Sustainable Production of Porous Activated Carbon from Hydrothermally Carbonized Jamoya Fruit Seeds and Its Potential for Adsorbing the Azo Dye Carmoisine B
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Porous Green Activated Carbon
2.3. Proximate Analysis and pH at the Point of Zero Charge Determination
2.4. Instrumental Methods
2.5. Batch Dyes Adsorption Experiments
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization of JFS, JFS-HC, and JFS-PC
3.2. Adsorption Studies
3.2.1. Effect of Contact Time, Initial Dye Concentration, and Solution pH
3.2.2. Adsorption Isotherms and Thermodynamics Studies
3.2.3. Mechanism
3.2.4. Kinetic Investigations
Proximate Analysis (%) | Moisture Content | Ash Content | Volatile Matter | Reference | |
---|---|---|---|---|---|
JFS | 68.32 | 6.56 | 2.89 | This study | |
JFS-HC | 58.11 | 6.23 | 2.43 | This study | |
JFS-PC | - | 0.51 | –- | This study | |
Activated carbon from apricot stones | - | 2.10 | - | [6] | |
Activated carbon from almond shell | - | 0.5 | - | [8] | |
Activated carbon from sugarcane baggase | - | 1.65 | - | [53] | |
Activated carbon from thin walnut shell | - | 5.01 | - | [54] | |
Ultimate Analysis (%) | |||||
C | H | N | S | Reference | |
JFS | 44.12 | 7.12 | 0.92 | 0.87 | This study |
JFS-HC | 62.34 | 4.32 | 0.04 | 0.02 | This study |
JFS-PC | 84.21 | 1.20 | 0.02 | 0.03 | This study |
Activated carbon from almond shell | 58.78 | 3.26 | 1.25 | 0.07 | [8] |
Activated carbon from apricot stones | 82.76 | - | - | - | [6] |
Activated carbon from Phyllanthus emblica | 70.23 | 2.98 | 0.64 | 0.41 | [12] |
Activated carbon from orange peel | 83.9 | 1.9 | 0.4 | - | [33] |
Activated carbon from cupuassu | 74.16 | 2.32 | 0.66 | - | [50] |
Activated carbon from Brazilian nut shell | 71.30 | 2.65 | 1.03 | - | [50] |
Materials | Surface Area | Average Pore Size | Total Pore Volume |
---|---|---|---|
(m2 g−1) | (nm) | (cm3 g−1) | |
JFS | 2.40 | 6.05 | 0.004 |
JFS-HC | 10 | 3.40 | 0.027 |
JFS-PC | 440.8 | 3.97 | 0.437 |
Models | Mathematical Expression | Plot Axis | Evaluated Parameters | Description | Reference |
---|---|---|---|---|---|
Isotherm Models | |||||
Langmuir | 1/qe = 1/qmax+1/qmaxbCe RL = 1/1+bCo | 1/qe vs.1/Ce | qmax and b | Ce; adsorbate concentration at equilibrium qe (mmol g−1); amount of pollutant adsorbed at Ce qmax (mmol g−1); Monolayer adsorption capacity of JFS-PC. b (L mol−1); Langmuir adsorption coefficient | [55] |
Freundlich | log qe = logKf + (1/n) log Ce | logqe vs.logCe | Kf and n | Ce; adsorbate concentration at equilibrium qe(mmol g−1); amount adsorbed at Ce KF (mmol g−1) and n; Freundlich constant affiliated to the adsorption capacity and heterogeneity, respectively. | [56] |
Temkin | qe = BT ln KT + BT lnCe BT = RT/ bT | qe vs. lnCe | KT and BT | BT; heat of adsorption bT (J mol−1); constant related to the heat of adsorption KT (L mg−1); Temkin constant | [57] |
D-R | ln qe = lnqm− βDRε2 ε = RT ln(1+1/Ce) | ln qe vs. ε2 | Qm and βDR | qm (mg g−1); D-R monolayer capacity βDR (mol2 kJ−2); constant related to the adsorption energy ε; Polanyi potential | [58] |
Kinetic Models | |||||
PFO | log ( qe − qt ) = log qe − t | log (qe − qt) vs. t | Qe and k1 | qe and qt (mmol g−1); adsorbed amount of CB at equilibrium and at time t, respectively. k1; PFO rate constant of adsorption | [59] |
PSO | = + t | Qe and k2 | qe and qt (mmol g−1); adsorbed amount of CB at equilibrium and at time t, respectively. k2; PSO rate constant of adsorption | [60] | |
Elovich | qt = 1/β ln(αβ) + 1/β ln(t) | qt vs. ln(t) | α and β | β (g mmol−1); desorption rate constant α (mmol g−1 min−1); initial adsorption rate constant qt (mmol g−1); adsorption capacity at time t | [61] |
