Keller-Box Simulation for the Buongiorno Mathematical Model of Micropolar Nanofluid Flow over a Nonlinear Inclined Surface
Abstract
:1. Introduction
2. Problem Formulation
3. Results and Discussion
4. Conclusions
- ➢
- The velocity profile reduces by strengthening the magnetic field.
- ➢
- The inclination effect diminishes for higher values.
- ➢
- The Grashof number boosts the velocity profile.
- ➢
- The heat and mass exchange rate are decreased with the growth of the inclination effect.
- ➢
- The mass flux improves against the cumulative values of the Brownian motion factor.
- ➢
- The wall shear stress decreases with the growth of the Brownian motion effect.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Skin friction coefficient | Stretching rate | Reynolds number | |||
Ambient nanoparticle volume fraction | Lewis number | Sherwood number | |||
Surface volume fraction | Brownian motion parameter | Fluid temperature | |||
Specific heat at constant pressure | Thermophoretic parameter | Wall temperature | |||
Brownian diffusion coefficient | Nusselt number | Ambient temperature | |||
Thermophoretic diffusion coefficient | Prandtl number | Wall velocity | |||
Similarity function for velocity | Gravitational acceleration | Ambient velocity | |||
Volume heat capacity | Kinematic viscosity | Dynamic viscosity | |||
Dimensionless solid volume fraction | Condition at the wall | Ambient condition | |||
Local modified Grashof number | Thermal expansion coefficient | Concentration expansion coefficient | |||
Electric conductivity | Spin gradient viscosity | Vertex viscosity | |||
Micro inertia per unit mass | Inclination parameter | Differentiation with respect to | |||
Velocity in direction | Velocity in direction | Cartesian coordinate | |||
Dimensionless temperature | Non-linear stretching parameter | Thermal conductivity | |||
Fluid density | Grashof number | Uniform magnetic field strength | |||
Material parameter | Similarity independent variable | Thermal diffusivity | |||
Non-dimensional angular velocity | Fluid concentration |
References
- Choi, S.U.S.; Singer, D.A.; Wang, H.P. Developments and applications of non-Newtonian flows. ASME FED 1995, 66, 99–105. [Google Scholar]
- Buongiorno, J. Convective transport in nanofluids. J. Heat Transf. 2006, 128, 240–250. [Google Scholar] [CrossRef]
- Sandeep, N.; Kumar, M.S. Heat and Mass Transfer in Nanofluid Flow over an Inclined Stretching Sheet with Volume Fraction of Dust and Nanoparticles. J. Appl. Fluid Mech. 2006, 9, 2205–2215. [Google Scholar]
- Suriyakumar, P.; Devi, S.A. Effects of Suction and Internal Heat Generation on Hydromagnetic Mixed Convective Nanofluid Flow over an Inclined Stretching Plate. Eur. J. Adv. Eng. Technol. 2015, 2, 51–58. [Google Scholar]
- Ziaei-Rad, M.; Kasaeipoor, A.; Rashidi, M.M.; Lorenzini, G. A Similarity Solution for Mixed-Convection Boundary Layer Nanofluid Flow on an Inclined Permeable Surface. J. Therm. Sci. Eng. Appl. 2017. [Google Scholar] [CrossRef]
- Rashad, A. Unsteady nanofluid flow over an inclined stretching surface with convective boundary condition and anisotropic slip impact. Int. J. Heat Technol. 2017, 35, 82–90. [Google Scholar] [CrossRef]
- Mitra, A. Computational Modelling of Boundary-Layer Flow of a Nano fluid Over a Convective Heated Inclined Plate. J. Mech. Contin. Math. Sci. 2018, 13, 88–94. [Google Scholar]
