Leveraging Municipal Solid Waste Management with Plasma Pyrolysis and IoT: Strategies for Energy Byproducts and Resource Recovery
Abstract
:1. Introduction
2. Internet of Things Overview
3. Assessment of Plasma Pyrolysis Technology
4. Environmental Pollution from Traditional Treatment of Municipal Solid Waste
5. Leveraging Municipal Solid Waste Management with Plasma Pyrolysis and Internet of Things
6. Techno-Economic of Proposed Technology
7. Challenges, Future Perspectives, and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UNEP. Global Waste Management Outlook 2024: Beyond an Age of Waste; 2024. Available online: https://wedocs.unep.org/20.500.11822/44939 (accessed on 15 July 2024).
- Ishchenko, V. Heavy metals in municipal waste: The content and leaching ability by waste fraction. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2019, 54, 1448–1456. [Google Scholar] [CrossRef]
- Kumar, A.; Thakur, A.K.; Gaurav, G.K.; Klemeš, J.J.; Sandhwar, V.K.; Pant, K.K.; Kumar, R. A critical review on sustainable hazardous waste management strategies: A step towards a circular economy. Environ. Sci. Pollut. Res. 2023, 30, 105030–105055. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, E.; Mishra, R.; Lo, S.L.; Kumar, S. Global trends in municipal solid waste treatment technologies through the lens of sustainable energy development opportunity. Energy 2023, 275, 127471. [Google Scholar] [CrossRef]
- Esakku, S.; Palanivelu, K.; Joseph, K. Assessment of Heavy Metals in a Municipal Solid Waste Dumpsite. Work. Sustain. Landfill Manag. 2003, 35, 139–145. [Google Scholar]
- Sanders, T.; Liu, Y.; Buchner, V.; Tchounwou, P.B. Neurotoxic effects and biomarkers of lead exposure: A review. Rev. Environ. Health 2009, 24, 15–45. [Google Scholar] [CrossRef]
- Fernandes Azevedo, B.; Barros Furieri, L.; Peçanha, F.M.I.; Wiggers, G.A.; Frizera Vassallo, P.; Ronacher Simões, M.; Fiorim, J.; Rossi De Batista, P.; Fioresi, M.; Rossoni, L.; et al. Toxic effects of mercury on the cardiovascular and central nervous systems. J. Biomed. Biotechnol. 2012, 2012, 949048. [Google Scholar] [CrossRef] [PubMed]
- Forti, V.; Baldé, C.P.; Kuehr, R.; Bel, G.; Jinhui, L.; Khetriwal, D.S.; Linnell, J.; Magalini, F.; Nnororm, I.C.; Onianwa, P.; et al. The Global E-waste Monitor 2020. Quantities, Flows, and the Circular Economy Potential. Available online: https://collections.unu.edu/eserv/UNU:7737/GEM_2020_def_july1.pdf (accessed on 25 September 2024).
- Bhatt, K.P.; Patel, S.; Upadhyay, D.S.; Patel, R.N. A critical review on solid waste treatment using plasma pyrolysis technology. Chem. Eng. Process.—Process Intensif. 2022, 177, 108989. [Google Scholar] [CrossRef]
- Giwa, A.S.; Maurice, N.J.; Luoyan, A.; Liu, X.; Yunlong, Y.; Hong, Z. Advances in sewage sludge application and treatment: Process integration of plasma pyrolysis and anaerobic digestion with the resource recovery. Heliyon 2023, 9, e19765. [Google Scholar] [CrossRef] [PubMed]
- Fasihi, M.; Mohammadhosseini, B.; Ostovarpour, F.; Shafiei, M.; Abbassi Shanbehbazari, M.S.; Khani, M.; Shokri, B. Feasibility Study of Plasma Pyrolysis on Dairy Waste. Heliyon 2024, 10, e37694. [Google Scholar] [CrossRef]
- Han, F.; Yun, S.; Zhang, C.; Xu, H.; Wang, Z. Steel slag as accelerant in anaerobic digestion for nonhazardous treatment and digestate fertilizer utilization. Bioresour. Technol. 2019, 282, 331–338. [Google Scholar] [CrossRef]
- IRENA. Turning to Renewables: Climate-Safe Energy Solutions; 2021. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Nov/IRENA_Turning_to_renewables_2017.pdf (accessed on 18 September 2024).
