Starch-Based Pickering Emulsions for Bioactive Compound Encapsulation: Production, Properties, and Applications
Abstract
:1. Introduction
2. History of Research and Development in Pickering Emulsions
3. Starch Particles as Stabilizers of Pickering Emulsions
3.1. Challenges: Native Starch and Its Hydrophilicity
3.2. Modification/Production Strategies for Starch Particles to Stabilize Pickering Emulsions
4. Key Parameters in the Stabilization Mechanisms of Starch-Based Pickering Emulsions and Particle Characterization
5. Pickering Emulsion Production Methods
6. Encapsulation of Bioactive Compounds in Starch-Stabilized Pickering Emulsions
7. Methods for Characterizing Pickering Emulsions
7.1. Emulsion Stability
7.1.1. Physical Stability
7.1.2. Accelerated Stability
7.2. Morphology
7.2.1. Optical Microscopy
7.2.2. Confocal Laser Scanning Microscopy
7.2.3. Cryogenic Scanning Electron Microscopy (Cryo-SEM)
7.3. Rheological Behavior
7.4. Encapsulation Efficiency of Bioactive Components
8. Potential Applications
9. Future Perspectives and Trends
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hu, Y.T.; Ting, Y.; Hu, J.Y.; Hsieh, S.C. Techniques and Methods to Study Functional Characteristics of Emulsion Systems. J. Food Drug Anal. 2017, 25, 16–26. [Google Scholar] [CrossRef]
- Lin, X.; Li, S.; Yin, J.; Chang, F.; Wang, C.; He, X.; Huang, Q.; Zhang, B. Anthocyanin-Loaded Double Pickering Emulsion Stabilized by Octenylsuccinate Quinoa Starch: Preparation, Stability and in Vitro Gastrointestinal Digestion. Int. J. Biol. Macromol. 2020, 152, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhai, Y.; Di, X.; Zhao, Q. Comparative Study on the in Vitro Digestion of Different Lipids in Starch-Based Pickering Emulsions. Int. J. Biol. Macromol. 2023, 253, 127340. [Google Scholar] [CrossRef]
- Ming, L.; Wu, H.; Liu, A.; Naeem, A.; Dong, Z.; Fan, Q.; Zhang, G.; Liu, H.; Li, Z. Evolution and Critical Roles of Particle Properties in Pickering Emulsion: A Review. J. Mol. Liq. 2023, 388, 122775. [Google Scholar] [CrossRef]
- Du, M.; Chen, L.; Din, Z.; Zhan, F.; Chen, X.; Wang, Y.; Zhuang, K.; Wang, G.; Cai, J.; Ding, W. Structure and Surface Properties of Ozone-Conjugated Octenyl Succinic Anhydride Modified Waxy Rice Starch: Towards High-Stable Pickering Emulsion. Int. J. Biol. Macromol. 2023, 253, 126895. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, M.; Jager, H.; Ettelaie, R.; Chen, J.; Mohammadi, A.; Kashi, P.A.; Ulbrich, M.A. A Smart Thermoresponsive Macroporous 4D Structure by 4D Printing of Pickering-High Internal Phase Emulsions Stabilized by Plasma-Functionalized Starch Nanomaterials for a Possible Delivery System. Curr. Res. Food Sci. 2024, 8, 100686. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F. Starch Based Pickering Emulsions: Fabrication, Properties, and Applications. Trends Food Sci. Technol. 2019, 85, 129–137. [Google Scholar] [CrossRef]
- McClements, D.J. Advances in Fabrication of Emulsions with Enhanced Functionality Using Structural Design Principles. Curr. Opin. Colloid. Interface Sci. 2012, 17, 235–245. [Google Scholar] [CrossRef]
- Destribats, M.; Rouvet, M.; Gehin-Delval, C.; Schmitt, C.; Binks, B.P. Emulsions Stabilised by Whey Protein Microgel Particles: Towards Food-Grade Pickering Emulsions. Soft Matter 2014, 10, 6941–6954. [Google Scholar] [CrossRef]
- Pickering, S.U. CXCVI.—Emulsions. J. Chem. Soc. Trans. 1907, 91, 2001–2021. [Google Scholar] [CrossRef]
- Finkle, P.; Draper, H.D.; Hildebrand, J.H. The Theory of Emulsification. J. Am. Chem. Soc. 1923, 45, 2780–2788. [Google Scholar] [CrossRef]
- Wiley, R.M. Limited Coalescence of Oil Droplet in Coarse Oil-in-Water Emulsions. J. Colloid. Sci. 1954, 9, 427–437. [Google Scholar] [CrossRef]
- Mukherjee, S. Pickering Emulsions Stabilized by Nanoparticles. In Biopolymer-Based Formulations: Biomedical and Food Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 365–380. ISBN 9780128168981. [Google Scholar]
- Barbosa-Nuñez, J.A.; Espinosa-Andrews, H.; Cardona, A.A.V.; Haro-González, J.N. Polymer-Based Encapsulation in Food Products: A Comprehensive Review of Applications and Advancements. J. Future Foods 2025, 5, 36–49. [Google Scholar] [CrossRef]
- Xu, T.; Yang, J.; Hua, S.; Hong, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C. Characteristics of Starch-Based Pickering Emulsions from the Interface Perspective. Trends Food Sci. Technol. 2020, 105, 334–346. [Google Scholar] [CrossRef]
