NaOH-Enhanced Wet Air Oxidation of Municipal Sludge for High-Quality Carbon Source Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. WAO Process
2.3. Analytical Methods
3. Results and Discussion
3.1. Removal of Organic Pollutants and pH Changes
3.2. Amount and Quality of Produced Carbon Source
3.3. Changes in Fluorescent Organics
3.4. Effects of Nitrogen on the Carbon Source
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AN | ammonia nitrogen |
AOPs | advanced oxidation processes |
BOD5 | five-day biological oxygen demand |
COD | chemical oxygen demand |
Em | emission wavelength |
Ex | excitation wavelength |
FRI | fluorescence regional integration |
MS | municipal sludge |
SCOD | soluble chemical oxygen demand |
TCOD | total chemical oxygen demand |
TN | total nitrogen |
TSS | total suspended solids |
VFAs | volatile fatty acids |
VSS | volatile suspended solids |
WAO | wet air oxidation |
3D-EEMs | three-dimensional excitation emission matrices |
References
- He, D.-Q.; Wang, L.-F.; Jiang, H.; Yu, H.-Q. A Fenton-like process for the enhanced activated sludge dewatering. Chem. Eng. J. 2015, 272, 128–134. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, Z.; Kong, G.; Hu, T. Treatment of municipal sludge by Fenton oxidation combined vacuum preloading. Environ. Sci. Pollut. Res. 2018, 25, 15990–15997. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, D.; Feng, P.; Hao, B.; Guo, Y.; Wang, S. Municipal sewage sludge incineration and its air pollution control. J. Clean. Prod. 2021, 295, 126456. [Google Scholar] [CrossRef]
- Xing, J.; Tang, Q.; Gan, M.; Ji, Z.; Fan, X.; Sun, Z.; Chen, X. Co-treatment of municipal solid waste incineration fly ash (MSWI FA) and municipal sludge: A innovative method to improve sludge dewatering with fly ash dechlorination. J. Environ. Manag. 2023, 332, 117403. [Google Scholar] [CrossRef] [PubMed]
- Navarro, I.; Jiménez, B.; Lucario, S.; Cifuentes, E. Application of Helminth ova infection dose curve to estimate the risks associated with biosolid application on soil. J. Water Health 2008, 7, 31–44. [Google Scholar] [CrossRef]
- Krzyzanowski, F.; de Souza Lauretto, M.; Nardocci, A.C.; Sato, M.I.Z.; Razzolini, M.T.P. Assessing the probability of infection by Salmonella due to sewage sludge use in agriculture under several exposure scenarios for crops and soil ingestion. Sci. Total Environ. 2016, 568, 66–74. [Google Scholar] [CrossRef]
- Liu, G.; Hu, Z.; Huang, W.; Zheng, Y.; Yang, F.; Su, Y. Sodium lignosulfonate enhances the insoluble sulfates and phosphates formation of heavy metal passivation in municipal sludge aerobic composting. Int. J. Environ. Sci. Technol. 2024. [Google Scholar] [CrossRef]
- Wei, L.; Zhu, F.; Li, Q.; Xue, C.; Xia, X.; Yu, H.; Zhao, Q.; Jiang, J.; Bai, S. Development, current state and future trends of sludge management in China: Based on exploratory data and CO2-equivaient emissions analysis. Environ. Int. 2020, 144, 106093. [Google Scholar] [CrossRef]
- Yang, K.; Zhu, Y.; Shan, R.; Shao, Y.; Tian, C. Heavy metals in sludge during anaerobic sanitary landfill: Speciation transformation and phytotoxicity. J. Environ. Manag. 2017, 189, 58–66. [Google Scholar] [CrossRef]
- Buta, M.; Hubeny, J.; Zielinski, W.; Harnisz, M.; Korzeniewska, E. Sewage sludge in agriculture—The effects of selected chemical pollutants and emerging genetic resistance determinants on the quality of soil and crops—A review. Ecotoxicol. Environ. Saf. 2021, 214, 112070. [Google Scholar] [CrossRef]
- Horswell, J.; Ambrose, V.; Clucas, L.; Leckie, A.; Clinton, P.; Speir, T.W. Survival of Escherichia coli and Salmonella spp. after application of sewage sludge to a Pinus radiata forest. J. Appl. Microbiol. 2007, 103, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