- Idwan, S.; Mahmood, I.; Zubairi, J.A.; Matar, I. Optimal Management of Solid Waste in Smart Cities using Internet of Things. Wirel. Pers. Commun. 2020, 110, 485–501. [Google Scholar] [CrossRef]
- Ullah, M.; Gopalraj, S.K.; Gutierrez-Rojas, D.; Nardelli, P.; Kärki, T. IoT Framework and Requirement for Intelligent Industrial Pyrolysis Process to Recycle CFRP Composite Wastes: Application Study. Lect. Notes Prod. Eng. 2023, Part F1164, 275–282. [Google Scholar] [CrossRef]
- Logan, M.; Safi, M.; Lens, P.; Visvanathan, C. Investigating the performance of internet of things based anaerobic digestion of food waste. Process Saf. Environ. Prot. 2019, 127, 277–287. [Google Scholar] [CrossRef]
- Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things is a revolutionary approach for future technology enhancement: A review. J. Big Data 2019, 6, 111. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Wang, S.; Zhang, Y. A review of IoT applications in healthcare. Neurocomputing 2024, 565, 127017. [Google Scholar] [CrossRef]
- Xu, J.; Gu, B.; Tian, G. Review of agricultural IoT technology. Artif. Intell. Agric. 2022, 6, 10–22. [Google Scholar] [CrossRef]
- Ushakov, D.; Dudukalov, E.; Kozlova, E.; Shatila, K. The Internet of Things impact on smart public transportation. Transp. Res. Procedia 2022, 63, 2392–2400. [Google Scholar] [CrossRef]
- Rejeb, A.; Rejeb, K.; Simske, S.; Treiblmaier, H.; Zailani, S. The big picture on the internet of things and the smart city: A review of what we know and what we need to know. Internet Things 2022, 19, 100565. [Google Scholar] [CrossRef]
- Bayılmış, C.; Ebleme, M.A.; Çavuşoğlu, Ü.; Küçük, K.; Sevin, A. A survey on communication protocols and performance evaluations for Internet of Things. Digit. Commun. Netw. 2022, 8, 1094–1104. [Google Scholar] [CrossRef]
- Xia, W.; Jiang, Y.; Chen, X.; Zhao, R. Application of machine learning algorithms in municipal solid waste management: A mini review. Waste Manag. Res. 2022, 40, 609–624. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, X.C.; Nguyen, T.T.H.; La, D.D.; Kumar, G.; Rene, E.R.; Nguyen, D.D.; Chang, S.W.; Chung, W.J.; Nguyen, X.H.; Nguyen, V.K. Development of machine learning—Based models to forecast solid waste generation in residential areas: A case study from Vietnam. Resour. Conserv. Recycl. 2021, 167, 105381. [Google Scholar] [CrossRef]
- Solano Meza, J.K.; Orjuela Yepes, D.; Rodrigo-Ilarri, J.; Rodrigo-Clavero, M.E. Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities. Int. J. Environ. Res. Public Health 2023, 20, 4256. [Google Scholar] [CrossRef]
- Addas, A.; Khan, M.N.; Naseer, F. Waste management 2.0 leveraging internet of things for an efficient and eco-friendly smart city solution. PLoS ONE 2024, 19, e0307608. [Google Scholar] [CrossRef] [PubMed]
- Henaien, A.; Ben Elhadj, H.; Chaari Fourati, L. A sustainable smart IoT-based solid waste management system. Futur. Gener. Comput. Syst. 2024, 157, 587–602. [Google Scholar] [CrossRef]
- Trelles, J.P.; Chazelas, C.; Vardelle, A.; Heberlein, J.V.R. Arc plasma torch modeling. J. Therm. Spray Technol. 2009, 18, 728–752. [Google Scholar] [CrossRef]
- Saifutdinov, A.I.; Timerkaev, B.A.; Ibragimov, A.R. Numerical Simulation of Temperature Fields in a Direct-Current Plasma Torch. Tech. Phys. Lett. 2018, 44, 164–166. [Google Scholar] [CrossRef]
- Li, J.; Liu, K.; Yan, S.; Li, Y.; Han, D. Application of thermal plasma technology for the treatment of solid wastes in China: An overview. Waste Manag. 2016, 58, 260–269. [Google Scholar] [CrossRef]
- Aminu, I.; Nahil, M.A.; Williams, P.T. Pyrolysis-plasma/catalytic reforming of post-consumer waste plastics for hydrogen production. Catal. Today 2023, 420, 114084. [Google Scholar] [CrossRef]
- Messerle, V.E.; Ustimenko, A.B. Hydrogen Production by Thermal Plasma Pyrolysis of Hydrocarbon Gases. IEEE Trans. Plasma Sci. 2023, 52, 1188–1192. [Google Scholar] [CrossRef]
- Vyas, D.; Dave, U.B.; Parekh, H.B. Plasma Pyrolysis: An Innovative Treatment to Solid Waste of Plastic Material. Natl. Conf. Recent Trends Eng. Technol. 2011. Available online: http://www.energy.ca.gov/ (accessed on 15 August 2024).