- Ribeiro, E.F.; Morell, P.; Nicoletti, V.R.; Quiles, A.; Hernando, I. Protein- and Polysaccharide-Based Particles Used for Pickering Emulsion Stabilisation. Food Hydrocoll. 2021, 119, 106839. [Google Scholar] [CrossRef]
- Niroula, A.; Gamot, T.D.; Ooi, C.W.; Dhital, S. Biomolecule-Based Pickering Food Emulsions: Intrinsic Components of Food Matrix, Recent Trends and Prospects. Food Hydrocoll. 2021, 112, 106303. [Google Scholar] [CrossRef]
- Sakellari, G.I.; Zafeiri, I.; Batchelor, H.; Spyropoulos, F. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers of Dual Functionality at Emulsion Interfaces. Part I: Pickering Stabilisation Functionality. Colloids Surf. A Physicochem. Eng. Asp. 2022, 654, 130135. [Google Scholar] [CrossRef]
- Li, J.; Sun, J.; Meng, F.; Chen, Y.; Liu, H.; Gao, Y. Preparation of High Internal Phase Pickering Emulsions Using Micron-Sized Esterified Maize Starch as the Sole Effective Stabilizer. J. Food Eng. 2024, 369, 111932. [Google Scholar] [CrossRef]
- Remanan, M.K.; Zhu, F. Encapsulation of Ferulic Acid in High Internal Phase Pickering Emulsions Stabilized Using Nonenyl Succinic Anhydride (NSA) and Octenyl Succinic Anhydride (OSA) Modified Quinoa and Maize Starch Nanoparticles. Food Chem. 2023, 429, 136748. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.H.; Kim, H.D.; Jang, Y.J. Delivery Systems Designed to Enhance Stability and Suitability of Lipophilic Bioactive Compounds in Food Processing: A Review. Food Chem. 2024, 437, 137910. [Google Scholar] [CrossRef]
- Apostolidis, E.; Gerogianni, A.; Anagnostaki, E.; Paximada, P.; Mandala, I. Assembly of Spherical-Shaped Resistant Starch Nanoparticles to the Oil Droplet Surface Promotes the Formation of Stable Oil in Water Pickering Emulsions. Food Hydrocoll. 2024, 151, 109775. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Wu, Y.; Li, P.; Du, B.; Xie, X.; Li, L. Differences in the Structural Properties of Three OSA Starches and Their Effects on the Performance of High Internal Phase Pickering Emulsions. Int. J. Biol. Macromol. 2024, 258, 128992. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Xiong, L.; Li, M.; Liu, J.; Yang, J.; Chang, R.; Liang, C.; Sun, Q. Characterizations of Pickering Emulsions Stabilized by Starch Nanoparticles: Influence of Starch Variety and Particle Size. Food Chem. 2017, 234, 339–347. [Google Scholar] [CrossRef]
- Oladebeye, A.O.; Oshodi, A.A.; Amoo, I.A.; Karim, A.A. Functional, Thermal and Molecular Behaviours of Ozone-Oxidised Cocoyam and Yam Starches. Food Chem. 2013, 141, 1416–1423. [Google Scholar] [CrossRef] [PubMed]
- Wurzburg, O.B. Nutritional Aspects and Safety of Modified Food Starches. Nutr. Rev. 1986, 44, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Denyer, K.; Martin, C. The Synthesis of the Starch Granule. Annu. Rev. Plant Biol. 1997, 48, 67–87. [Google Scholar] [CrossRef] [PubMed]
- Tester, R.F.; Karkalas, J.; Qi, X. Starch—Composition, Fine Structure and Architecture. J. Cereal Sci. 2004, 39, 151–165. [Google Scholar] [CrossRef]
- Wang, Q.; Li, L.; Zheng, X. Recent Advances in Heat-Moisture Modified Cereal Starch: Structure, Functionality and Its Applications in Starchy Food Systems. Food Chem. 2021, 344, 128700. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, T.; Onishi, M.; Katsuno, N.; Miwa, N.; Oomoto, C.; Sato, M.; Sekita, M.; Yamaguchi, H.; Imaizumi, T.; Nishizu, T. Evaluation of Starch Retrogradation by X-Ray Diffraction Using a Water-Addition Method. LWT 2023, 173, 114341. [Google Scholar] [CrossRef]
- Lima, K.T.d.S.; Garcez, J.; dos Santos Alves, M.J.; Monteiro, A.R.; Valencia, G.A. Physicochemical Properties of Modified Starches Obtained by Anti-Solvent Precipitation Containing Anthocyanins from Jambolan (Syzygium cumini) Fruit. Starch/Staerke 2021, 73, 2000221. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, J. Waxy Maize Starch Nanoparticles Incorporated Tea Polyphenols to Stabilize Pickering Emulsion and Inhibit Oil Oxidation. Carbohydr. Polym. 2022, 296, 119991. [Google Scholar] [CrossRef]
- Ramos, G.V.C.; Rabelo, M.E.A.; de Pinho, S.C.; Valencia, G.A.; Sobral, P.J.d.A.; Moraes, I.C.F. Dual Modification of Cassava Starch Using Physical Treatments for Production of Pickering Stabilizers. Foods 2024, 13, 327. [Google Scholar] [CrossRef]
