Zhang, Z.; Wang, T.; Ge, J. A universal method for quantitatively evaluating rock brittle-ductile transition behaviors. J. Pet. Sci. Eng. 2020, 195, 107774. [Google Scholar] [CrossRef]
- Zhao, G.; Guo, Y.; Yang, C.; Wang, L.; Guo, W.; Yang, H.; Wu, X.; Liu, H. Anisotropic mechanical behavior of ultra-deep shale under high in-situ stress, a case study in the Luzhou block of the southern Sichuan Basin, China. Int. J. Rock Mech. Min. Sci. 2023, 170, 105536. [Google Scholar] [CrossRef]
- Herrmann, J.; Rybacki, E.; Sone, H.; Dresen, G. Deformation experiments on bowland and posidonia shale—Part i: Strength and young’s modulus at ambient and in situ pc-T conditions. Rock Mech. Rock Eng. 2018, 51, 3645–3666. [Google Scholar] [CrossRef]
- Evans, B.; Fredrich, J.T.; Wong, T.-F. The Brittle-Ductile Transition in Rocks: Recent Experimental and Theoretical Progress. In The Brittle-Ductile Transition in Rocks; American Geophysical Union (AGU): Washington, DC, USA, 2013. [Google Scholar]
- Chelidze, T.; Matcharashvili, T.; Abashidze, V.; Tsaguria, T.; Dovgal, N.; Zhukova, N. Complex dynamics of fault zone deformation under large dam at various time scales. Geomech. Geophys. Geo-Energy Geo-Resour. 2019, 5, 437–455. [Google Scholar] [CrossRef]
- Fossen, H.; Schultz, R.A.; Shipton, Z.K.; Mair, K. Deformation bands in sandstone: A review. J. Geol. Soc. 2007, 164, 755–769. [Google Scholar] [CrossRef]
- Griffith, A.A. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. 1920, A221, 163–198. [Google Scholar]
- Li, H.; Pel, L.; You, Z.; Smeulders, D. Stress-dependent instantaneous cohesion and friction angle for the Mohr–Coulomb criterion. Int. J. Mech. Sci. 2024, 283, 109652. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Y.; Cai, M.; Zhao, W.; Ranjith, P.G.; Liu, M. Optimization of rock failure criteria under different fault mechanisms and borehole trajectories. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 127. [Google Scholar] [CrossRef]
- De Paola, N.; Faulkner, D.R.; Collettini, C. Brittle versus ductile deformation as the main control on the transport properties of low-porosity anhydrite rocks. J. Geophys. Res. Solid Earth 2009, 114, 1–17. [Google Scholar] [CrossRef]
- Fu, X.F.; Song, Y.; Lv, Y.F.; Sun, Y.H. Rock mechanic characteristics of gysum cover and conservation function to gas in the Kuqa depression, the Tarim basin. Pet. Geol. Exp. 2006, 28, 25–29. [Google Scholar]
- Eberl, D.D. User’s Guide to RockJock—A Program for Determining Quantitative Mineralogy from Powder X-Ray Diffraction Data; U.S. Geological Survey Open-File Report 03-78; USGS: Reston, VA, USA, 2003; pp. 40–42. [Google Scholar]
- Liu, G.; Shang, D.; Zhao, Y.; Du, X. Characterization of brittleness index of gas shale and its influence on favorable block exploitation in southwest China. Front. Earth Sci. 2024, 12, 1389378. [Google Scholar] [CrossRef]
- Shi, L.; Zeng, Z.; Fang, Z.; Li, X. Investigation of the effect of confining pressure on the mechanics-permeability behavior of mudstone under triaxial compression. Geofluids 2019, 219, 1–14. [Google Scholar] [CrossRef]
- Itasca. Fast Lagrangian Analysis of Continua in 3 Dimensions, User Manual, version 3.1; Itasca Consulting Group, Inc.: Minneapolis, MN, USA, 2005.