- Schnell, M.; Horst, T.; Quicker, P. Thermal treatment of sewage sludge in Germany: A review. J. Environ. Manag. 2020, 263, 110367. [Google Scholar] [CrossRef] [PubMed]
- Husek, M.; Mosko, J.; Pohorely, M. Sewage sludge treatment methods and P-recovery possibilities: Current state-of-the-art. J. Environ. Manag. 2022, 315, 115090. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Liu, X.; Ding, A.; Ngo, H.H.; Zhang, R.; Nan, J.; Ma, J.; Li, G. Advanced oxidation processes (AOPs)-based sludge conditioning for enhanced sludge dewatering and micropollutants removal: A critical review. J. Water Process Eng. 2022, 45, 102468. [Google Scholar] [CrossRef]
- Lombardi, L.; Nocita, C.; Bettazzi, E.; Fibbi, D.; Carnevale, E. Environmental comparison of alternative treatments for sewage sludge: An Italian case study. Waste Manag. 2017, 69, 365–376. [Google Scholar] [CrossRef]
- Yin, G.; Liao, P.H.; Lo, K.V. An ozone/hydrogen peroxide/microwave-enhanced advanced oxidation process for sewage sludge treatment. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2007, 42, 1177–1181. [Google Scholar] [CrossRef]
- Masihi, H.; Badalians Gholikandi, G. Employing Electrochemical-Fenton process for conditioning and dewatering of anaerobically digested sludge: A novel approach. Water Res. 2018, 144, 373–382. [Google Scholar] [CrossRef]
- Xiao, K.; Deng, J.; Zeng, L.; Guo, T.; Gong, Y.; Yang, B.; Zhao, X.; Duan, H. Enhancement of municipal sludge dewaterability by electrochemical pretreatment. J. Environ. Sci. 2019, 75, 98–104. [Google Scholar] [CrossRef]
- Baroutian, S.; Smit, A.-M.; Andrews, J.; Young, B.; Gapes, D. Hydrothermal degradation of organic matter in municipal sludge using non-catalytic wet oxidation. Chem. Eng. J. 2015, 260, 846–854. [Google Scholar] [CrossRef]
- Hii, K.; Baroutian, S.; Parthasarathy, R.; Gapes, D.J.; Eshtiaghi, N. A review of wet air oxidation and Thermal Hydrolysis technologies in sludge treatment. Bioresour. Technol. 2014, 155, 289–299. [Google Scholar] [CrossRef]
- Strong, P.J.; McDonald, B.; Gapes, D.J. Combined thermochemical and fermentative destruction of municipal biosolids: A comparison between thermal hydrolysis and wet oxidative pre-treatment. Bioresour. Technol. 2011, 102, 5520–5527. [Google Scholar] [CrossRef] [PubMed]
- Luck, F. Wet air oxidation: Past, present and future. Catal. Today 1999, 53, 81–91. [Google Scholar] [CrossRef]
- Strong, P.J.; McDonald, B.; Gapes, D.J. Enhancing denitrification using a carbon supplement generated from the wet oxidation of waste activated sludge. Bioresour. Technol. 2011, 102, 5533–5540. [Google Scholar] [CrossRef] [PubMed]
- Baroutian, S.; Gapes, D.J.; Sarmah, A.K.; Farid, M.M.; Young, B.R. Formation and degradation of valuable intermediate products during wet oxidation of municipal sludge. Bioresour. Technol. 2016, 205, 280–285. [Google Scholar] [CrossRef]
- Garcia Alba, L.; Torri, C.; Samorì, C.; van der Spek, J.; Fabbri, D.; Kersten, S.R.A.; Brilman, D.W.F. Hydrothermal Treatment (HTT) of Microalgae: Evaluation of the Process As Conversion Method in an Algae Biorefinery Concept. Energy Fuels 2012, 26, 642–657. [Google Scholar] [CrossRef]
- Padoley, K.V.; Tembhekar, P.D.; Saratchandra, T.; Pandit, A.B.; Pandey, R.A.; Mudliar, S.N. Wet air oxidation as a pretreatment option for selective biodegradability enhancement and biogas generation potential from complex effluent. Bioresour. Technol. 2012, 120, 157–164. [Google Scholar] [CrossRef]
- Weiner, B.; Breulmann, M.; Wedwitschka, H.; Fuehner, C.; Kopinke, F.-D. Wet Oxidation of Process Waters from the Hydrothermal Carbonization of Sewage Sludge. Chem. Ing. Tech. 2018, 90, 872–880. [Google Scholar] [CrossRef]
- Chung, J.; Lee, M.; Ahn, J.; Bae, W.; Lee, Y.-W.; Shim, H. Effects of operational conditions on sludge degradation and organic acids formation in low-critical wet air oxidation. J. Hazard. Mater. 2009, 162, 10–16. [Google Scholar] [CrossRef]