- Li, G.; Chen, J.; Zhu, F. Comparative Study of Rheological Properties and Pickering Emulsion Stabilizing Capacity of Nonenyl Succinic Anhydride and Octenyl Succinic Anhydride Modified Amaranth Starches. Int. J. Biol. Macromol. 2023, 253, 126606. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Zhu, Y.; Hu, W.; Li, M.; Liu, Y.; Feng, J.; Lv, X.; Yu, X.; Du, S. Characterization of Quinoa Starch Nanoparticles as a Stabilizer for Oil in Water Pickering Emulsion. Food Chem. 2023, 427, 136697. [Google Scholar] [CrossRef] [PubMed]
- Remanan, M.K.; Zhu, F. Encapsulation of Rutin in Pickering Emulsions Stabilized Using Octenyl Succinic Anhydride (OSA) Modified Quinoa, Maize, and Potato Starch Nanoparticles. Food Chem. 2023, 405, 134790. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, Y.; Zhang, B.; Fang, Y.; Lin, Q.; Ding, Y. Application of Pickering Emulsions Stabilized by Corn, Potato and Pea Starch Nanoparticles: Effect of Environmental Conditions and Approach for Curcumin Release. Int. J. Biol. Macromol. 2023, 238, 124115. [Google Scholar] [CrossRef] [PubMed]
- Matos, M.; Marefati, A.; Barrero, P.; Rayner, M.; Gutierrez, G. Resveratrol Loaded Pickering Emulsions Stabilized by OSA Modified Rice Starch Granules. Food Res. Int. 2021, 139, 109837. [Google Scholar] [CrossRef] [PubMed]
- Shabana, S.; Prasansha, R.; Kalinina, I.; Potoroko, I.; Bagale, U.; Shirish, S.H. Ultrasound Assisted Acid Hydrolyzed Structure Modification and Loading of Antioxidants on Potato Starch Nanoparticles. Ultrason. Sonochem 2019, 51, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xiong, T.; Wang, X.F.; Chen, D.L.; He, X.D.; Zhang, C.; Wu, C.; Li, Q.; Ding, X.; Qian, J.Y. Pickering Emulsifiers Based on Enzymatically Modified Quinoa Starches: Preparation, Microstructures, Hydrophilic Property and Emulsifying Property. Int. J. Biol. Macromol. 2021, 190, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Abdul Hadi, N.; Marefati, A.; Matos, M.; Wiege, B.; Rayner, M. Characterization and Stability of Short-Chain Fatty Acids Modified Starch Pickering Emulsions. Carbohydr. Polym. 2020, 240, 116264. [Google Scholar] [CrossRef]
- Xu, T.; Gu, Z.; Cheng, L.; Li, C.; Li, Z.; Hong, Y. Influence of Degree of Substitution of Octenyl Succinic Anhydride Starch on Complexation with Chitosan and Complex-Stabilized High Internal Phase Pickering Emulsions. Food Hydrocoll. 2023, 139, 108526. [Google Scholar] [CrossRef]
- Hadi, N.A.; Wiege, B.; Stabenau, S.; Marefati, A.; Rayner, M. Comparison of Three Methods to Determine the Degree of Substitution of Quinoa and Rice Starch Acetates, Propionates, and Butyrates: Direct Stoichiometry, FTIR, and 1H-NMR. Foods 2020, 9, 83. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Li, M.; Liu, M.; Wang, A.; Strappe, P.; Blanchard, C.; Zhou, Z. Characterization of Pickering Emulsion by SCFAs-Modified Debranched Starch and a Potent for Delivering Encapsulated Bioactive Compound. Int. J. Biol. Macromol. 2023, 231, 123164. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhang, C.; Li, H.; Zhang, D.; Wu, J.; Li, Y.; Yang, L.; Zhang, N.; Wang, X. Addition of Canna Edulis Starch and Starch Nanoparticles to Stabilized Pickering Emulsions: In Vitro Digestion and Fecal Fermentation. Int. J. Biol. Macromol. 2024, 258, 128993. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Ren, L.; Hao, W.; Wang, L.; Liu, C.; Zheng, L. Encapsulation of Indole-3-Carbinol in Pickering Emulsions Stabilized by OSA-Modified High Amylose Corn Starch: Preparation, Characterization and Storage Stability Properties. Food Chem. 2022, 386, 132846. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Geng, S.; Shi, Y.; Yuan, C.; Liu, B. Effect of Sulfuric Acid Hydrolysis on the Structure and Pickering Emulsifying Capacity of Acorn Starch. Food Chem. X 2024, 22, 101277. [Google Scholar] [CrossRef]
- Ramos, G.V.C.; de Pinho, S.C.; Gomes, A.; Dacanal, G.C.; Sobral, P.J.d.A.; Moraes, I.C.F. Designing Pickering Emulsions Stabilized by Modified Cassava Starch Nanoparticles: Effect of Curcumin Encapsulation. Processes 2024, 12, 1348. [Google Scholar] [CrossRef]
- Feng, Y.; Wu, C.; Junejo, S.A.; Zhang, B.; Fu, X.; Tan, C.P.; Huang, Q. Effect of V-Type Crystallinity and Starch Particle Structure on the Oil Loading Capacity and Anti-Oxidation. Carbohydr. Polym. 2022, 297, 120015. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, B.; Fu, X.; Huang, Q. Starch-Lauric Acid Complex-Stabilised Pickering Emulsion Gels Enhance the Thermo-Oxidative Resistance of Flaxseed Oil. Carbohydr. Polym. 2022, 292, 119715. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, D.L.; Wang, X.F.; Xu, L.; Qian, J.Y.; He, X.D. Enzymatically Modified Quinoa Starch Based Pickering Emulsion as Carrier for Curcumin: Rheological Properties, Protection Effect and in Vitro Digestion Study. Food Biosci. 2022, 49, 101933. [Google Scholar] [CrossRef]