- Chiang, P.F.; Han, S.; Claire, M.J.; Maurice, N.J.; Vakili, M.; Giwa, A.S. Sustainable Treatment of Spent Photovoltaic Solar Panels Using Plasma Pyrolysis Technology and Its Economic Significance. Clean Technol. 2024, 6, 432–452. [Google Scholar] [CrossRef]
- Karimi, H.; Khani, M.R.; Gharibi, M.; Mahdikia, H.; Shokri, B. Plasma pyrolysis feasibility study of spent petrochemical catalyst wastes to hydrogen production. J. Mater. Cycles Waste Manag. 2020, 22, 2059–2070. [Google Scholar] [CrossRef]
- Nema, S.K.; Ganeshprasad, K.S. Plasma pyrolysis of medical waste. Curr. Sci. 2002, 83, 271–278. [Google Scholar]
- Popov, S.D.; Popov, V.E.; Subbotin, D.I.; Surov, A.V.; Serba, E.O.; Nikonov, A.V.; Nakonechny, G.V.; Spodobin, V.A. Electric arc plasma pyrolysis of natural gas by a high-voltage AC plasma torch. In Proceedings of the 8th International Congress on Energy Fluxes and Radiation Effects, Tomsk, Russia, 2–8 October 2022; pp. 702–707. [Google Scholar] [CrossRef]
- Bai, L.; Sun, W.; Yang, Z.; Ouyang, Y.; Wang, M.; Yuan, F. Laboratory Research on Design of Three-Phase AC Arc Plasma Pyrolysis Device for Recycling of Waste Printed Circuit Boards. Processes 2022, 10, 1031. [Google Scholar] [CrossRef]
- Janajreh, I.; Raza, S.S.; Valmundsson, A.S. Plasma gasification process: Modeling, simulation and comparison with conventional air gasification. Energy Convers. Manag. 2013, 65, 801–809. [Google Scholar] [CrossRef]
- Kumarathilaka, P.; Jayawardhana, Y.; Basnayake, B.F.A.; Mowjood, M.I.M.; Nagamori, M.; Saito, T.; Kawamoto, K.; Vithanage, M. Characterizing volatile organic compounds in leachate from Gohagoda municipal solid waste dumpsite, Sri Lanka. Groundw. Sustain. Dev. 2016, 2–3, 1–6. [Google Scholar] [CrossRef]
- Karanjekar, R.V.; Bhatt, A.; Altouqui, S.; Jangikhatoonabad, N.; Durai, V.; Sattler, M.L.; Hossain, M.D.S.; Chen, V. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model. Waste Manag. 2015, 46, 389–398. [Google Scholar] [CrossRef] [PubMed]
- The White House. Accelerating Progress: Delivering on the U.S. Methane Emissions Reduction Action Plan; The White House: Washington, DC, USA, 2023. [Google Scholar]
- Zhang, Y.; Wang, L.; Chen, L.; Ma, B.; Zhang, Y.; Ni, W.; Tsang, D.C.W. Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives. J. Hazard. Mater. 2021, 411, 125132. [Google Scholar] [CrossRef]
- Domingo, J.L.; Marquès, M.; Mari, M.; Schuhmacher, M. Adverse health effects for populations living near waste incinerators with special attention to hazardous waste incinerators. A review of the scientific literature. Environ. Res. 2020, 187, 109631. [Google Scholar] [CrossRef] [PubMed]
- EPA. Advancing Sustainable Materials Management; United States Environmental Protection Agency: Washington, DC, USA, 2020; p. 184. [Google Scholar]
- Ibokette, A.I.; Aboi, E.J.; Ijiga, A.C.; Ugbane, S.I.; Odeyemi, M.O.; Umama, E.E. The impacts of curbside feedback mechanisms on recycling performance of households in the United States. World J. Biol. Pharm. Health Sci. 2024, 17, 366–386. [Google Scholar] [CrossRef]
- Cao, X.; Williams, P.N.; Zhan, Y.; Coughlin, S.A.; McGrath, J.W.; Chin, J.P.; Xu, Y. Municipal solid waste compost: Global trends and biogeochemical cycling. Soil Environ. Health 2023, 1, 100038. [Google Scholar] [CrossRef]
- Scopetani, C.; Chelazzi, D.; Cincinelli, A.; Martellini, T.; Leiniö, V.; Pellinen, J. Hazardous contaminants in plastics contained in compost and agricultural soil. Chemosphere 2022, 293, 133645. [Google Scholar] [CrossRef]
