Conflicting Effects of Coffee Consumption on Cardiovascular Diseases: Does Coffee Consumption Aggravate Pre-existing Risk Factors?
Abstract
:1. Introduction
2. Results
2.1. General Effects and Mechanisms of Coffee and Its Compounds on the Circulatory System
2.2. Epidemiological Studies of CVDs Shed Light on Profound Influence of Coffee Consumption
2.3. Coffee Consumption Exacerbates Hypertension in People Who Have Risk Factors
2.4. Lipid Profiles of Coffee Consumers with Underlying Risk Factors can Be Affected by Coffee Brewing Method
2.5. Coffee Consumption Potentially Worsens Vascular Health and Atherosclerosis
2.6. Caffeine may Trigger Arrhythmia and Cardiovascular Events in Certain Populations
3. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Grigg, D. The worlds of tea and coffee: Patterns of consumption. GeoJournal 2002, 57, 283–294. [Google Scholar] [CrossRef]
- Je, Y.; Jeong, S.; Park, T. Coffee consumption patterns in Korean adults: The Korean National Health and Nutrition Examination Survey (2001–2011). Asia Pac. J. Clin. Nutr. 2014, 23, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Kim, M.H.; Park, J.H.; Jeong, Y.; Ko, K.S. Cellular Antioxidant and Anti-Inflammatory Effects of Coffee Extracts with Different Roasting Levels. J. Med. Food 2017, 20, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Ruiz, J.A.; Leake, D.S.; Ames, J.M. In vitro antioxidant activity of coffee compounds and their metabolites. J. Agric. Food Chem. 2007, 55, 6962–6969. [Google Scholar] [CrossRef] [PubMed]
- Tao, K.S.; Wang, W.; Wang, L.; Cao, D.Y.; Li, Y.Q.; Wu, S.X.; Dou, K.F. The multifaceted mechanisms for coffee’s anti-tumorigenic effect on liver. Med. Hypotheses 2008, 71, 730–736. [Google Scholar] [CrossRef]
- Bohn, S.K.; Ward, N.C.; Hodgson, J.M.; Croft, K.D. Effects of tea and coffee on cardiovascular disease risk. Food Funct. 2012, 3, 575–591. [Google Scholar] [CrossRef]
- Mattioli, A.V. Effects of caffeine and coffee consumption on cardiovascular disease and risk factors. Future Cardiol. 2007, 3, 203–212. [Google Scholar] [CrossRef]
- Chrysant, S.G. Coffee Consumption and Cardiovascular Health. Am. J. Cardiol. 2015, 116, 818–821. [Google Scholar] [CrossRef]
- Lopez-Garcia, E.; van Dam, R.M.; Li, T.Y.; Rodriguez-Artalejo, F.; Hu, F.B. The relationship of coffee consumption with mortality. Ann. Intern. Med. 2008, 148, 904–914. [Google Scholar] [CrossRef] [Green Version]
- Hoelzl, C.; Knasmuller, S.; Wagner, K.H.; Elbling, L.; Huber, W.; Kager, N.; Ferk, F.; Ehrlich, V.; Nersesyan, A.; Neubauer, O.; et al. Instant coffee with high chlorogenic acid levels protects humans against oxidative damage of macromolecules. Mol. Nutr. Food Res. 2010, 54, 1722–1733. [Google Scholar] [CrossRef]
- Nishitani, E.; Sagesaka, Y.M. Simultaneous determination of catechins, caffeine and other phenolic compounds in tea using new HPLC method. J. Food Compos. Anal. 2004, 17, 675–685. [Google Scholar] [CrossRef]
- Lopez-Garcia, E.; van Dam, R.M.; Qi, L.; Hu, F.B. Coffee consumption and markers of inflammation and endothelial dysfunction in healthy and diabetic women. Am. J. Clin. Nutr. 2006, 84, 888–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nurminen, M.L.; Niittynen, L.; Korpela, R.; Vapaatalo, H. Coffee, caffeine and blood pressure: A critical review. Eur. J. Clin. Nutr. 1999, 53, 831–839. [Google Scholar] [CrossRef] [Green Version]
- Mesas, A.E.; Leon-Munoz, L.M.; Rodriguez-Artalejo, F.; Lopez-Garcia, E. The effect of coffee on blood pressure and cardiovascular disease in hypertensive individuals: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2011, 94, 1113–1126. [Google Scholar] [CrossRef]