- Noor, N.; Gani, A.; Jhan, F.; Shah, M.A.; Ashraf, Z. Ferulic Acid Loaded Pickering Emulsions Stabilized by Resistant Starch Nanoparticles Using Ultrasonication: Characterization, in Vitro Release and Nutraceutical Potential. Ultrason. Sonochem 2022, 84, 105967. [Google Scholar] [CrossRef] [PubMed]
- Remanan, M.K.; Zhu, F. Encapsulation of Rutin Using Quinoa and Maize Starch Nanoparticles. Food Chem. 2021, 353, 128534. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Yan, X.; Wang, Q.; Ren, L.; Tong, J.; Zhou, J. High Efficiency and Low Cost Preparation of Size Controlled Starch Nanoparticles through Ultrasonic Treatment and Precipitation. Food Chem. 2017, 227, 369–375. [Google Scholar] [CrossRef]
- Wang, Q.; Luan, Y.; Tang, Z.; Li, Z.; Gu, C.; Liu, R.; Ge, Q.; Yu, H.; Wu, M. Consolidating the Gelling Performance of Myofibrillar Protein Using a Novel OSA-Modified-Starch-Stabilized Pickering Emulsion Filler: Effect of Starches with Distinct Crystalline Types. Food Res. Int. 2023, 164, 112443. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Belwal, T.; Li, L.; Lin, X.; Xu, Y.; Luo, Z. Recent Advances in Polysaccharides Stabilized Emulsions for Encapsulation and Delivery of Bioactive Food Ingredients: A Review. Carbohydr. Polym. 2020, 242, 116388. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Jiao, B.; Li, S.; Faisal, S.; Shi, A.; Fu, W.; Chen, Y.; Wang, Q. Recent Advances on Pickering Emulsions Stabilized by Diverse Edible Particles: Stability Mechanism and Applications. Front. Nutr. 2022, 9, 864943. [Google Scholar] [CrossRef]
- Rayees, R.; Gani, A.; Noor, N.; Ayoub, A.; Ashraf, Z.U. General Approaches to Biopolymer-Based Pickering Emulsions. Int. J. Biol. Macromol. 2024, 267, 131430. [Google Scholar] [CrossRef] [PubMed]
- Albert, C.; Beladjine, M.; Tsapis, N.; Fattal, E.; Agnely, F.; Huang, N. Pickering Emulsions: Preparation Processes, Key Parameters Governing Their Properties and Potential for Pharmaceutical Applications. J. Control. Release 2019, 309, 302–332. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Chen, J.; Wang, X.; Wang, Y.; Fan, J. Pickering Emulsion: From Controllable Fabrication to Biomedical Application. Interdiscip. Med. 2023, 1, e20230014. [Google Scholar] [CrossRef]
- Kim, I.; Worthen, A.J.; Johnston, K.P.; DiCarlo, D.A.; Huh, C. Size-Dependent Properties of Silica Nanoparticles for Pickering Stabilization of Emulsions and Foams. J. Nanoparticle Res. 2016, 18, 82. [Google Scholar] [CrossRef]
- Tavacoli, J.W.; Katgert, G.; Kim, E.G.; Cates, M.E.; Clegg, P.S. Size Limit for Particle-Stabilized Emulsion Droplets under Gravity. Phys. Rev. Lett. 2012, 108, 268306. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.; Zhang, G.; Sun, F.; Guo, Y.; Ramakrishna, R.; Zhou, L.; Guo, Z.; Wang, Z. Study on Stabilized Mechanism of High Internal Phase Pickering Emulsions Based on Commercial Yeast Proteins: Modulating the Characteristics of Pickering Particle via Sonication. Ultrason. Sonochem 2024, 104, 106843. [Google Scholar] [CrossRef]
- Cui, F.; Zhao, S.; Guan, X.; McClements, D.J.; Liu, X.; Liu, F.; Ngai, T. Polysaccharide Based Pickering Emulsion_Formation, Stabilization and Applications. Food Hydrocoll. 2021, 119, 106812. [Google Scholar] [CrossRef]
- Zhang, Z.; Gu, Z.; Li, M.; Liang, S.; Huang, Z.; Zong, M.; Wu, X.; Lou, W. Oxidized High-Amylose Starch as Pickering Stabilizer for Oil-in-Water Emulsion and Delivery of Bioactive Compound. Food Hydrocoll. Health 2022, 2, 100104. [Google Scholar] [CrossRef]
- Li, X.M.; Xie, Q.T.; Zhu, J.; Pan, Y.; Meng, R.; Zhang, B.; Chen, H.Q.; Jin, Z.Y. Chitosan Hydrochloride/Carboxymethyl Starch Complex Nanogels as Novel Pickering Stabilizers: Physical Stability and Rheological Properties. Food Hydrocoll. 2019, 93, 215–225. [Google Scholar] [CrossRef]
- Fonseca-Florido, H.A.; Vázquez-García, H.G.; Méndez-Montealvo, G.; Basilio-Cortés, U.A.; Navarro-Cortés, R.; Rodríguez-Marín, M.L.; Castro-Rosas, J.; Gómez-Aldapa, C.A. Effect of Acid Hydrolysis and OSA Esterification of Waxy Cassava Starch on Emulsifying Properties in Pickering-Type Emulsions. LWT 2018, 91, 258–264. [Google Scholar] [CrossRef]