Intraparticle Diffusion Model | qt = Kid. √t + C | qt vs. √t | Kid and C | qt (mmol g−1); adsorption capacity at time t Kid; rate constant of intraparticle diffusion C; intercept of intra particle diffusion | [62] |
Thermodynamics Equations | |||||
Gibb’s Free Energy | Δ G° = −R T ln (b) | ΔG° | T; temperature, b (L mol−1) and R are the Langmuir adsorption and universal gas constants, respectively, ΔG°; change in free energy of the adsorption system | ||
Van’t Hoff | ln b = −ΔH°/RT + ΔS°/R | lnb vs.1/T | ΔH° and ΔS° | T; temperature, b (L mol−1), and R are the Langmuir adsorption and universal gas constants, respectively, ΔH°; change in enthalpy, ΔS°; change in entropy | [63] |
Adsorbate/ Temperature | Experimental | Langmuir | Freundlich | D-R | Temkin | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
qexp (mg g−1) | qexp (mmolg−1) | qmax (mmol g−1) | qmax (mg g−1) | b (L mol−1) | R2 | Kf (mmol g−1) | n | R2 | qm (mg g−1) | E (kJ mol−1) | R2 | At (L mg−1) | b (kJ mol−1) | R2 | |
CB/25 °C | 153 | 0.291 | 0.310 | 156 | 2.21 × 10−4 | 0.993 | 30.7 | 1.82 | 0.953 | 74.8 | 0.492 | 0.814 | 0.662 | 0.091 | 0.990 |
CB/35 °C | 162 | 0.305 | 0.324 | 163 | 2.40 × 10−4 | 0.995 | 51.9 | 1.69 | 0.972 | 78.7 | 0.538 | 0.787 | 0.646 | 0.079 | 0.975 |
CB/45 °C | 169 | 0.329 | 0.334 | 168 | 2.62 × 10−4 | 0.998 | 63.1 | 1.66 | 0.975 | 81.1 | 0.584 | 0.777 | 0.689 | 0.076 | 0.973 |
Precursor | Activation Temperature (°C) | Surface Area (m2 g−1) | Target Adsorbate | Adsorption Capacity (mg g−1) | Isotherm Model Applied | Kinetic Model Applied with Rate Constant and Mechanism | Reference |
---|---|---|---|---|---|---|---|
Factory-rejected tea waste | 800 | 368.92 | Methylene Blue | 487.4 | Langmuir | Pseudo-second-order K2—0.214 g. mg−1min−1 Contact time—0.5–25 h Mechanism–film and intraparticle diffusion | [64] |
Pine needle | - | - | Malachite Green | 97.08 | Langmuir | Pseudo-second-order K2—2.21 × 10−3 g. mg−1min−1 Contact time—180 min Mechanism–intraparticle Diffusion, film diffusion, and boundary layer control | [65] |
Chickpea stem | 600 | 455 | Methylene Blue | 887 | Langmuir | - | [66] |
Carnauba leaves | 500 | 402.43 | Rhodamine B | 35.06 | Freundlich | Pseudo-second-order K2—0.236 g. mg−1min−1 Contact time—120 min | [67] |
Pine nut shells | 500 | 296.01 | Rhodamine B | 29.62 | Freundlich | Pseudo-second-order K2—0.299 g. mg−1min−1 Contact time—120 min | [67] |
Apricot stone | 700 | 359.40 | Methylene Blue | 36.68 | Langmuir | Pseudo-second-order K2—0.721 g. mg−1min−1 Contact time—130 min Mechanism–chemisorption and intraparticle diffusion | [6] |
Almond shell | 450 | 733 | 2,4,6- trinitrophenol | 74.03 | Sips | Pseudo-second-order K2—0.016 g. mg−1h−1 Mechanism–chemical sorption | [8] |
Jamoya fruit seeds | 850 | 440.8 | Carmoisine B | 153 | Langmuir | Pseudo-second-order | This study |
Dye | Temperature (°C) | ΔG° (kJ mol−1) | ΔS° (J mol−1 K−1) | ΔH° (kJ mol−1) |
---|---|---|---|---|
CB | 25 35 45 | −24.8 −25.8 −26.9 | 105.6 | 6.69 |
Kinetic Model | Parameters | Conc. (2 × 10−4) |
---|---|---|
Experimental | qe (mmol g−1) | 0.147 |
PFO | qe (cal) (mmol g−1) | 0.0592 |
K1 (min−1) | 0.0128 | |
R2 | 0.855 | |
PSO | qe (cal) (mmol g−1) | 0.1526 |
K2 (g mmol−1 min−1) | 0.477 | |
R2 | 0.998 | |
Elovich | α (mmol g−1min−1) | 0.0273 |
β (g mmol−1) | 35.09 | |
R2 | 0.923 | |
IPD | Kp1 | 0.022 |
C1 | 0.013 | |
R2 | 0.975 | |
Kp2 | 0.0022 | |
C2 | 0.112 | |
R2 | 0.794 |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eslamipoor, R. A fuzzy multi-objective model for supplier selection to mitigate the impact of vehicle transportation gases and delivery time. J. Data Inf. Manag. 2022, 4, 231–241. [Google Scholar] [CrossRef]
