Unveiling the Potential of Room-Temperature Synthesis of a Mixed-Linker Zeolitic Imidazolate Framework-76 for CO2 Capture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Synthesis of ZIF-76
2.2.2. Characterization
2.2.3. Single-CO2 Adsorption Analysis
2.2.4. Isotherm Modeling of CO2 Adsorption by MOFs
- Langmuir isotherm
- Freundlich isotherm
- Temkin isotherm
- Redlich–Peterson isotherm
- Sips isotherm
- Toth isotherm
2.2.5. Kinetic Modeling of CO2 Adsorption by MOFs
3. Results and Discussion
3.1. XRD Analysis
3.2. Functional Group Analysis
3.3. Textural Properties
3.4. Morphology
3.5. CO2 Adsorption by ZIF-76
3.6. Adsorption Isotherm and Kinetic Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mondal, S.S.; Hovestadt, M.; Dey, S.; Paula, C.; Glomb, S.; Kelling, A.; Schilde, U.; Janiak, C.; Hartmann, M.; Holdt, H.-J. Synthesis of a partially fluorinated ZIF-8 analog for ethane/ethene separation. CrystEngComm 2017, 19, 5882–5891. [Google Scholar] [CrossRef]
- Tranchemontagne, D.J.; Mendoza-Cortés, J.L.; O’keeffe, M.; Yaghi, O.M. Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1257–1283. [Google Scholar] [CrossRef]
- Duan, C.; Yu, Y.; Hu, H. Recent progress on synthesis of ZIF-67-based materials and their application to heterogeneous catalysis. Green Energy Environ. 2022, 7, 3–15. [Google Scholar] [CrossRef]
- Paul, A.; Banga, I.K.; Muthukumar, S.; Prasad, S. Engineering the ZIF-8 pore for electrochemical sensor applications—A mini review. ACS Omega 2022, 7, 26993–27003. [Google Scholar] [CrossRef]
- Kalauni, K.; Vedrtnam, A.; Wdowin, M.; Chaturvedi, S. ZIF for CO2 Capture: Structure, Mechanism, Optimization, and Modeling. Processes 2022, 10, 2689. [Google Scholar] [CrossRef]
- Lai, Z. Development of ZIF-8 membranes: Opportunities and challenges for commercial applications. Curr. Opin. Chem. Eng. 2018, 20, 78–85. [Google Scholar] [CrossRef]
- Ferreira, T.J.; de Moura, B.A.; Esteves, L.M.; Reis, P.M.; Esperança, J.M.; Esteves, I.A. Biocompatible ammonium-based ionic liquids/ZIF-8 composites for CO2/CH4 and CO2/N2 separations. Sustain. Mater. Technol. 2023, 35, e00558. [Google Scholar] [CrossRef]
- Jones, C.G.; Stavila, V.; Conroy, M.A.; Feng, P.; Slaughter, B.V.; Ashley, C.E.; Allendorf, M.D. Versatile synthesis and fluorescent labeling of ZIF-90 nanoparticles for biomedical applications. ACS Appl. Mater. Interfaces 2016, 8, 7623–7630. [Google Scholar] [CrossRef] [PubMed]
- Åhlén, M.; Jaworski, A.; Strømme, M.; Cheung, O. Selective adsorption of CO2 and SF6 on mixed-linker ZIF-7–8s: The effect of linker substitution on uptake capacity and kinetics. Chem. Eng. J. 2021, 422, 130117. [Google Scholar] [CrossRef]
- Cubillas, P.; Anderson, M.W.; Attfield, M.P. Materials discovery and crystal growth of zeolite A type zeolitic–imidazolate frameworks revealed by atomic force microscopy. Chem.–Eur. J. 2013, 19, 8236–8243. [Google Scholar] [CrossRef] [PubMed]
- Altarawneh, S.; Behera, S.; Jena, P.; El-Kaderi, H.M. New insights into carbon dioxide interactions with benzimidazole-linked polymers. Chem. Commun. 2014, 50, 3571–3574. [Google Scholar] [CrossRef]
- Peralta, D.; Chaplais, G.; Simon-Masseron, A.; Barthelet, K.; Pirngruber, G.D. Synthesis and adsorption properties of ZIF-76 isomorphs. Microporous Mesoporous Mater. 2012, 153, 1–7. [Google Scholar] [CrossRef]
- Hamidon, N.F.; Tahir, M.I.M.; Latif, M.A.M.; Abdul Rahman, M.B. Effect of altering linker ratio on nano-ZIF-8 polymorphisms in water-based and modulator-free synthesis. J. Coord. Chem. 2022, 75, 1180–1192. [Google Scholar] [CrossRef]