- Hatami, M.; Jing, D.; Yousif, M.A. Three-dimensional analysis of condensation nanofluid film on an inclined rotating disk by efficient analytical methods. Arab J. Basic Appl. Sci. 2018, 25, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Rafique, K.; Anwar, M.I.; Misiran, M.; Khan, I.; Alharbi, S.O.; Thounthong, P.; Nisar, K.S. Numerical Solution of Casson Nanofluid Flow Over a Non-linear Inclined Surface With Soret and Dufour Effects by Keller-Box Method. Front. Phys. 2019. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Shahid, A.; Malik, M.Y.; Salahuddin, T. Thermal and concentration diffusion in Jeffery nanofluid flow over an inclined stretching sheet: A generalized Fourier’s and Fick’s perspective. J. Mol. Liq. 2018, 251, 7–14. [Google Scholar]
- Rafique, K.; Anwar, M.I.; Misiran, M. Keller-box study on casson nano fluid flow over a slanted permeable surface with chemical reaction. Asian Res. J. Math. 2019, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Ghadikolaei, S.S.; Hosseinzadeh, K.; Ganji, D.D.; Jafari, B. Nonlinear thermal radiation effect on magneto Casson nanofluid flow with Joule heating effect over an inclined porous stretching sheet. Case Stud. Therm. Eng. 2018, 12, 176–187. [Google Scholar] [CrossRef]
- Sheikholeslami, M. Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. J. Mol. Liq. 2018, 249, 1212–1221. [Google Scholar]
- Mamun, A.A.; Arifuzzaman, S.M.; Reza-E-Rabbi, S.; Biswas, P.; Khan, M.S. Computational modelling on MHD radiative Sisko nanofluids flow through a nonlinearly stretching sheet. Int. J. Heat Technol. 2019, 37, 285–295. [Google Scholar] [CrossRef]
- Sakiadis, B.C. Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE J. 1961, 7, 26–28. [Google Scholar]
- Crane, L.J. Flow past a stretching plate. Zeitschrift Für Angewandte Mathematik Und Physik (ZAMP) 1970, 21, 645–647. [Google Scholar]
- Ramesh, G.K.; Gireesha, B.J.; Bagewadi, C.S. Heat transfer in MHD dusty boundary layer flow over an inclined stretching sheet with non-uniform heat source/sink. Adv. Math. Phys. 2012. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.K. Heat and mass transfer in MHD boundary layer flow past an inclined plate with viscous dissipation in porous medium. Int. J. Sci. Eng. Res. 2012, 3, 1–11. [Google Scholar]
- Ali, M.; Alim, M.A.; Alam, M.S. Similarity Solution of Heat and Mass Transfer Flow over an Inclined Stretching Sheet with Viscous Dissipation and Constant Heat Flux in Presence of Magnetic Field. Procedia Eng. 2015, 105, 557–569. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, G.K.; Chamkha, A.J.; Gireesha, B.J. Boundary layer flow past an inclined stationary/moving flat plate with convective boundary condition. Afr. Mat. 2015. [Google Scholar] [CrossRef]
- Malik, M.Y.; Rehman, K.U. Effects of second order chemical reaction on MHD free convection dissipative fluid flow past an inclined porous surface by way of heat generation: A Lie group analysis. Inf. Sci. Lett. 2016, 5, 35–45. [Google Scholar] [CrossRef]
- Hayat, T.; Qayyum, S.; Alsaedi, A.; Asghar, S. Radiation effects on the mixed convection flow induced by an inclined stretching cylinder with non-uniform heat source/sink. PLoS ONE 2017, 12, e0175584. [Google Scholar]
- Balla, C.S.; Kishan, N.; Gorla, R.S.R.; Gireesha, B.J. MHD boundary layer flow and heat transfer in an inclined porous square cavity filled with nanofluids. Ain Shams Eng. J. 2017, 8, 237–254. [Google Scholar] [CrossRef]