- Wang, G.; Wang, D.; Huang, L.; Song, Y.; Chen, Z.; Du, M. Enhanced production of volatile fatty acids by adding a kind of sulfate reducing bacteria under alkaline pH. Colloids Surf. B-Biointerfaces 2020, 195, 111249. [Google Scholar] [CrossRef]
- Nabaterega, R.; Kieft, B.; Hallam, S.J.; Eskicioglu, C. Fractional factorial experimental design for optimizing volatile fatty acids from anaerobic fermentation of municipal sludge: Microbial community and activity investigation. Renew. Energy 2022, 199, 733–744. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Zhang, T.; Zhou, J.; Chen, M. Waste activated sludge fermentation liquid as carbon source for biological treatment of sulfide and nitrate in microaerobic conditions. Chem. Eng. J. 2016, 283, 167–174. [Google Scholar] [CrossRef]
- Xu, Z.R.; Zhu, W.; Htar, S.H. Partial oxidative gasification of municipal sludge in subcritical and supercritical water. Environ. Technol. 2012, 33, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wang, X.; Liu, J.; Li, S.; Yang, T.; Xi, B. Nitrogen recycling characteristics in multiphase transformation during municipal sludge pyrolysis. J. Clean. Prod. 2024, 457, 142475. [Google Scholar] [CrossRef]
- Baroutian, S.; Smit, A.-M.; Gapes, D.J. Relative influence of process variables during non-catalytic wet oxidation of municipal sludge. Bioresour. Technol. 2013, 148, 605–610. [Google Scholar] [CrossRef]
- Aggrey, A.; Dare, P.; Lei, R.; Gapes, D. Evaluation of a two-stage hydrothermal process for enhancing acetic acid production using municipal biosolids. Water Sci. Technol. 2012, 65, 149–155. [Google Scholar] [CrossRef]
- Fu, J.; Yang, K.; Ma, C.; Zhang, N.; Gai, H.; Zheng, J.; Chen, B.H. Bimetallic Ru-Cu as a highly active, selective and stable catalyst for catalytic wet oxidation of aqueous ammonia to nitrogen. Appl. Catal. B-Environ. 2016, 184, 216–222. [Google Scholar] [CrossRef]
- Jiang, Y.; Gao, F.; Zhang, N.; Li, J.; Xu, M.; Jiang, Y. Dehydration Performance of Municipal Sludge and Its Dewatering Conditioning Methods: A Review. Ind. Eng. Chem. Res. 2023, 62, 11337–11357. [Google Scholar] [CrossRef]
- Levec, J.; Pintar, A. Catalytic wet-air oxidation processes: A review. Catal. Today 2007, 124, 172–184. [Google Scholar] [CrossRef]
- Jin, F.M.; Zhou, Z.Y.; Moriya, T.; Kishida, H.; Higashijima, H.; Enomoto, H. Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass. Environ. Sci. Technol. 2005, 39, 1893–1902. [Google Scholar] [CrossRef]
- Fang, K.; Yao, G.; Zhou, Y.; Zhao, J.; Xia, S. Effects of reaction temperature and oxygen pressure on dissolved organic matter in hydrothermal reactions of municipal sludge: A comprehensive analysis. Chem. Eng. J. 2024, 495, 153279. [Google Scholar] [CrossRef]
- Rice, E.W.; Bridgewater, L.; American Public Health Association (Eds.) Standard Methods For the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Ohno, T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ. Sci. Technol. 2002, 36, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, S.; Sarkar, O.; Swamy, Y.V.; Venkata Mohan, S. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresour. Technol. 2015, 182, 103–113. [Google Scholar] [CrossRef]
- Urrea, J.L.; Collado, S.; Laca, A.; Díaz, M. Wet oxidation of activated sludge: Transformations and mechanisms. J. Environ. Manag. 2014, 146, 251–259. [Google Scholar] [CrossRef]
- Yousefifar, A.; Baroutian, S.; Farid, M.M.; Gapes, D.J.; Young, B.R. Fundamental mechanisms and reactions in non-catalytic subcritical hydrothermal processes: A review. Water Res. 2017, 123, 607–622. [Google Scholar] [CrossRef]