- de Andrade, R.C.; Menezes, R.S.G.; Fiuza, R.A., Jr.; Andrade, H.M.C. Activated carbon microspheres derived from hydrothermally treated mango seed shells for acetone vapor removal. Carbon Lett. 2021, 31, 779–793. [Google Scholar] [CrossRef]
- Mbarki, F.; Selmi, T.; Kesraoui, A.; Seffen, M. Low-cost activated carbon preparation from Corn stigmata fibers chemically activated using H3PO4, ZnCl2 and KOH: Study of methylene blue adsorption, stochastic isotherm and fractal kinetic. Ind. Crops Prod. 2022, 178, 114546. [Google Scholar] [CrossRef]
- Gupta, V.K.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L.; Suhas. Low-Cost adsorbents: Growing approach to wastewater treatment—A Review. Crit. Rev. Environ. Sci. Technol. 2009, 39, 783–842. [Google Scholar] [CrossRef]
- Zhang, J.; Duan, C.; Huang, X.; Meng, M.; Li, Y.; Huang, H.; Wang, H.; Yan, M.; Tang, X. A review on research progress and prospects of agricultural waste-based activated carbon: Preparation, application, and source of raw materials. J. Mater. Sci. 2024, 59, 5271–5292. [Google Scholar] [CrossRef]
- Djilani, C.; Zaghdoudi, R.; Djazi, F.; Bouchekima, B.; Lallam, A.; Modarressi, A.; Rogalski, M. Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon. J. Taiwan Inst. Chem. Eng. 2015, 53, 112–121. [Google Scholar] [CrossRef]
- Yadav, S.K.; Dhakate, S.R.; Pratap Singh, B. Carbon nanotube incorporated eucalyptus derived activated carbon-based novel adsorbent for efficient removal of methylene blue and eosin yellow dyes. Bioresour. Technol. 2022, 344, 126231. [Google Scholar] [CrossRef]
- Mohan, D.; Sarswat, A.; Singh, V.K.; Alexandre-Franco, M.; Pittman, C.U. Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chem. Eng. J. 2011, 172, 1111–1125. [Google Scholar] [CrossRef]
- Cheng, J.; Bi, C.; Zhou, X.; Wu, D.; Wang, D.; Liu, C.; Cao, Z. Preparation of bamboo-based activated carbon via steam activation for efficient methylene blue dye adsorption: Modeling and mechanism studies. Langmuir 2023, 39, 14119–14129. [Google Scholar] [CrossRef]
- Cansado, I.P.P.; Geraldo, P.F.; Mourão, P.A.M.; Castanheiro, J.E.; Carreiro, E.P.; Suhas. Utilization of biomass waste at water treatment. Resources 2024, 13, 37. [Google Scholar] [CrossRef]
- Jain, A.; Balasubramanian, R.; Srinivasan, M.P. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chem. Eng. J. 2016, 283, 789–805. [Google Scholar] [CrossRef]
- Sevilla, M.; Maciá-Agulló, J.A.; Fuertes, A.B. Hydrothermal carbonization of biomass as a route for the sequestration of CO2: Chemical and structural properties of the carbonized products. Biomass Bioenergy 2011, 35, 3152–3159. [Google Scholar] [CrossRef]
- Suhas; Gupta, V.K.; Singh, L.P.; Chaudhary, M.; Kushwaha, S. A novel approach to develop activated carbon by an ingenious hydrothermal treatment methodology using Phyllanthus emblica fruit stone. J. Clean. Prod. 2021, 288, 125643. [Google Scholar] [CrossRef]
- Chung, K.-T. Azo dyes and human health: A review. J. Environ. Sci. Health Part C 2016, 34, 233–261. [Google Scholar] [CrossRef]
- Gupta, V.K.; Suhas. Application of low-cost adsorbents for dye removal—A review. J. Environ. Manag. 2009, 90, 2313–2342. [Google Scholar] [CrossRef] [PubMed]
- India Azo Dyes Market Competition Forecast & Opportunities. 2023. Available online: https://www.researchandmarkets.com/report/india-azo-dye-Market#:~:text=The%20India20Azo%20Dyes%20Market%20achieved%20a%20volume,at%20volume%20of%2011.07%20thousand%20tonnes%20by%202029 (accessed on 15 September 2024).