- Lo, Y.; Lam, C.H.; Chang, C.-W.; Yang, A.-C.; Kang, D.-Y. Polymorphism/pseudopolymorphism of metal–organic frameworks composed of zinc (II) and 2-methylimidazole: Synthesis, stability, and application in gas storage. RSC Adv. 2016, 6, 89148–89156. [Google Scholar] [CrossRef]
- Deneff, J.I.; Butler, K.S.; Reyes, R.A.; Sava Gallis, D.F. Harnessing Particle Size-Control and DNA-Oligo Functionalization in ZIF-76 for Biological Applications. Adv. Mater. Interfaces 2023, 10, 2201532. [Google Scholar] [CrossRef]
- Jiang, D.; Huang, C.; Zhu, J.; Wang, P.; Liu, Z.; Fang, D. Classification and role of modulators on crystal engineering of metal organic frameworks (MOFs). Coord. Chem. Rev. 2021, 444, 214064. [Google Scholar] [CrossRef]
- Bumstead, A.M.; Gómez, M.L.R.; Thorne, M.F.; Sapnik, A.F.; Longley, L.; Tuffnell, J.M.; Keeble, D.S.; Keen, D.A.; Bennett, T.D. Investigating the melting behaviour of polymorphic zeolitic imidazolate frameworks. CrystEngComm 2020, 22, 3627–3637. [Google Scholar] [CrossRef]
- Chang, S.-S.; Clair, B.; Ruelle, J.; Beauchêne, J.; Di Renzo, F.; Quignard, F.; Zhao, G.-J.; Yamamoto, H.; Gril, J. Mesoporosity as a new parameter for understanding tension stress generation in trees. J. Exp. Bot. 2009, 60, 3023–3030. [Google Scholar] [CrossRef]
- Qiu, X.; Yang, H.; Dejam, M.; Tan, S.P.; Adidharma, H. Experiments on the capillary condensation/evaporation hysteresis of pure fluids and binary mixtures in cylindrical nanopores. J. Phys. Chem. C 2021, 125, 5802–5815. [Google Scholar] [CrossRef]
- Xiang, W.; Zhang, Y.; Chen, Y.; Liu, C.-j.; Tu, X. Synthesis, characterization and application of defective metal–organic frameworks: Current status and perspectives. J. Mater. Chem. A 2020, 8, 21526–21546. [Google Scholar] [CrossRef]
- McEwen, J.; Hayman, J.-D.; Yazaydin, A.O. A comparative study of CO2, CH4 and N2 adsorption in ZIF-8, Zeolite-13X and BPL activated carbon. Chem. Phys. 2013, 412, 72–76. [Google Scholar] [CrossRef]
- Gu, Y.-M.; Yuan, Y.-Y.; Qadir, S.; Yuan, Z.-S.; Zhao, S.-S.; Sun, T.-J.; Liu, X.-W.; Wang, S.-D. Mixed-Linker Metal-Organic frameworks for carbon and hydrocarbons capture under moist conditions. Chem. Eng. J. 2022, 433, 134447. [Google Scholar] [CrossRef]
- Švegovec, M.; Škrjanc, A.; Krajnc, A.; Logar, N.a.Z. Green synthesis approaches toward preparation of ZIF-76 and its thermal behavior. Cryst. Growth Des. 2023, 23, 3754–3760. [Google Scholar] [CrossRef]
- Fatima, S.S.; Borhan, A.; Ayoub, M.; Ghani, N.A. CO2 Adsorption Performance on Surface-Functionalized Activated Carbon Impregnated with Pyrrolidinium-Based Ionic Liquid. Processes 2022, 10, 2372. [Google Scholar] [CrossRef]
- Amrutha; Jeppu, G.; Girish, C.; Prabhu, B.; Mayer, K. Multi-component adsorption isotherms: Review and modeling studies. Environ. Process. 2023, 10, 38. [Google Scholar] [CrossRef]
- Ullah, S.; Bustam, M.A.; Assiri, M.A.; Al-Sehemi, A.G.; Gonfa, G.; Mukhtar, A.; Kareem, F.A.A.; Ayoub, M.; Saqib, S.; Mellon, N.B. Synthesis and characterization of mesoporous MOF UMCM-1 for CO2/CH4 adsorption; an experimental, isotherm modeling and thermodynamic study. Microporous Mesoporous Mater. 2020, 294, 109844. [Google Scholar] [CrossRef]
- Chiban, M.; Soudani, A.; Sinan, F.; Persin, M. Single, binary and multi-component adsorption of some anions and heavy metals on environmentally friendly Carpobrotus edulis plant. Colloids Surf. B Biointerfaces 2011, 82, 267–276. [Google Scholar] [CrossRef]
- Rahangdale, D.; Kumar, A. Chitosan as a substrate for simultaneous surface imprinting of salicylic acid and cadmium. Carbohydr. Polym. 2018, 202, 334–344. [Google Scholar] [CrossRef]