- Simsek, S.; Ovando-Martinez, M.; Marefati, A.; Sj, M.; Rayner, M. Chemical Composition, Digestibility and Emulsification Properties of Octenyl Succinic Esters of Various Starches. Food Res. Int. 2015, 75, 41–49. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, Q.; Zhu, B.; Chen, R.; Zhou, Y.; Pei, X.; Zhou, H.; An, H.; Tan, Y.; Chen, C. Acetalized Starch-Based Nanoparticles Stabilized Acid-Sensitive Pickering Emulsion as a Potential Antitumor Drug Carrier. Int. J. Biol. Macromol. 2023, 244, 125393. [Google Scholar] [CrossRef] [PubMed]
- Hatchell, D.; Song, W.; Daigle, H. Effect of Interparticle Forces on the Stability and Droplet Diameter of Pickering Emulsions Stabilized by PEG-Coated Silica Nanoparticles. J. Colloid. Interface Sci. 2022, 626, 824–835. [Google Scholar] [CrossRef] [PubMed]
- Velásquez-Castillo, L.E.; Leite, M.A.; Ditchfield, C.; Sobral, P.J.d.A.; Moraes, I.C.F. Quinoa Starch Nanocrystals Production by Acid Hydrolysis: Kinetics and Properties. Int. J. Biol. Macromol. 2020, 143, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Li, L.; Liu, G.; Li, B. Starch Stearate as a Novel Encapsulation Wall Material and Its on Oil–Water Interfacial Tension. J. Control Release 2011, 152 (Suppl. 1), e226-7. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, I.; Rongpipi, S.; Govindaraju, I.; Rakesh, B.; Mal, S.S.; Gomez, E.W.; Gomez, E.D.; Kalita, R.D.; Nath, Y.; Mazumder, N. An Insight into Microscopy and Analytical Techniques for Morphological, Structural, Chemical, and Thermal Characterization of Cellulose. Microsc. Res. Tech. 2022, 85, 1990–2015. [Google Scholar] [CrossRef] [PubMed]
- Vicentini, N.M.; Dupuy, N.; Leitzelman, M.; Cereda, M.P.; Sobral, P.J.A. Prediction of Cassava Starch Edible Film Properties by Chemometric Analysis of Infrared Spectra. Spectrosc. Lett. 2005, 38, 749–767. [Google Scholar] [CrossRef]
- Zanini, M.; Marschelke, C.; Anachkov, S.E.; Marini, E.; Synytska, A.; Isa, L. Universal Emulsion Stabilization from the Arrested Adsorption of Rough Particles at Liquid-Liquid Interfaces. Nat. Commun. 2017, 8, 15701. [Google Scholar] [CrossRef] [PubMed]
- Paiva, A.T.; Oliveira Sequeira, S.; Evtuguin, D.V.; Kholkin, A.; Portugal, I.; Portugal, I. Nanoscale Structure of Cellulosic Materials: Challenges and Opportunities for AFM. In Modern Research and Educational Topics in Microscopy; Formatex: Badajoz, Spain, 2007. [Google Scholar]
- Hosseinali, F.; Thomasson, J.A. Probing of Nanoscale Friction and Mechanical Characteristics of Cotton Fiber’s Surface. Fibers 2019, 7, 64. [Google Scholar] [CrossRef]
- Shabir, I.; Hussain, A.; Kumar, K.; Srivastava, S.; Kumar, V.; Manzoor, S.; Manzoor, S.; Bashir, I. Formulation, Characterization, and Applications of Organic Pickering Emulsions: A Comprehensive Review. J. Agric. Food Res. 2023, 14, 100853. [Google Scholar] [CrossRef]
- Kempin, M.V.; Drews, A. What Governs Pickering Emulsion Properties During Preparation via Batch Rotor-Stator Homogenizers? Chem. Ing. Tech. 2021, 93, 311–317. [Google Scholar] [CrossRef]
- Ramos, G.V.C.; Suzigan, A.R.; Pinho, S.C.; Moraesa, I.C.F. Impact of Emulsification Time and Concentration of Modified Starch Nanoparticles on Pickering Stability. Chem. Eng. Trans. 2023, 102, 247–252. [Google Scholar] [CrossRef]
- Wang, S.; Xiang, Z. Highly Stable Pickering Emulsions with Xylan Hydrate Nanocrystals. Nanomaterials 2021, 11, 2558. [Google Scholar] [CrossRef] [PubMed]
- Juttulapa, M.; Piriyaprasarth, S.; Takeuchi, H.; Sriamornsak, P. Effect of High-Pressure Homogenization on Stability of Emulsions Containing Zein and Pectin. Asian J. Pharm. Sci. 2017, 12, 21–27. [Google Scholar] [CrossRef]
- Yuan, Q.; Cayre, O.J.; Manga, M.; Williams, R.A.; Biggs, S. Preparation of Particle-Stabilized Emulsions Using Membrane Emulsification. Soft Matter 2010, 6, 1580–1588. [Google Scholar] [CrossRef]
- Sun, G.; Qi, F.; Wu, J.; Ma, G.; Ngai, T. Preparation of Uniform Particle-Stabilized Emulsions Using SPG Membrane Emulsification. Langmuir 2014, 30, 7052–7056. [Google Scholar] [CrossRef] [PubMed]
- Chutia, H.; Mahanta, C.L. Properties of Starch Nanoparticle Obtained by Ultrasonication and High Pressure Homogenization for Developing Carotenoids-Enriched Powder and Pickering Nanoemulsion. Innov. Food Sci. Emerg. Technol. 2021, 74, 102822. [Google Scholar] [CrossRef]