- Hartley, T.R.; Sung, B.H.; Pincomb, G.A.; Whitsett, T.L.; Wilson, M.F.; Lovallo, W.R. Hypertension risk status and effect of caffeine on blood pressure. Hypertension 2000, 36, 137–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panagiotakos, D.B.; Pitsavos, C.; Chrysohoou, C.; Kokkinos, P.; Toutouzas, P.; Stefanadis, C. The J-shaped effect of coffee consumption on the risk of developing acute coronary syndromes: The CARDIO2000 case-control study. J. Nutr. 2003, 133, 3228–3232. [Google Scholar] [CrossRef] [PubMed]
- Palatini, P.; Fania, C.; Mos, L.; Garavelli, G.; Mazzer, A.; Cozzio, S.; Saladini, F.; Casiglia, E. Coffee consumption and risk of cardiovascular events in hypertensive patients. Results from the HARVEST. Int. J. Cardiol. 2016, 212, 131–137. [Google Scholar] [CrossRef]
- Hamer, M. Coffee and health: Explaining conflicting results in hypertension. J. Hum. Hypertens. 2006, 20, 909–912. [Google Scholar] [CrossRef]
- De Giuseppe, R.; Di Napoli, I.; Granata, F.; Mottolese, A.; Cena, H. Caffeine and blood pressure: A critical review perspective. Nutr. Res. Rev. 2019, 32, 169–175. [Google Scholar] [CrossRef]
- Jee, S.H.; He, J.; Appel, L.J.; Whelton, P.K.; Suh, I.; Klag, M.J. Coffee consumption and serum lipids: A meta-analysis of randomized controlled clinical trials. Am. J. Epidemiol. 2001, 153, 353–362. [Google Scholar] [CrossRef]
- Muller, C.E.; Jacobson, K.A. Xanthines as adenosine receptor antagonists. In Methylxanthines; Springer: Berlin, Heidelberg, 2011. [Google Scholar] [CrossRef] [Green Version]
- Echeverri, D.; Montes, F.R.; Cabrera, M.; Galán, A.; Prieto, A. Caffeine’s vascular mechanisms of action. Int. J. Vasc. Med. 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitz, W.; von der Leyen, H.; Meyer, W.; Neumann, J.; Scholz, H. Phosphodiesterase inhibition and positive inotropic effects. J. Cardiovasc. Pharmacol. 1989, 14 (Suppl. S3), S11–S14. [Google Scholar] [CrossRef] [PubMed]
- Suleman, A.; Siddiqui, N.H. Haemodynamic and cardiovascular effects of caffeine. Pharmacy On-Line, Int. J. Pharm. 2005. Available online: http://www.priory.com/pharmol/caffeine.htm (accessed on 8 April 2020).
- Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr. 2017. [Google Scholar] [CrossRef]
- Meng, S.; Cao, J.; Feng, Q.; Peng, J.; Hu, Y. Roles of chlorogenic Acid on regulating glucose and lipids metabolism: A review. Evid.-Based Complement. Altern. Med. 2013, 2013, 801457. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, J.; Ballevre, O.; Luo, H.; Zhang, W. Antihypertensive effects and mechanisms of chlorogenic acids. Hypertens. Res. 2012, 35, 370–374. [Google Scholar] [CrossRef] [Green Version]
- Mubarak, A.; Bondonno, C.P.; Liu, A.H.; Considine, M.J.; Rich, L.; Mas, E.; Croft, K.D.; Hodgson, J.M. Acute effects of chlorogenic acid on nitric oxide status, endothelial function, and blood pressure in healthy volunteers: A randomized trial. J. Agric. Food Chem. 2012, 60, 9130–9136. [Google Scholar] [CrossRef]
- Ardiansyah; Ohsaki, Y.; Shirakawa, H.; Koseki, T.; Komai, M. Novel effects of a single administration of ferulic acid on the regulation of blood pressure and the hepatic lipid metabolic profile in stroke-prone spontaneously hypertensive rats. J. Agric. Food Chem. 2008, 56, 2825–2830. [Google Scholar] [CrossRef]
- Suzuki, A.; Kagawa, D.; Ochiai, R.; Tokimitsu, I.; Saito, I. Green coffee bean extract and its metabolites have a hypotensive effect in spontaneously hypertensive rats. Hypertens. Res. 2002, 25, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, A.; Feely, J. Acute effect of caffeine on arterial stiffness and aortic pressure waveform. Hypertension 2001, 38, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Onrot, J.; Goldberg, M.R.; Biaggioni, I.; Hollister, A.S.; Kincaid, D.; Robertson, D.J. Hemodynamic and humoral effects of caffeine in autonomic failure: Therapeutic implications for postprandial hypotension. N. Engl. J. Med. 1985, 313, 549–554. [Google Scholar] [CrossRef]