- Eringen, A.C. Simple microfluids. Int. J. Eng. Sci. 1964, 2, 205–217. [Google Scholar] [CrossRef]
- Rahman, M.M.; Aziz, A.; Al-Lawatia, M.A. Heat transfer in micropolar fluid along an inclined permeable plate with variable fluid properties. Int. J. Therm. Sci. 2010, 49, 993–1002. [Google Scholar] [CrossRef]
- Das, K. Slip effects on heat and mass transfer in MHD micropolar fluid flow over an inclined plate with thermal radiation and chemical reaction. Int. J. Numer. Methods Fluids 2012, 70, 96–113. [Google Scholar] [CrossRef]
- Kasim, A.R.M.; Mohammad, N.F.; Shafie, S. Unsteady MHD mixed convection flow of a micropolar fluid along an inclined stretching plate. Heat Transf. Asian Res. 2013, 42, 89–99. [Google Scholar]
- Srinivasacharya, D.; Bindu, K.H. Entropy generation in a micropolar fluid flow through an inclined channel. Alex. Eng. J. 2016, 55, 973–982. [Google Scholar] [CrossRef] [Green Version]
- Hazbavi, A.; Sharhani, S. Micropolar fluid flow between two inclined parallel plates. In Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition, Tampa, FL, USA, 3–9 November 2017. [Google Scholar]
- Rafique, K.; Anwar, M.I.; Misiran, M.; Khan, I.; Seikh, A.H.; Sherif, E.S.M.; Nisar, K.S. Brownian Motion and Thermophoretic Diffusion Effects on Micropolar Type Nanofluid Flow with Soret and Dufour Impacts over an Inclined Sheet: Keller-Box Simulations. Energies 2019, 12, 4191. [Google Scholar] [CrossRef] [Green Version]
- Srinivasacharya, D.; RamReddy, C.; Naveen, P. Double dispersion effect on nonlinear convective flow over an inclined plate in a micropolar fluid saturated non-Darcy porous medium. Eng. Sci. Technol. Int. J. 2018, 21, 984–995. [Google Scholar] [CrossRef]
- Rafique, K.; Anwar, M.I.; Misiran, M. Numerical Study on Micropolar Nanofluid Flow over an Inclined Surface by Means of Keller-Box. Asian J. Probab. Stat. 2019, 1–21. [Google Scholar] [CrossRef]
- Arifuzzaman, S.; Mehedi, M.; Al Mamun, A.; Biswas, P.; Islam, M.; Khan, M. Magnetohydrodynamic micropolar fluid flow in presence of nanoparticles through porous plate: A numerical study. Int. J. Heat Technol. 2018, 36, 936–948. [Google Scholar] [CrossRef] [Green Version]
- Shamshuddin, M.D.; Mishra, S.R.; Bég, O.A.; Kadir, A. Unsteady reactive magnetic radiative micropolar flow, heat and mass transfer from an inclined plate with joule heating: A model for magnetic polymer processing. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 1246–1261. [Google Scholar] [CrossRef]
- Rafique, K.; Anwar, M.I.; Misiran, M.; Khan, I.; Seikh, A.H.; Sherif, E.S.M.; Nisar, K.S. Numerical Analysis with Keller-Box Scheme for Stagnation Point Effect on Flow of Micropolar Nanofluid over an Inclined Surface. Symmetry 2019, 11, 1379. [Google Scholar] [CrossRef] [Green Version]
- Anwar, M.I.; Shafie, S.; Hayat, T.; Shehzad, S.A.; Salleh, M.Z. Numerical study for MHD stagnation-point flow of a micropolar nanofluid towards a stretching sheet. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.R.; Baag, S.; Mohapatra, D.K. Engineering Science and Technology, an International Journal Chemical reaction and Soret effects on hydromagnetic micropolar fluid along a stretching sheet. Eng. Sci. Technol. Int. J. 2016, 19, 1919–1928. [Google Scholar] [CrossRef] [Green Version]