- Zhou, Z.; Liang, Z.; Zhang, Y.; Hu, H.; Gan, T.; Huang, Z. Facile Solid-Phase Synthesis of Starch-Fatty Acid Complexes via Mechanical Activation for Stabilizing Curcumin-Loaded Pickering Emulsions. Food Res. Int. 2023, 166, 112625. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Li, H.; Shang, W.; Wang, H.; Tan, M. Fabrication and Characterization of Pickering Emulsion Gels Stabilized by Gliadin/Starch Complex for the Delivery of Astaxanthin. Food Hydrocoll. 2023, 137, 108388. [Google Scholar] [CrossRef]
- Feng, T.; Hu, Z.; Wang, K.; Zhu, X.; Chen, D.; Zhuang, H.; Yao, L.; Song, S.; Wang, H.; Sun, M. Emulsion-Based Delivery Systems for Curcumin: Encapsulation and Interaction Mechanism between Debranched Starch and Curcumin. Int. J. Biol. Macromol. 2020, 161, 746–754. [Google Scholar] [CrossRef]
- Owens, C.; Griffin, K.; Khouryieh, H.; Williams, K. Creaming and Oxidative Stability of Fish Oil-in-Water Emulsions Stabilized by Whey Protein-Xanthan-Locust Bean Complexes: Impact of PH. Food Chem. 2018, 239, 314–322. [Google Scholar] [CrossRef]
- Dammak, I.; do Amaral Sobral, P.J. Investigation into the Physicochemical Stability and Rheological Properties of Rutin Emulsions Stabilized by Chitosan and Lecithin. J. Food Eng. 2018, 229, 12–20. [Google Scholar] [CrossRef]
- Wanyi, W.; Lu, L.; Zehan, H.; Xinan, X. Comparison of Emulsifying Characteristics of Different Macromolecule Emulsifiers and Their Effects on the Physical Properties of Lycopene Nanoemulsions. J. Dispers. Sci. Technol. 2020, 41, 618–627. [Google Scholar] [CrossRef]
- Lewis, D. MICROSCOPY|Confocal Laser Scanning Microscopy. In Encyclopedia of Food Microbiology; Academic Press: Cambridge, MA, USA, 1999; pp. 1389–1396. [Google Scholar]
- Li, S.; Zhang, B.; Li, C.; Fu, X.; Huang, Q. Pickering Emulsion Gel Stabilized by Octenylsuccinate Quinoa Starch Granule as Lutein Carrier: Role of the Gel Network. Food Chem. 2020, 305, 125476. [Google Scholar] [CrossRef] [PubMed]
- Kupikowska-Stobba, B.; Domagała, J.; Kasprzak, M.M. Critical Review of Techniques for Food Emulsion Characterization. Appl. Sci. 2024, 14, 1069. [Google Scholar] [CrossRef]
- Chivero, P.; Gohtani, S.; Yoshii, H.; Nakamura, A. Assessment of Soy Soluble Polysaccharide, Gum Arabic and OSA-Starch as Emulsifiers for Mayonnaise-like Emulsions. LWT 2016, 69, 59–66. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, H.; Tang, J.; He, B.; Yu, H.; Xu, X.; Li, C.; Wang, C.; Liu, Y.; Su, Y.; et al. Pork Preservation by Antimicrobial Films Based on Potato Starch (PS) and Polyvinyl Alcohol (PVA) and Incorporated with Clove Essential Oil (CLO) Pickering Emulsion. Food Control 2023, 154, 109988. [Google Scholar] [CrossRef]
- Wigati, L.P.; Wardana, A.A.; Jothi, J.S.; Leonard, S.; Van, T.T.; Yan, X.; Tanaka, F.; Tanaka, F. Preserving Mandarin Quality during Ambient Storage Using Edible Coatings of Pregelatinized Corn Starch Pickering Emulsions and Essential Oil. Food Biosci. 2023, 53, 102710. [Google Scholar] [CrossRef]
- Wang, R.; Yao, L.; Peng, S.; Liu, Z.; Zhu, X.; Li, H.; Xu, D.; Zhang, J.; Mo, H.; Hu, L. An “Intelligent -Responsive” Bactericidal System Based on OSA-Starch Pickering Emulsion. Int. J. Biol. Macromol. 2023, 235, 123808. [Google Scholar] [CrossRef]
- Chen, Q.J.; Zhang, P.; You, N.; Xu, Y.N.; Zhang, Y.Z.; Luan, P.C.; Lin, B.P.; Wang, Z.M.; Zhang, L. Preparation and Characterization of Corn Starch-Based Antimicrobial Indicator Films Containing Purple Corncob Anthocyanin and Tangerine Peel Essential Oil for Monitoring Pork Freshness. Int. J. Biol. Macromol. 2023, 251, 123808. [Google Scholar] [CrossRef]
- Sun, H.; Li, S.; Chen, S.; Wang, C.; Liu, D.; Li, X. Antibacterial and Antioxidant Activities of Sodium Starch Octenylsuccinate-Based Pickering Emulsion Films Incorporated with Cinnamon Essential Oil. Int. J. Biol. Macromol. 2020, 159, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Zheng, J.; Zheng, B.S.; Liu, F.; Wang, S.; Tang, C.H. High Internal Phase Emulsions Stabilized by Starch Nanocrystals. Food Hydrocoll. 2018, 82, 230–238. [Google Scholar] [CrossRef]
- Li, J.; Klaassen, C.; Li, P.; Kierulf, A.; Yaghoobi, M.; Khazdooz, L.; Zarei, A.; Smoot, J.; Joo, Y.L.; Abbaspourrad, A. Using Gas-Assisted Electrospinning to Design Rod-Shaped Particles from Starch for Thickening Agents and Pickering Emulsifiers. Carbohydr. Polym. 2025, 348, 122902. [Google Scholar] [CrossRef]
- Li, Q.; Huang, Y.; Du, Y.; Chen, Y.; Wu, Y.; Zhong, K.; Huang, Y.; Gao, H. Food-Grade Olive Oil Pickering Emulsions Stabilized by Starch/β-Cyclodextrin Complex Nanoparticles: Improved Storage Stability and Regulatory Effects on Gut Microbiota. LWT 2022, 155, 112950. [Google Scholar] [CrossRef]