- Ricketts, M.L.; Boekschoten, M.V.; Kreeft, A.J.; Hooiveld, G.J.; Moen, C.J.; Muller, M.; Frants, R.R.; Kasanmoentalib, S.; Post, S.M.; Princen, H.M.; et al. The cholesterol-raising factor from coffee beans, cafestol, as an agonist ligand for the farnesoid and pregnane X receptors. Mol. Endocrinol. 2007, 21, 1603–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaput, J.P.; McNeil, J.; Despres, J.P.; Bouchard, C.; Tremblay, A. Seven to eight hours of sleep a night is associated with a lower prevalence of the metabolic syndrome and reduced overall cardiometabolic risk in adults. PLoS ONE 2013, 8, e72832. [Google Scholar] [CrossRef]
- Alkerwi, A.; Sauvageot, N.; Crichton, G.E.; Elias, M.F.; Stranges, S. Daily chocolate consumption is inversely associated with insulin resistance and liver enzymes in the Observation of Cardiovascular Risk Factors in Luxembourg study. Br. J. Nutr. 2016, 115, 1661–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riksen, N.P.; Hausenloy, D.J.; Yellon, D.M. Wake up and smell the coffee: Yet another no go for cardiac patients? Editorial to “caffeinated coffee blunts the myocardial protective effects of statins against ischemia-reperfusion injury in the rat” by Ye et al. Cardiovasc. Drugs Ther. 2008, 22, 257–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, A.; Leonard, A.; Diane, C.; John, D.; Genevieve, G.; Jonathan, G.; Graeme, H.; Faline, H.; Les, L.; Arduino, M.; et al. Guideline for the Diagnosis and Management of Hypertension in Adults—2016; National Heart Foundation of Australia: Melbourne, Australia, 2016. [Google Scholar]
- Bennett, J.M.; Rodrigues, I.M.; Klein, L.C. Effects of caffeine and stress on biomarkers of cardiovascular disease in healthy men and women with a family history of hypertension. Stress Health 2013, 29, 401–409. [Google Scholar] [CrossRef]
- Mensink, R.P.; Lebbink, W.J.; Lobbezoo, I.E.; Weusten-Van der Wouw, M.P.; Zock, P.L.; Katan, M.B. Diterpene composition of oils from Arabica and Robusta coffee beans and their effects on serum lipids in man. J. Intern. Med. 1995, 237, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Pincomb, G.A.; Lovallo, W.R.; Passey, R.B.; Whitsett, T.L.; Silverstein, S.M.; Wilson, M.F. Effects of caffeine on vascular resistance, cardiac output and myocardial contractility in young men. Am. J. Cardiol. 1985, 56, 119–122. [Google Scholar] [CrossRef]
- Mattioli, A.V.; Bonatti, S.; Zennaro, M.; Mattioli, G. The relationship between personality, socio-economic factors, acute life stress and the development, spontaneous conversion and recurrences of acute lone atrial fibrillation. EP Eur. 2005, 7, 211–220. [Google Scholar] [CrossRef]
- Wilhelmsen, L.; Rosengren, A.; Eriksson, H.; Lappas, G. Heart failure in the general population of men—Morbidity, risk factors and prognosis. J. Intern. Med. 2001, 249, 253–261. [Google Scholar] [CrossRef]
- Jossa, F.; Krogh, V.; Farinaro, E.; Panico, S.; Giumetti, D.; Galasso, R.; Celentano, E.; Mancini, M.; Trevisan, M. Coffee and serum lipids: Findings from the Olivetti Heart Study. Ann. Epidemiol. 1993, 3, 250–255. [Google Scholar] [CrossRef]
- Zampelas, A.; Panagiotakos, D.B.; Pitsavos, C.; Chrysohoou, C.; Stefanadis, C. Associations between coffee consumption and inflammatory markers in healthy persons: The ATTICA study. Am. J. Clin. Nutr. 2004, 80, 862–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, R.F.; Wyche, K.; Christensen, B.V.; Zimmer, S.; Laxson, D.D. Effects of adenosine on human coronary arterial circulation. Circulation 1990, 82, 1595–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benowitz, N.L.; Jacob, P., 3rd; Mayan, H.; Denaro, C. Sympathomimetic effects of paraxanthine and caffeine in humans. Clin. Pharmacol. Ther. 1995, 58, 684–691. [Google Scholar] [CrossRef]