- Li, Q.; Liu, L.; Yu, B.; Guo, L.; Shi, S.; Miao, L. Borehole enlargement rate as a measure of borehole instability in hydrate reservoir and its relationship with drilling mud density. J. Pet. Explor. Prod. 2021, 11, 1185–1198. [Google Scholar] [CrossRef]
- Strayer, L.M.; Hudleston, P.J.; Lorig, L.J. A numerical model of deformation and fluid-flow in an evolving thrust wedge. Tectonophysics 2001, 335, 121–145. [Google Scholar] [CrossRef]
- He, Z.M.; Lin, H.; Zhou, L.J. The Numerical Modelling for the Stress Characteristic of Stratified Rock Samples under Uniaxial Compression. In Proceedings of the Geohunan International Conference, Changsha, China, 9–11 June 2011. [Google Scholar]
- Hwang, R.H.; Yang, T.H.; Yu, Q.L. Numerical Simulation of Effect of Fracture Distribution on Failure Mechanism of Tunnel. Adv. Mater. Res. 2012, 446–449, 652–656. [Google Scholar] [CrossRef]
- Zhang, H.; Li, C.C. Effects of confining stress on the post-peak behaviour and fracture angle of fauske marble and iddeford granite. Rock Mech. Rock Eng. 2019, 52, 1377–1385. [Google Scholar] [CrossRef]
- Cheng, G.; Jiang, B.; Li, F.; Li, M.; Song, Y.; Hou, C. Experimental study on brittle-to-ductile transition mechanism of lower Silurian organic-rich shale in south China. Int. J. Rock Mech. Min. Sci. 2023, 170, 105543. [Google Scholar] [CrossRef]
Sample Number | Confining Pressure | Young Modulus | Poisson Ratio | Differential Stress Strength | Bulk Modulus | Shear Modulus |
---|---|---|---|---|---|---|
[MPa] | [GPa] | [MPa] | [GPa] | [GPa] | ||
1# | 0 | 3.56 | 0.23 | 28 | 2.2 | 1.45 |
2# | 10 | 9.12 | 0.17 | 106.7 | 4.61 | 3.90 |
3# | 20 | 11.76 | 0.16 | 125.3 | 5.76 | 5.07 |
4# | 40 | 15.74 | 0.17 | 196.7 | 7.95 | 6.73 |
Confining Pressure | Rock Strength | Cohesion | Internal Friction Angle | Tensile Strength |
---|---|---|---|---|
[MPa] | [MPa] | [MPa] | [°] | [MPa] |
0 | 28 | 8.96 | 37.72 | 4.48 |
10 | 106.7 | |||
20 | 125.3 | |||
40 | 196.7 |
εP (%) | Wc | Wφ |
---|---|---|
0 | 1 | 0 |
5 | 0.5 | 3.0 |
10 | 0.5 | 2.0 |
100 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Xu, K.; Zhao, W.; Fu, X.; Lu, X.; Song, Z. A New Model to Predict Mudstone Failure Behavior from Brittle to Ductile Caused by Confining Pressures. Processes 2025, 13, 308. https://doi.org/10.3390/pr13020308
Wang S, Xu K, Zhao W, Fu X, Lu X, Song Z. A New Model to Predict Mudstone Failure Behavior from Brittle to Ductile Caused by Confining Pressures. Processes. 2025; 13(2):308. https://doi.org/10.3390/pr13020308
Chicago/Turabian StyleWang, Sheng, Kaizhou Xu, Wanchun Zhao, Xiaofei Fu, Xuesong Lu, and Zhenlong Song. 2025. "A New Model to Predict Mudstone Failure Behavior from Brittle to Ductile Caused by Confining Pressures" Processes 13, no. 2: 308. https://doi.org/10.3390/pr13020308
APA StyleWang, S., Xu, K., Zhao, W., Fu, X., Lu, X., & Song, Z. (2025). A New Model to Predict Mudstone Failure Behavior from Brittle to Ductile Caused by Confining Pressures. Processes, 13(2), 308. https://doi.org/10.3390/pr13020308