- Rayees, R.; Gani, A.; Gani, A.; Muzzaffar, S. Water Chestnut Starch Nanoparticle Pickering Emulsion for Enhanced Apricot Seed Oil Stability: A Sustainable Functionality Approach. Int. J. Biol. Macromol. 2024, 282, 137110. [Google Scholar] [CrossRef]
- Amrani, M.; Pourshamohammad, S.; Tabibiazar, M.; Hamishehkar, H.; Mahmoudzadeh, M. Antimicrobial Activity and Stability of Satureja Khuzestanica Essential Oil Pickering Emulsions Stabilized by Starch Nanocrystals and Bacterial Cellulose Nanofibers. Food Biosci. 2023, 55, 103016. [Google Scholar] [CrossRef]
- Guo, C.; Han, F.; Geng, S.; Shi, Y.; Ma, H.; Liu, B. The Physicochemical Properties and Pickering Emulsifying Capacity of Acorn Starch. Int. J. Biol. Macromol. 2023, 239, 124289. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wang, J.; Li, T.; Lei, Y.; Peng, L.; Chang, J.; Li, S.; Yuan, X.; Zhou, M.; Zhang, Z. Effects of Cinnamon Essential Oil-Loaded Pickering Emulsion on the Structure, Properties and Application of Chayote Tuber Starch-Based Composite Films. Int. J. Biol. Macromol. 2023, 240, 124444. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Fan, L.; Li, J. Biopolymer-Based Pickering High Internal Phase Emulsions: Intrinsic Composition of Matrix Components, Fundamental Characteristics and Perspective. Food Res. Int. 2023, 165, 112458. [Google Scholar] [CrossRef] [PubMed]
Type of Stabilizer | Starch Modification Method | Type of Emulsion | Main Characterizations | Authors |
---|---|---|---|---|
High amylose corn starch nanoparticles | Gelatinization and precipitation with ethanol | O/W | Stability, size, zeta potential, rheology, surface tension, contact angle, CLSM | [22] |
Corn starch nanocrystals | Lauric acid esterification | W/O | Contact angle, zeta potential, atomic force microscopy, stability, rheology | [19] |
Cassava starch nanoparticles | HMT or ultrasound modification, gelatinization and ethanol precipitation | O/W | Contact angle, SEM, FTIR, DSC, XRD, stability, zeta potential, OAC | [33] |
Amaranth starch | Modification by nonenyl succinic anhydride (NSA) and octenyl succinic anhydride (OSA) | O/W | Starch substitution degree, size distribution, morphology, DSC, XRD, swelling power and solubility, rheology, stability | [34] |
Waxy rice starch | Modification by octenyl succinic anhydride (OSA) and ozone | O/W | FTIR, XRD, SEM, DSC, contact angle, size distribution, contact angle, zeta potential, stability, CLSM, rheology | [5] |
Waxy corn starch nanocrystals or nanoparticles | Acid hydrolysis or ultrasound modification and plasma hydroxybutylation | W/O, HIPPE | Size distribution, TEM, FTIR, XRD, contact angle, AFM, stability, CLSM, rheology | [6] |
Waxy corn starch | Modification by octenyl succinic anhydride (OSA), esterification | W/O, HIPPE | NMR, SEM, size distribution, contact angle, stability, rheology | [23] |
Quinoa starch nanoparticles | Gelatinization and ethanol precipitation | O/W, W/O | Size distribution, SEM, contact angle, FTIR, XRD, stability, rheology, lipid oxidation | [35] |
Type of Stabilizer | Starch Modification Method | Type of Emulsion | Main Characterizations | Encapsulated Bioactive Compound | Authors |
---|---|---|---|---|---|
Quinoa, corn, and potato starch nanoparticles | Gelatinization, ethanol precipitation, and modification by octenyl succinic anhydride (OSA) | O/W | Size distribution, zeta potential, contact angle, HPLC, EE, stability, CLSM, FTIR, rheology, in vitro digestion | Rutin | [36] |
Lotus resistant starch nanoparticles | Acetone addition, ultrasonication | O/W | Particle size, zeta potential, CLSM, SEM, AFM, TEM, FTIR, EE, in vitro digestion | Ferulic acid (FA) | [52] |
Quinoa and corn starch nanoparticles | Gelatinization with NaOH, ultrasonication, ethanol precipitation, modification by OSA (octenyl succinic anhydride) and NSA (nonenyl succinic anhydride) | HIPPE, W/O | Size distribution, zeta potential, FTIR, contact angle, stability, CLSM, rheology, in vitro digestion | Ferulic acid (FA) | [20] |
High-amylose corn starch | Acid hydrolysis, modification by octenyl succinic anhydride (OSA) | O/W | Size distribution, XRD, FTIR, SEM, stability, zeta potential, in vitro digestion, HPLC | Indole-3-carbinol (I3C) | [46] |
Rice starch | Modification by octenyl succinic anhydride (OSA) | O/W, W/O | Size distribution, stability, EE | Resveratrol | [38] |