- Moon, B.-D.; Lee, S.-H.; Kwon, J.-I. Regional variations in risk factors for hypertension: Data analysis from the 6th Korea national health and nutrition examination survey. Korean J. Fam. Pract. 2017, 7, 25–29. [Google Scholar] [CrossRef]
- Burke, V.; Beilin, L.J.; German, R.; Grosskopf, S.; Ritchie, J.; Puddey, I.B.; Rogers, P. Association of lifestyle and personality characteristics with blood pressure and hypertension: A cross-sectional study in the elderly. J. Clin. Epidemiol. 1992, 45, 1061–1070. [Google Scholar] [CrossRef]
- Karabudak, E.; Türközü, D.; Köksal, E. Association between coffee consumption and serum lipid profile. Exp. Ther. Med. 2015, 9, 1841–1846. [Google Scholar] [CrossRef]
- Butt, M.S.; Sultan, M.T. Coffee and its consumption: Benefits and risks. Crit. Rev. Food Sci. Nutr. 2011, 51, 363–373. [Google Scholar] [CrossRef]
- Weusten-Van der Wouw, M.P.; Katan, M.B.; Viani, R.; Huggett, A.C.; Liardon, R.; Lund-Larsen, P.G.; Thelle, D.S.; Ahola, I.; Aro, A. Identity of the cholesterol-raising factor from boiled coffee and its effects on liver function enzymes. J. Lipid Res. 1994, 35, 721–733. [Google Scholar]
- Post, S.M.; de Roos, B.; Vermeulen, M.; Afman, L.; Jong, M.C.; Dahlmans, V.E.; Havekes, L.M.; Stellaard, F.; Katan, M.B.; Princen, H.M. Cafestol increases serum cholesterol levels in apolipoprotein E*3-Leiden transgenic mice by suppression of bile acid synthesis. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1551–1556. [Google Scholar] [CrossRef] [Green Version]
- Kark, J.D.; Friedlander, Y.; Kaufmann, N.A.; Stein, Y. Coffee, tea, and plasma cholesterol: The Jerusalem Lipid Research Clinic prevalence study. Br. Med. J. (Clin. Res. Ed.) 1985, 291, 699–704. [Google Scholar] [CrossRef] [Green Version]
- Stensvold, I.; Tverdal, A.; Foss, O.P. The effect of coffee on blood lipids and blood pressure. Results from a Norwegian cross-sectional study, men and women, 40–42 years. J. Clin. Epidemiol. 1989, 42, 877–884. [Google Scholar] [CrossRef]
- Opoku, S.; Gan, Y.; Fu, W.; Chen, D.; Addo-Yobo, E.; Trofimovitch, D.; Yue, W.; Yan, F.; Wang, Z.; Lu, Z. Prevalence and risk factors for dyslipidemia among adults in rural and urban China: Findings from the China National Stroke Screening and prevention project (CNSSPP). BMC Public Health 2019, 19, 1500. [Google Scholar] [CrossRef] [PubMed]
- Lusis, A.J. Genetic factors affecting blood lipoproteins: The candidate gene approach. J. Lipid Res. 1988, 29, 397–429. [Google Scholar] [PubMed]
- Rhee, E.-J.; Kim, H.C.; Kim, J.H.; Lee, E.Y.; Kim, B.J.; Kim, E.M.; Song, Y.; Lim, J.H.; Kim, H.J.; Choi, S.; et al. 2018 Guidelines for the Management of Dyslipidemia in Korea. J. Lipid Atheroscler. 2019, 8, 78–131. [Google Scholar] [CrossRef]
- Kohlmeier, L.; Mensink, G.; Kohlmeier, M. The relationship between coffee consumption and lipid levels in young and older people in the Heidelberg—Michelstadt—Berlin study. Eur. Heart J. 1991, 12, 869–874. [Google Scholar] [CrossRef] [Green Version]
- Green, M.S.; Jucha, E. Association of serum lipids with coffee, tea, and egg consumption in free-living subjects. J. Epidemiol. Community Health 1986, 40, 324–329. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, T.; Takada, H.; Nishiyama, Y.; Kodani, E.; Saiki, Y.; Kato, K.; Kawada, T. Dyslipidemia and the Risk of Developing Hypertension in a Working-Age Male Population. J. Am. Heart Assoc. 2016, 5, e003053. [Google Scholar] [CrossRef] [Green Version]