- Debellefontaine, H.; Foussard, J.N. Wet air oxidation for the treatment of industrial wastes. Chemical aspects, reactor design and industrial applications in Europe. Waste Manag. 2000, 20, 15–25. [Google Scholar] [CrossRef]
- Shanableh, A. Production of useful organic matter from sludge using hydrothermal treatment. Water Res. 2000, 34, 945–951. [Google Scholar] [CrossRef]
- He, W.; Li, G.; Kong, L.; Wang, H.; Huang, J.; Xu, J. Application of hydrothermal reaction in resource recovery of organic wastes. Resour. Conserv. Recycl. 2008, 52, 691–699. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chem. Eng. J. 2020, 401, 126158. [Google Scholar] [CrossRef]
- Fernández-Nava, Y.; Marañón, E.; Soons, J.; Castrillón, L. Denitrification of high nitrate concentration wastewater using alternative carbon sources. J. Hazard. Mater. 2010, 173, 682–688. [Google Scholar] [CrossRef]
- Yuan, Q.; Wang, H.-y.; Chu, Z.-s.; Hang, Q.-y.; Liu, K.; Li, C.-m. Influence of C/N ratio on MBBR denitrification for advanced nitrogen removal of wastewater treatment plant effluent. Desalination Water Treat. 2017, 66, 158–165. [Google Scholar] [CrossRef]
- Cui, P.; Xu, Z.; Yao, D.; Qi, H.; Zhu, Z.; Wang, Y.; Li, X.; Liu, Z.; Yang, S. Life cycle water footprint and carbon footprint analysis of municipal sludge plasma gasification process. Energy 2022, 261, 125280. [Google Scholar] [CrossRef]
- Li, H.; Jin, C.; Mundree, S. Hybrid environmental and economic assessment of four approaches recovering energy from sludge with variant organic contents. J. Clean. Prod. 2017, 153, 131–138. [Google Scholar] [CrossRef]
- Liao, P.H.; Lo, K.V.; Chan, W.I.; Wong, W.T. Sludge reduction and volatile fatty acid recovery using microwave advanced oxidation process. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2007, 42, 633–639. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, J.; Zhao, J. Wet oxidation and catalytic wet oxidation of pharmaceutical sludge. Sci. Rep. 2023, 13, 2544. [Google Scholar] [CrossRef]
- Mohammed, A.E.; Jarullah, A.T.; Gheni, S.A.; Mujtaba, I.M. Optimal design and operation of an industrial three phase reactor for the oxidation of phenol. Comput. Chem. Eng. 2016, 94, 257–271. [Google Scholar] [CrossRef]
- Liu, X.; Wan, J.; Zhu, C.; Zhou, Z.; Zhang, F.; Zhang, Z. Energy optimization of wet air oxidation reactors with sub-millimeter bubble intensification. Chem. Eng. Sci. 2022, 260, 117864. [Google Scholar] [CrossRef]
- Jerez, S.; Ventura, M.; Martinez, F.; Melero, J.A.; Pariente, M.I. New strategies for the management of a primary refinery oily sludge: A techno-economical assessment of thermal hydrolysis, Fenton, and wet air oxidation treatments. J. Environ. Chem. Eng. 2023, 11, 110730. [Google Scholar] [CrossRef]
- Zhu, Y.T.; Zeng, X.; Fang, K.Y. Enhanced Wet Oxidation of Excess Sludge from Pharmaceutical Wastewater Treatment by NaOH. Catalysts 2023, 13, 1070. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, K.; Tong, Y.; Yao, G.; Zhu, N.; Jin, L.; Zhou, Y.; Zhao, J. NaOH-Enhanced Wet Air Oxidation of Municipal Sludge for High-Quality Carbon Source Production. Processes 2025, 13, 341. https://doi.org/10.3390/pr13020341
Fang K, Tong Y, Yao G, Zhu N, Jin L, Zhou Y, Zhao J. NaOH-Enhanced Wet Air Oxidation of Municipal Sludge for High-Quality Carbon Source Production. Processes. 2025; 13(2):341. https://doi.org/10.3390/pr13020341
Chicago/Turabian StyleFang, Kaiyu, Yang Tong, Guodong Yao, Ningzheng Zhu, Limin Jin, Yangyuan Zhou, and Jianfu Zhao. 2025. "NaOH-Enhanced Wet Air Oxidation of Municipal Sludge for High-Quality Carbon Source Production" Processes 13, no. 2: 341. https://doi.org/10.3390/pr13020341
APA StyleFang, K., Tong, Y., Yao, G., Zhu, N., Jin, L., Zhou, Y., & Zhao, J. (2025). NaOH-Enhanced Wet Air Oxidation of Municipal Sludge for High-Quality Carbon Source Production. Processes, 13(2), 341. https://doi.org/10.3390/pr13020341