High-amylose starch | Oxidation by 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) | O/W | SEM, contact angle, size distribution, zeta potential, rheology, CLSM, in vitro digestion | β-Carotene | [51] |
Achira or sago starch nanocrystals (Canna edulis) | Acid hydrolysis and modification by octenyl succinic anhydride (OSA) | O/W | EM, XRD, contact angle, FTIR, in vitro digestibility, CLSM, size distribution, rheology | Curcumin | [45] |
Cassava starch nanoparticles | Nanoprecipitaton and heat moisture treatment (HMT) | O/W | contact angle, CLSM, size distribution, rheology, stability, interfacial tension, zeta potential, EE | Curcumin | [48] |
Waxy corn starch | Gelatinization, ethanol precipitation | O/W | SEM, zeta potential, contact angle, polyphenol retention, FTIR, XRD, CLSM, rheology, stability | Tea polyphenols (TP) | [32] |
Rice starch particles | Gelatinization, debranching by pullulanase, esterification with anhydride (replacement of hydroxyl groups with short-chain fatty acids—SCFAs) | O/W | FTIR, NMR, SEM, size distribution, rheology, stability, CLSM, in vitro digestion | Curcumin | [44] |
Quinoa starch | Modification by octenyl succinic anhydride (OSA) | W/O/W | Size distribution, EE, CLSM, in vitro digestion | Anthocyanin | [2] |
Rice starch–stator fatty acids complex | Ball milling (starch + fatty acid), washing with water and ethanol | W/O, O/W | Stability, in vitro digestion, XRD, FTIR, DSC, size distribution, CLSM, SEM, rheology | Curcumin | [86] |
Gliadin/corn starch nanocomposites | Starch gelatinization, addition of gliadin diluted in ethanol | O/W | Cryo-SEM, FTIR, XRD, contact angle, DSC, CLSM, fluorescence microscopy, stability, rheology, EE, in vitro digestion | Astaxanthin | [87] |
Type V starch-lauric acid complexes | Gelatinization, ethanol precipitation, addition of lauric acid solution, and heating in an oven | O/W | XRD, DSC, SEM, contact angle, interfacial tension, stability, rheology, CLSM, Cryo-SEM | Lauric acid, linseed oil | [49] |
Corn, potato, and pea starch nanoparticles | Gelatinization, high-shear homogenization (Ultra-Turrax), modification with OSA, ethanol precipitation | O/W | Zeta potential, stability, size distribution, EE, fluorescence microscopy, in vitro digestion | Curcumin | [37] |
Type of Stabilizer | Application | Authors |
---|---|---|
OSA starch | Films with incorporated bioactives and biodegradable | [100] |
Starch nanocrystals | Food-grade film | [101] |
Gliadin/Starch complex | Delivery of astaxanthin | [87] |
Starch nanofibers | Thickening agent | [102] |
Starch/β-cyclodextrin complex nanoparticles | Fat replacer | [103] |
Starch nanoparticles | Mayonnaise and salad dressings | [104] |
Starch nanocrystals and bacterial cellulose nanofibers | Antimicrobial activity | [105] |
Starch nanoparticles | Curcumin delivery | [45] |
Potato starch and polyvinyl alcohol | Pork preservation | [96] |
Esterified corn starch | Bacteriostatic activity against E. coli and S. aureus | [99] |
Pre-gelatinized corn starch with cellulose nanofiber | Edible coatings to prevent biochemical degradation and minimize color changes of tangerines | [97] |
OSA starch | Bactericidal effect against E. coli, S. aureus, A. flavus | [98] |
Acorn starch | Protection of β-carotene against ultraviolet radiation | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, G.V.C.; Ramírez-López, S.; Pinho, S.C.d.; Ditchfield, C.; Moraes, I.C.F. Starch-Based Pickering Emulsions for Bioactive Compound Encapsulation: Production, Properties, and Applications. Processes 2025, 13, 342. https://doi.org/10.3390/pr13020342
Ramos GVC, Ramírez-López S, Pinho SCd, Ditchfield C, Moraes ICF. Starch-Based Pickering Emulsions for Bioactive Compound Encapsulation: Production, Properties, and Applications. Processes. 2025; 13(2):342. https://doi.org/10.3390/pr13020342
Chicago/Turabian StyleRamos, Giselle Vallim Corrêa, Santiago Ramírez-López, Samantha Cristina de Pinho, Cynthia Ditchfield, and Izabel Cristina Freitas Moraes. 2025. "Starch-Based Pickering Emulsions for Bioactive Compound Encapsulation: Production, Properties, and Applications" Processes 13, no. 2: 342. https://doi.org/10.3390/pr13020342
APA StyleRamos, G. V. C., Ramírez-López, S., Pinho, S. C. d., Ditchfield, C., & Moraes, I. C. F. (2025). Starch-Based Pickering Emulsions for Bioactive Compound Encapsulation: Production, Properties, and Applications. Processes, 13(2), 342. https://doi.org/10.3390/pr13020342