- Nazar, M.F.; Murtaza, S.; Ijaz, B.; Asfaq, M.; Mohsin, M.A. Photophysical investigations of carmoisine interacting with conventional cationic surfactants under different pH conditions. J. Dispers. Sci. Technol. 2015, 36, 18–27. [Google Scholar] [CrossRef]
- Wan, H.; Zhu, X.; Wang, J.; Cao, F.; Zhang, Y.; Yao, Z.; Wang, S.; Bhattacharyya, D.; Tang, K. Adsorptive nanofibrous membranes for bidirectional removal of cationic and anionic dyes. Sep. Purif. Technol. 2025, 361, 131515. [Google Scholar] [CrossRef]
- Sharma, R.; Kumar, N.; Sharma, P.; Yadav, A.; Aggarwal, N.K. Biological decolorisation of the anionic Dye Acid Blue 9 by bacterial consortium: A sustainable and ecofriendly approach for the treatment of textile wastewater. Sustain. Chem. Environ. 2024, 8, 100178. [Google Scholar] [CrossRef]
- Tajat, N.; El Hayaoui, W.; El Mouhri, W.; Bougdour, N.; Idlahcen, A.; Radaa, C.; Bakas, I.; Tamimi, M.; Badreddine, M.; Assabbane, A.; et al. Simultaneous removal of anionic and cationic dyes from aqueous solutions using nickel–iron layered double hydroxide nanosheets. Int. J. Environ. Sci. Technol. 2024, 21, 2843–2862. [Google Scholar] [CrossRef]
- Abid, M.F.; Zablouk, M.A.; Abid-Alameer, A.M. Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. Iran. J. Environ. Health Sci. Eng. 2012, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Lashgari, M.; Naseri-Moghanlou, S.; Khanahmadlou, T.; Hempelmann, R. Electrostatic boosting of ionic dye pollutant removal from aquatic environment using a single electrode photoreactor. NPJ Clean Water 2023, 6, 10. [Google Scholar] [CrossRef]
- Khan, S.; Noor, T.; Iqbal, N.; Yaqoob, L. Photocatalytic Dye Degradation from Textile Wastewater: A Review. ACS Omega 2024, 9, 21751–21767. [Google Scholar] [CrossRef]
- Suhas; Kushwaha, S.; Chaudhary, M.; Chaudhary, S.; Tyagi, V.; Cansado, I.P.; Dehghani, M.H. Effect of substituent groups on the adsorption efficiency of phenols by activated carbon developed by hydrothermally treated Phyllanthus emblica fruit stone. Toxics 2024, 12, 874. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, M.; Suhas; Singh, R.; Tyagi, I.; Ahmed, J.; Chaudhary, S.; Kushwaha, S. Microporous activated carbon as adsorbent for the removal of noxious anthraquinone acid dyes: Role of adsorbate functionalization. J. Environ. Chem. Eng. 2021, 9, 106308. [Google Scholar] [CrossRef]
- Dalmaz, A.; Sivrikaya Özak, S. Methylene blue dye efficient removal using activated carbon developed from waste cigarette butts: Adsorption, thermodynamic and kinetics. Fuel 2024, 372, 132151. [Google Scholar] [CrossRef]