- Ibarra-Esparza, F.E.; González-López, M.E.; Ibarra-Esparza, J.; Lara-Topete, G.O.; Senés-Guerrero, C.; Cansdale, A.; Forrester, S.; Chong, J.P.J.; Gradilla-Hernández, M.S. Implementation of anaerobic digestion for valorizing the organic fraction of municipal solid waste in developing countries: Technical insights from a systematic review. J. Environ. Manag. 2023, 347, 118993. [Google Scholar] [CrossRef]
- Kadam, R.; Khanthong, K.; Jang, H.; Lee, J.; Park, J. Occurrence, Fate, and Implications of Heavy Metals during Anaerobic Digestion: A Review. Energies 2022, 15, 8618. [Google Scholar] [CrossRef]
- Seo, Y.-C.; Alam, M.T.; Yang, W.-S. Gasification of Municipal Solid Waste. In Gasification for Low-Grade Feedstock; IntechOpen: London, UK, 2018; Chapter 7; pp. 115–141. [Google Scholar] [CrossRef]
- Quan, C.; Zhang, G.; Xu, Y.; Gao, N. Recent advances on the speciation distribution of heavy metals in sludge pyrolysis residue. Huagong Xuebao/CIESC J. 2022, 73, 134–143. [Google Scholar] [CrossRef]
- Vaverková, M.D. Landfill Impacts on the Environment—Review. Geosciences 2019, 9, 431. [Google Scholar] [CrossRef]
- Boni, M.R.; Leoni, S.; Sbaffoni, S. Co-landfilling of pretreated waste: Disposal and management strategies at lab-scale. J. Hazard. Mater. 2007, 147, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Kihila, J.M.; Wernsted, K.; Kaseva, M. Waste segregation and potential for recycling—A case study in Dar es Salaam City, Tanzania. Sustain. Environ. 2021, 7, 1935532. [Google Scholar] [CrossRef]
- Das, S.; Lee, S.H.; Kumar, P.; Kim, K.H.; Lee, S.S.; Bhattacharya, S.S. Solid waste management: Scope and the challenge of sustainability. J. Clean. Prod. 2019, 228, 658–678. [Google Scholar] [CrossRef]
- Yayalık, İ.; Koyun, A.; Akgün, M. Gasification of Municipal Solid Wastes in Plasma Arc Medium. Plasma Chem. Plasma Process. 2020, 40, 1401–1416. [Google Scholar] [CrossRef]
- Galaly, A.R. Sustainable Development Solutions for the Medical Waste Problem Using Thermal Plasmas. Sustainability 2022, 14, 11045. [Google Scholar] [CrossRef]
- Sulistio, B.; Ahmad, S. Effectiveness of Smart Waste Recycling Management Applications. J. Comput. Sci. Appl. Eng. 2024, 2, 43–47. [Google Scholar] [CrossRef]
- Fang, B.; Yu, J.; Chen, Z.; Osman, A.I.; Farghali, M.; Ihara, I.; Hamza, E.H.; Rooney, D.W.; Yap, P.S. Artificial Intelligence for Waste Management in Smart Cities: A Review; Springer International Publishing: Cham, Switzerland, 2023; Volume 21. [Google Scholar] [CrossRef]
- Cheng, Y.; Ekici, E.; Yildiz, G.; Yang, Y.; Coward, B.; Wang, J. Applied machine learning for prediction of waste plastic pyrolysis towards valuable fuel and chemicals production. J. Anal. Appl. Pyrolysis 2023, 169, 105857. [Google Scholar] [CrossRef]
- Xiao, K.; Zhu, X. Machine Learning Approach for the Prediction of Biomass Waste Pyrolysis Kinetics from Preliminary Analysis. ACS Omega 2024, 9, 48125–48136. [Google Scholar] [CrossRef]
- İşçen, A.; Öznacar, K.; Tunç, K.M.M.; Günay, M.E. Exploring the Critical Factors of Biomass Pyrolysis for Sustainable Fuel Production by Machine Learning. Sustainability 2023, 15, 14884. [Google Scholar] [CrossRef]
- Mojaver, P.; Khalilarya, S. An artificial intelligence study on energy, exergy, and environmental aspects of upcycling face mask waste to a hydrogen-rich syngas through a thermal conversion process. Process Saf. Environ. Prot. 2024, 187, 1189–1200. [Google Scholar] [CrossRef]