- Makinde, O.D.; Olanrewaju, P.O. Buoyancy effects on thermal boundary layer over a vertical plate with a convective surface boundary condition. J. Fluids Eng. 2010, 132, 044502. [Google Scholar] [CrossRef] [Green Version]
- Ilias, M.R.; Rawi, N.A.; Shafie, S. MHD Free Convection Flow and Heat Transfer of Ferrofluids over a Vertical Flat Plate with Aligned and Transverse Magnetic Field. Indian J. Sci. Technol. 2016, 9, 36. [Google Scholar]
- Olanrewaju, P.O.; Hayat, T. The effects of buoyancy and transpiration on the flow and heat transfer over a moving permeable surface in a parallel stream in the presence of radiation. Int. J. Comput. Meth. Eng. Sci. Mech. 2014, 15, 330–336. [Google Scholar] [CrossRef]
- Khan, W.A.; Pop, I. Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 2010, 53, 2477–2483. [Google Scholar] [CrossRef]
Khan and Pop [41] | Present Results | ||||
---|---|---|---|---|---|
0.1 | 0.1 | 0.9524 | 2.1294 | 0.9524 | 2.1294 |
0.2 | 0.2 | 0.3654 | 2.5152 | 0.3654 | 2.5152 |
0.3 | 0.3 | 0.1355 | 2.6088 | 0.1355 | 2.6088 |
0.4 | 0.4 | 0.0495 | 2.6038 | 0.0495 | 2.6038 |
0.5 | 0.5 | 0.0179 | 2.5731 | 0.0179 | 2.5731 |
m | γ | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1 | 0.1 | 7.0 | 5.0 | 0.1 | 1.0 | 1.0 | 0.9 | 0.5 | 450 | 1.1618 | 1.2482 | 0.6326 |
0.5 | 0.1 | 7.0 | 5.0 | 0.1 | 1.0 | 1.0 | 0.9 | 0.5 | 450 | 0.2147 | 1.7428 | 0.6065 |
0.1 | 0.5 | 7.0 | 5.0 | 0.1 | 1.0 | 1.0 | 0.9 | 0.5 | 450 | 0.5199 | 1.9167 | 0.3007 |
0.1 | 0.1 | 10.0 | 5.0 | 0.1 | 1.0 | 1.0 | 0.9 | 0.5 | 450 | 1.1902 | 1.2594 | 0.6514 |
0.1 | 0.1 | 7.0 | 10.0 | 0.1 | 1.0 | 1.0 | 0.9 | 0.5 | 450 | 1.0231 | 2.2201 | 0.7370 |
0.1 | 0.1 | 7.0 | 5.0 | 0.5 | 1.0 | 1.0 | 0.9 | 0.5 | 450 | 1.1458 | 1.1979 | 0.9755 |
0.1 | 0.1 | 7.0 | 5.0 | 0.1 | 5.0 | 1.0 | 0.9 | 0.5 | 450 | 1.1744 | 1.3052 | 1.3112 |
0.1 | 0.1 | 7.0 | 5.0 | 0.1 | 1.0 | 3.0 | 0.9 | 0.5 | 450 | 1.1823 | 1.2887 | 0.0514 |
0.1 | 0.1 | 7.0 | 5.0 | 0.1 | 1.0 | 1.0 | 2.0 | 0.5 | 450 | 1.1783 | 1.2864 | 0.2174 |
0.1 | 0.1 | 7.0 | 5.0 | 0.1 | 1.0 | 1.0 | 0.9 | 5.0 | 450 | 1.1251 | 1.1644 | 1.5270 |
0.1 | 0.1 | 7.0 | 5.0 | 0.1 | 1.0 | 1.0 | 0.9 | 0.5 | 900 | 1.1345 | 1.1862 | 1.3003 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafique, K.; Anwar, M.I.; Misiran, M.; Khan, I.; Seikh, A.H.; Sherif, E.-S.M.; Sooppy Nisar, K. Keller-Box Simulation for the Buongiorno Mathematical Model of Micropolar Nanofluid Flow over a Nonlinear Inclined Surface. Processes 2019, 7, 926. https://doi.org/10.3390/pr7120926
Rafique K, Anwar MI, Misiran M, Khan I, Seikh AH, Sherif E-SM, Sooppy Nisar K. Keller-Box Simulation for the Buongiorno Mathematical Model of Micropolar Nanofluid Flow over a Nonlinear Inclined Surface. Processes. 2019; 7(12):926. https://doi.org/10.3390/pr7120926
Chicago/Turabian StyleRafique, Khuram, Muhammad Imran Anwar, Masnita Misiran, Ilyas Khan, Asiful H. Seikh, El-Sayed M. Sherif, and Kottakkaran Sooppy Nisar. 2019. "Keller-Box Simulation for the Buongiorno Mathematical Model of Micropolar Nanofluid Flow over a Nonlinear Inclined Surface" Processes 7, no. 12: 926. https://doi.org/10.3390/pr7120926
APA StyleRafique, K., Anwar, M. I., Misiran, M., Khan, I., Seikh, A. H., Sherif, E. -S. M., & Sooppy Nisar, K. (2019). Keller-Box Simulation for the Buongiorno Mathematical Model of Micropolar Nanofluid Flow over a Nonlinear Inclined Surface. Processes, 7(12), 926. https://doi.org/10.3390/pr7120926