- Soualili, A.; Attouti, S.; Termoul, M.; Benzekri-Benallou, M.; Bestani, B.; Benderdouche, N.; Sreńscek-Nazza, J.; Michalkiewicz, B. Wild reed waste as a biosorbent for toxicity lowering of selected pollutants: Isotherms, kinetic and thermodynamic studies. Desalination Water Treat. 2024, 318, 100348. [Google Scholar] [CrossRef]
- Suhas; Kushwaha, S.; Tyagi, I.; Ahmed, J.; Chaudhary, S.; Chaudhary, M.; Stephen Inbaraj, B.; Goscianska, J.; Karri, R.R.; Sridhar, K. Adsorptive Analysis of Azo Dyes on Activated Carbon Prepared from Phyllanthus emblica Fruit Stone Sequentially via Hydrothermal Treatment. Agronomy 2022, 12, 2134. [Google Scholar] [CrossRef]
- Suhas; Chaudhary, M.; Chaudhary, S.; Singh, M.; Dehghani, M.H.; Tyagi, I.; Cansado, I.P.P.; Kumar, S.; Kumar, S. An ingenious investigation on the adsorptive and antibacterial properties of a novel silver-doped hydrochar. Int. J. Environ. Sci. Technol. 2024, 21, 8595–8606. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, S.; Kumar, V.; Sharma, A.; Kaur, R.; Saini, R. Jamun (Syzygium cumini (L.) Skeels): The conventional underutilized multifunctional plant-an exotic gleam into its food and functional significance. Ind. Crops Prod. 2023, 191, 115873. [Google Scholar] [CrossRef]
- Kaur, I.; Sharma, A.D.; Samtiya, M.; Pereira-Caro, G.; Rodríguez-Solana, R.; Dhewa, T.; Moreno-Rojas, J.M. Potential of bioactive compounds derived from underutilized fruit-bearing plants: A comprehensive review. Eur. Food Res. Technol. 2023, 249, 553–572. [Google Scholar] [CrossRef]
- Eslamipoor, R.; Sepehriar, A. Enhancing supply chain relationships in the circular economy: Strategies for a green centralized supply chain with deteriorating products. J. Environ. Manag. 2024, 367, 121738. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.E.; Ledesma, B.; Román, S.; Bonelli, P.R.; Cukierman, A.L. Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants. Bioresour. Technol. 2015, 183, 221–228. [Google Scholar] [CrossRef] [PubMed]
- 3175-07; A.S.D. Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. 2011. Available online: https://cdn.standards.iteh.ai/samples/53346/f8058fb13177432e8efc47a1c24017b9/ASTM-D3175-07.pdf (accessed on 27 January 2025).
- E1755-01; Standard Test Method for Ash in Biomass. 2024. Available online: https://www.astm.org/e1755-01r20.html (accessed on 27 January 2025).
- 4442-07; A.s.D. Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Base Materials. ASTM International, 2007. Available online: https://archive.org/details/gov.law.astm.D4442.07 (accessed on 27 January 2025).