- Onu, P.; Mbohwa, C.; Pradhan, A. Artificial intelligence-based IoT-enabled biogas production. In Proceedings of the 2023 International Conference on Control, Automation and Diagnosis, ICCAD 2023, Rome, Italy, 10–12 May 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Ilangovan, P.; Sharmila Begum, M.; Srividhya, P.K. Development of online monitoring device and performance evaluation of biogas plants using enhanced methane prediction algorithm (EMPA). Sustain. Energy Technol. Assess. 2023, 56, 103041. [Google Scholar] [CrossRef]
- Zhang, L.; Lim, E.Y.; Loh, K.C.; Ok, Y.S.; Lee, J.T.E.; Shen, Y.; Wang, C.H.; Dai, Y.; Tong, Y.W. Biochar enhanced thermophilic anaerobic digestion of food waste: Focusing on biochar particle size, microbial community analysis and pilot-scale application. Energy Convers. Manag. 2020, 209, 112654. [Google Scholar] [CrossRef]
- Rida Galaly, A.; Van Oost, G.; Dawood, N. Sustainable Plasma Gasification Treatment of Plastic Waste: Evaluating Environmental, Economic, and Strategic Dimensions. ACS Omega 2024, 9, 21174–21186. [Google Scholar] [CrossRef] [PubMed]
- Tuck, C. IRON AND STEEL SLAG (Data in million metric tons unless otherwise noted). U.S. Geol. Surv. Miner. Commod. Summ. 2024. Available online: https://pubs.usgs.gov/periodicals/mcs2024/mcs2024-iron-steel-slag.pdf (accessed on 10 November 2024).
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Insight into biochar properties and its cost analysis. Biomass Bioenergy 2016, 84, 76–86. [Google Scholar] [CrossRef]
- Jing, Q.; Vasilakos, A.V.; Wan, J.; Lu, J.; Qiu, D. Security of the Internet of Things: Perspectives and challenges. Wirel. Netw. 2014, 20, 2481–2501. [Google Scholar] [CrossRef]
Waste Types | Process Overview | Hydrogen Gaseous Product (%) | Reference |
---|---|---|---|
Propane–butane gas mixture | The author investigated both thermodynamic and experimental analyses of a mixture of hydrocarbon gases under atmospheric pressure within an electric arc plasma reactor. | 88.3 | [32] |
Petrochemical spent catalyst | The DC arc plasma technology was utilized with argon as the carrier gas | 53.20 | [35] |
Medical waste | Nitrogen served as the carrier gas in the DC plasma arc method, with a power input of 50,000 W. | 40.83 | [36] |
Hydrocarbons | Electric arc plasma was used as the heat source, with argon serving as the carrier gas | 42.5 | [37] |
Electronic waste | Argon was used as the carrier gas in alternating current arc plasma technology. | 36.18 | [38] |
High-density polyethylene | Various types of single and mixed plastics, commonly found in high concentrations in MSW, were examined using electric arc plasma pyrolysis with nitrogen and argon as carrier gases. | 65.9 | [31] |
Low-density polyethylene | 61.3 | ||
Polystyrene | 67.8 | ||
Polyethylene terephthalate | 24.3 | ||
Polypropylene | 53.1 | ||
Tire Waste | The DC arc plasma method was utilized, using argon as the carrier gas. | 54.69 | [39] |
Municipal Solid Waste | 43.50 |
Treatment Methods | Process Overview | Merits | Demerits | References |
---|---|---|---|---|
Open Dumping | Disposal of waste in open areas without any environmental controls | Low cost and easy to implement | Causes severe environmental pollution and health risks | [53] |
Sanitary Landfilling | Controlled disposal of waste in designated sites, with measures to protect the environment | Reduces environmental impact compared to open dumping; can capture landfill gas for energy | Land use issues; potential for groundwater contamination | [54] |