- Piccin, J.; Dotto, G.; Pinto, L. Adsorption isotherms and thermochemical data of FD&C Red n 40 binding by chitosan. Braz. J. Chem. Eng. 2011, 28, 295–304. [Google Scholar]
- Wang, T.; Jiang, M.; Yu, X.; Niu, N.; Chen, L. Application of lignin adsorbent in wastewater Treatment: A review. Sep. Purif. Technol. 2022, 302, 122116. [Google Scholar] [CrossRef]
- Inglezakis, V.J.; Poulopoulos, S.G.; Kazemian, H. Insights into the S-shaped sorption isotherms and their dimensionless forms. Microporous Mesoporous Mater. 2018, 272, 166–176. [Google Scholar] [CrossRef]
Run | Temperature (°C) | Duration (hours) | Zn2+ (mmol) | n Im (mmol) | n bIm (mmol) | Solvents | n NaOH (mmol) |
---|---|---|---|---|---|---|---|
1 | 25 | 120 | 2.61 | 17.25 | 0.86 | DMF–DEF (1:1 v/v) | 1.95 |
2 | 25 | 120 | 0.86 | 17.25 | 0.86 | DMF–DEF (1:1 v/v) | 0.86 |
3 | 25 | 120 | 2.61 | 17.25 | 0.86 | DMF–DEF (1:1 v/v) | 0 |
4 | 25 | 120 | 0.86 | 17.25 | 0.86 | DMF–DEF (1:1 v/v) | 0 |
5 | 80 | 24 | 2.61 | 17.25 | 0.86 | DMF–DEF (1:1 v/v) | 1.95 |
6 | 25 | 120 | 2.61 | 17.25 | 0.86 | methanol | 1.95 |
Sample | Surface AreaBET (m2/g) | Surface AreaLangmuir (m2/g) | Pore Volume (cm3/g) |
---|---|---|---|
ZIF-76A | 407 | 589 | 0.26 |
ZIF-76B | 258 | 374 | 0.16 |
Samples | Langmuir | Freundlich | Temkin | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
R2 | qm (mmol/g) | KL | R2 | Kf | n | R2 | A | B | B ln(A) | bT | |
ZIF-76A | 0.9998 | 3.3925 | 0.5261 | 0.9980 | 1.1746 | 1.2841 | 0.8620 | 20.7550 | 0.3397 | 1.0302 | 7.2974 |
ZIF-76B | 0.9998 | 3.8294 | 0.5139 | 0.9983 | 1.3051 | 1.2799 | 0.8569 | 21.3045 | 0.3730 | 1.1419 | 6.6459 |
Samples | Redlich–Peterson | Sips | Toth | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | K | a | g | R2 | qm (mmol/g) | b | n | R2 | qm (mmol/g) | b | t | |
ZIF-76A | 0.9999 | 1.8600 | 0.5903 | 0.8829 | 0.9999 | 3.5166 | 0.4832 | 0.9816 | 0.9999 | 2.9832 | 0.5504 | 0.8828 |
ZIF-76B | 0.9999 | 2.0936 | 0.6104 | 0.8329 | 0.9999 | 4.1341 | 0.4310 | 0.9639 | 0.9999 | 3.1539 | 0.5528 | 0.8328 |
Samples | Pseudo-First Order | Pseudo-Second Order | Elovich | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | qe (mmol/g) | k1 (1/min) | R2 | qe (mmol/g) | k2 (mg/g.min) | R2 | α (mmol/g.min) | β (g/mmol) | |
ZIF-76A | 0.9922 | 0.9995 | 0.0230 | 0.9924 | 1.7455 | 0.0077 | 0.9927 | 0.0237 | 1.3294 |
ZIF-76B | 0.9910 | 1.2461 | 0.0249 | 0.9911 | 2.2080 | 0.0065 | 0.9913 | 0.0319 | 1.0339 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahim, A.H.A.; Hamidon, N.F.; Yunus, N.M.; Bustam, M.A.; Aziz, S.F.N.A.; Jumbri, K.; Abdulmalek, E. Unveiling the Potential of Room-Temperature Synthesis of a Mixed-Linker Zeolitic Imidazolate Framework-76 for CO2 Capture. Processes 2025, 13, 320. https://doi.org/10.3390/pr13020320
Rahim AHA, Hamidon NF, Yunus NM, Bustam MA, Aziz SFNA, Jumbri K, Abdulmalek E. Unveiling the Potential of Room-Temperature Synthesis of a Mixed-Linker Zeolitic Imidazolate Framework-76 for CO2 Capture. Processes. 2025; 13(2):320. https://doi.org/10.3390/pr13020320
Chicago/Turabian StyleRahim, Asyraf Hanim Ab, Noor Fazrieyana Hamidon, Normawati M. Yunus, Mohamad Azmi Bustam, Siti Fatimah Nur Abdul Aziz, Khairulazhar Jumbri, and Emilia Abdulmalek. 2025. "Unveiling the Potential of Room-Temperature Synthesis of a Mixed-Linker Zeolitic Imidazolate Framework-76 for CO2 Capture" Processes 13, no. 2: 320. https://doi.org/10.3390/pr13020320
APA StyleRahim, A. H. A., Hamidon, N. F., Yunus, N. M., Bustam, M. A., Aziz, S. F. N. A., Jumbri, K., & Abdulmalek, E. (2025). Unveiling the Potential of Room-Temperature Synthesis of a Mixed-Linker Zeolitic Imidazolate Framework-76 for CO2 Capture. Processes, 13(2), 320. https://doi.org/10.3390/pr13020320