- Carrott, P.J.M.; Carrott, M.M.L.R.; Vale, T.S.C.; Marques, L.; Nabais, J.M.V.; Mourão, P.A.M.; Suhas, P.A.M. Characterisation of surface ionisation and adsorption of phenol and 4-nitrophenol on non-porous carbon blacks. Adsorpt. Sci. Technol. 2008, 26, 827–841. [Google Scholar] [CrossRef]
- Raspolli Galletti, A.M.; D’Alessio, A.; Licursi, D.; Antonetti, C.; Valentini, G.; Galia, A.; Nassi o Di Nasso, N. Midinfrared FT-IR as a tool for monitoring herbaceous biomass composition and its conversion to furfural. J. Spectrosc. 2015, 2015, 719042. [Google Scholar] [CrossRef]
- Adeniyi, A.G.; Ighalo, J.O.; Onifade, D.V. Production of biochar from elephant grass (Pernisetum purpureum) using an updraft biomass gasifier with retort heating. Biofuels 2021, 12, 1283–1290. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, J.; Jiang, D.; Gao, Y.; Chen, Y.; Wang, W.; Cao, B.; Tao, Y.; Wang, L.; Zhang, Y. Removal of atrazine by biochar-supported zero-valent iron catalyzed persulfate oxidation: Reactivity, radical production and transformation pathway. Environ. Res. 2020, 184, 109260. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.K.; Tripathi, S.N.; Choudhary, V.; Gupta, B.D. Surface plasmon resonance-based fiber optic methane gas sensor utilizing graphene-carbon nanotubes-poly(methyl methacrylate) hybrid nanocomposite. Plasmonics 2015, 10, 1147–1157. [Google Scholar] [CrossRef]
- Pimentel, C.H.; Freire, M.S.; Gómez-Díaz, D.; González-Álvarez, J. Preparation of activated carbon from pine (Pinus radiata) sawdust by chemical activation with zinc chloride for wood dye adsorption. Biomass Convers. Biorefinery 2023, 13, 16537–16555. [Google Scholar] [CrossRef]
- Santhosh, A.; Dawn, S.S. Synthesis of zinc chloride activated eco-friendly nano-adsorbent (activated carbon) from food waste for removal of pollutant from biodiesel wash water. Water Sci. Technol. 2021, 84, 1170–1181. [Google Scholar] [CrossRef] [PubMed]
- Rouquerol, J.; Rouquerol, F.; Llewellyn, P.; Maurin, G.; Sing, K. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Haghighizadeh, M.; Zare, K.; Aghaie, H.; Monajjemi, M. Preparation and characterization of Chicory leaf powder and its application as a nano-native plant sorbent for removal of Acid Blue 25 from aqueous media: Isotherm, kinetic and thermodynamic study of the adsorption phenomenon. J. Nanostructure Chem. 2020, 10, 75–86. [Google Scholar] [CrossRef]
- Aksu, Z.; Akın, A.B. Comparison of Remazol Black B biosorptive properties of live and treated activated sludge. Chem. Eng. J. 2010, 165, 184–193. [Google Scholar] [CrossRef]
- Cotoruelo, L.M.; Marqués, M.D.; Díaz, F.J.; Rodríguez-Mirasol, J.; Rodríguez, J.J.; Cordero, T. Lignin-based activated carbons as adsorbents for crystal violet removal from aqueous solutions. Environ. Prog. Sustain. Energy 2012, 31, 386–396. [Google Scholar] [CrossRef]
- Aumeier, B.M.; Augustin, A.; Thönes, M.; Sablotny, J.; Wintgens, T.; Wessling, M. Linking the effect of temperature on adsorption from aqueous solution with solute dissociation. J. Hazard. Mater. 2022, 429, 128291. [Google Scholar] [CrossRef]
- Esvandi, Z.; Foroutan, R.; Peighambardoust, S.J.; Akbari, A.; Ramavandi, B. Uptake of anionic and cationic dyes from water using natural clay and clay/starch/MnFe2O4 magnetic nanocomposite. Surf. Interfaces 2020, 21, 100754. [Google Scholar] [CrossRef]
- Cruz Jr, O.F.; Serafin, J.; Azar, F.-Z.; Casco, M.E.; Silvestre-Albero, J.; Hotza, D.; Rambo, C.R. Microwave-Assisted hydrothermal carbonization and characterization of Amazonian biomass as an activated carbon for methane adsorption. Fuel 2024, 358, 130329. [Google Scholar] [CrossRef]
- Xu, J.; Wang, L.; Zhu, Y. Decontamination of Bisphenol A from aqueous solution by graphene adsorption. Langmuir 2012, 28, 8418–8425. [Google Scholar] [CrossRef]
- Baccar, R.; Blánquez, P.; Bouzid, J.; Feki, M.; Sarrà, M. Equilibrium, thermodynamic and kinetic studies on adsorption of commercial dye by activated carbon derived from olive-waste cakes. Chem. Eng. J. 2010, 165, 457–464. [Google Scholar] [CrossRef]
- Jaguaribe, E.; Medeiros, L.; Barreto, M.; Araujo, A. The performance of activated carbons from sugarcane bagasse, babassu, and coconut shells in removing residual chlorine. Braz. J. Chem. Eng. 2005, 22, 41–47. [Google Scholar] [CrossRef]
- Shabir, S.; Hussain, S.Z.; Bhat, T.A.; Amin, T.; Beigh, M.; Nabi, S. High carbon content microporous activated carbon from thin walnut shells: Optimization, physico-chemical analysis and structural profiling. Process Saf. Environ. Prot. 2024, 190, 85–96. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 1100–1107. [Google Scholar]
- Temkin, M. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochim. URSS 1940, 12, 327–356. [Google Scholar]
- Dubinin, M. The equation of the characteristic curve of activated charcoal. In Proceedings of the Doklady Akademii Nauk SSSR (DAN SSSR), USSR; 1947; pp. 327–329. Available online: https://www.scirp.org/reference/referencespapers?referenceid=1215724 (accessed on 27 January 2025).