Recycling | Process of collecting and processing materials to create new products | Conserves natural resources; reduces landfill waste; saves energy | Contamination of recyclables can hinder processes; only limited type of waste can be recycled | [55] |
Vermiculture | Use of earthworms to decompose organic waste into nutrient-rich compost | Produces high-quality compost; reduces organic waste volume | Requires careful management, not suitable for all waste types, produces toxic gas | [56] |
Composting | Biological decomposition of organic waste into compost under controlled conditions | Enhances soil quality, reduces landfill waste, carbon sequestration | Can produce odors; requires space and management, not suitable for all waste types | [47] |
Anaerobic Digestion | Breakdown of organic matter in the absence of oxygen, producing biogas and digestate | Generates renewable energy, promotes nutrient recovery | Requires careful management, cannot immobilize heavy metals, which leads to the second pollution via further use of digestates, only organic materials can be treated | [49] |
Incineration | Combustion of waste at high temperatures to reduce volume and generate energy | Reduces waste volume significantly, can generate electricity | Produces harmful emissions and ash, high operational costs | [43] |
Gasification | Conversion of organic materials into syngas through partial oxidation | Produces cleaner energy than incineration, reduces waste volume | Can release pollutants, complex technology | [51] |
Plasma gasification | Uses plasma arcs to convert waste into syngas and vitrified ash at high temperatures | High efficiency, reduces hazardous waste, produces valuable byproducts | High energy consumption, expensive technology, toxic compounds may present in byproducts | [57] |
Pyrolysis | Thermal decomposition of organic materials in the absence of oxygen, producing oil, gas, and char | Reduces waste volume, recovers energy, versatile feedstock | Can produce toxic byproducts, cannot fix heavy metals, significant energy input. | [52] |
Plasma Pyrolysis | Advanced pyrolysis using plasma technology to decompose waste | High efficiency and low emissions, can handle a wide range of waste types, immobilize heavy metals | Still in developmental stages; high costs and energy requirements | [10] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Duan, Y.; Wang, Z.; Maurice, N.J.; Claire, M.J.; Ali, N.; Giwa, A.S. Leveraging Municipal Solid Waste Management with Plasma Pyrolysis and IoT: Strategies for Energy Byproducts and Resource Recovery. Processes 2025, 13, 321. https://doi.org/10.3390/pr13020321
Li Y, Duan Y, Wang Z, Maurice NJ, Claire MJ, Ali N, Giwa AS. Leveraging Municipal Solid Waste Management with Plasma Pyrolysis and IoT: Strategies for Energy Byproducts and Resource Recovery. Processes. 2025; 13(2):321. https://doi.org/10.3390/pr13020321
Chicago/Turabian StyleLi, Yishuang, Yanbei Duan, Zelong Wang, Ndungutse Jean Maurice, Mugabekazi Joie Claire, Nasir Ali, and Abdulmoseen Segun Giwa. 2025. "Leveraging Municipal Solid Waste Management with Plasma Pyrolysis and IoT: Strategies for Energy Byproducts and Resource Recovery" Processes 13, no. 2: 321. https://doi.org/10.3390/pr13020321
APA StyleLi, Y., Duan, Y., Wang, Z., Maurice, N. J., Claire, M. J., Ali, N., & Giwa, A. S. (2025). Leveraging Municipal Solid Waste Management with Plasma Pyrolysis and IoT: Strategies for Energy Byproducts and Resource Recovery. Processes, 13(2), 321. https://doi.org/10.3390/pr13020321