- Lagergren, S.K. About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Sorption of dye from aqueous solution by peat. Chem. Eng. J. 1998, 70, 115–124. [Google Scholar] [CrossRef]
- Elovich, S.J. Proceedings of the Second International Congress on Surface Activity. Schulman, J.H., Ed.; Academic Press, Inc: New York, NY, USA, 1959; Volume 11, p. 253. [Google Scholar]
- Weber, W.; Morris, J. Advances in water pollution research. In Proceedings of the First International Conference on Water Pollution Research; 1962; p. 231. [Google Scholar]
- Atkins, P.; Atkins, P.W.; de Paula, J. Atkins’ Physical Chemistry; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Islam, M.A.; Benhouria, A.; Asif, M.; Hameed, B.H. Methylene blue adsorption on factory-rejected tea activated carbon prepared by conjunction of hydrothermal carbonization and sodium hydroxide activation processes. J. Taiwan. Inst. Chem. Eng. 2015, 52, 57–64. [Google Scholar] [CrossRef]
- Hammud, H.H.; Shmait, A.; Hourani, N. Removal of Malachite Green from water using hydrothermally carbonized pine needles. RSC Adv. 2015, 5, 7909–7920. [Google Scholar] [CrossRef]
- Genli, N.; Kutluay, S.; Baytar, O.; Şahin, Ö. Preparation and characterization of activated carbon from hydrochar by hydrothermal carbonization of chickpea stem: An application in methylene blue removal by RSM optimization. Int. J. Phytoremediation 2022, 24, 88–100. [Google Scholar] [CrossRef] [PubMed]
- da Silva Lacerda, V.; López-Sotelo, J.B.; Correa-Guimarães, A.; Hernández-Navarro, S.; Sánchez-Báscones, M.; Navas-Gracia, L.M.; Martín-Ramos, P.; Martín-Gil, J. Rhodamine B removal with activated carbons obtained from lignocellulosic waste. J. Environ. Manag. 2015, 155, 67–76. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaudhary, S.; Chaudhary, M.; Tyagi, V.; Chaubey, S.; Suhas; Gupta, V.; Pestana da Paixão Cansado, I.; Ahmed, J. Sustainable Production of Porous Activated Carbon from Hydrothermally Carbonized Jamoya Fruit Seeds and Its Potential for Adsorbing the Azo Dye Carmoisine B. Processes 2025, 13, 385. https://doi.org/10.3390/pr13020385
Chaudhary S, Chaudhary M, Tyagi V, Chaubey S, Suhas, Gupta V, Pestana da Paixão Cansado I, Ahmed J. Sustainable Production of Porous Activated Carbon from Hydrothermally Carbonized Jamoya Fruit Seeds and Its Potential for Adsorbing the Azo Dye Carmoisine B. Processes. 2025; 13(2):385. https://doi.org/10.3390/pr13020385
Chicago/Turabian StyleChaudhary, Shubham, Monika Chaudhary, Vaishali Tyagi, Shivangi Chaubey, Suhas, Vikas Gupta, Isabel Pestana da Paixão Cansado, and Jahangeer Ahmed. 2025. "Sustainable Production of Porous Activated Carbon from Hydrothermally Carbonized Jamoya Fruit Seeds and Its Potential for Adsorbing the Azo Dye Carmoisine B" Processes 13, no. 2: 385. https://doi.org/10.3390/pr13020385
APA StyleChaudhary, S., Chaudhary, M., Tyagi, V., Chaubey, S., Suhas, Gupta, V., Pestana da Paixão Cansado, I., & Ahmed, J. (2025). Sustainable Production of Porous Activated Carbon from Hydrothermally Carbonized Jamoya Fruit Seeds and Its Potential for Adsorbing the Azo Dye Carmoisine B. Processes, 13(2), 385. https://doi.org/10.3390/pr13020385