- Halperin, R.O.; Sesso, H.D.; Ma, J.; Buring, J.E.; Stampfer, M.J.; Michael Gaziano, J. Dyslipidemia and the risk of incident hypertension in men. Hypertension 2006, 47, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Davis, B.R.; Curb, J.D.; Borhani, N.O.; Prineas, R.J.; Molteni, A. Coffee consumption and serum cholesterol in the Hypertension Detection and Follow-up Program. Am. J. Epidemiol. 1988, 128, 124–136. [Google Scholar] [CrossRef]
- Bonita, J.S.; Mandarano, M.; Shuta, D.; Vinson, J. Coffee and cardiovascular disease: In vitro, cellular, animal, and human studies. Pharmacol. Res. 2007, 55, 187–198. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Panagiotakos, D.; Ioakeimidis, N.; Dima, I.; Stefanadis, C. Chronic coffee consumption has a detrimental effect on aortic stiffness and wave reflections. Am. J. Clin. Nutr. 2005, 81, 1307–1312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Bai, Y.-Y.; Luo, L.-M.; Xiao, W.-K.; Wu, H.-M.; Ye, P. Association between serum homocysteine and arterial stiffness in elderly: A community-based study. J. Geriatr. Cardiol. 2014, 11, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, P.; Alam, S.F. Role of homocysteine in the development of cardiovascular disease. Nutr. J. 2015, 14, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhoef, P.; Pasman, W.J.; van Vliet, T.; Urgert, R.; Katan, M.B. Contribution of caffeine to the homocysteine-raising effect of coffee: A randomized controlled trial in humans. Am. J. Clin. Nutr. 2002, 76, 1244–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olthof, M.R.; Hollman, P.C.; Zock, P.L.; Katan, M.B. Consumption of high doses of chlorogenic acid, present in coffee, or of black tea increases plasma total homocysteine concentrations in humans. Am. J. Clin. Nutr. 2001, 73, 532–538. [Google Scholar] [CrossRef]
- Savoia, C.; Schiffrin, E.L. Reduction of C-reactive protein and the use of anti-hypertensives. Vasc. Health Risk Manag. 2007, 3, 975–983. [Google Scholar]
- Kim, B.J.; Kim, B.S.; Kang, J.H. Plasma homocysteine and coronary artery calcification in Korean men. Eur. J. Prev. Cardiol. 2015, 22, 478–485. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Hirata, K.; Stefanadis, C.; Toutouzas, P.; O’Rourke, M.F. Caffeine increases aortic stiffness in hypertensive patients. Am. J. Hypertens. 2003, 16, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Tsioufis, C.; Dimitriadis, K.; Vasiliadou, C.; Taxiarchou, E.; Vezali, E.; Tsiamis, E.; Stefanadis, C.; Kallikazaros, I. Heavy coffee consumption in conjunction with smoking is accompanied by increased inflammatory processes and impaired thrombosis/fibrinolysis system in essential hypertensive subjects. J. Hum. Hypertens. 2006, 20, 470–472. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Chang, Y.; Ryu, S.; Cho, J.; Rampal, S.; Zhang, Y.; Ahn, J.; Lima, J.A.; Shin, H.; Guallar, E. Coffee consumption and coronary artery calcium in young and middle-aged asymptomatic adults. Heart 2015, 101, 686–691. [Google Scholar] [CrossRef]
- Larsson, S.C.; Drca, N.; Jensen-Urstad, M.; Wolk, A. Coffee consumption is not associated with increased risk of atrial fibrillation: Results from two prospective cohorts and a meta-analysis. BMC Med. 2015, 13, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frost, L.; Vestergaard, P. Caffeine and risk of atrial fibrillation or flutter: The Danish Diet, Cancer, and Health Study. Am. J. Clin. Nutr. 2005, 81, 578–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prineas, R.J.; Jacobs, D.R., Jr.; Crow, R.S.; Blackburn, H. Coffee, tea and VPB. J. Chronic Dis. 1980, 33, 67–72. [Google Scholar] [CrossRef]
- Cannon, M.E.; Cooke, C.T.; McCarthy, J.S. Caffeine-induced cardiac arrhythmia: An unrecognised danger of healthfood products. Med. J. Aust. 2001, 174, 520–521. [Google Scholar] [CrossRef]
- Kong, H.; Jones, P.P.; Koop, A.; Zhang, L.; Duff, H.J.; Chen, S.R. Caffeine induces Ca2+ release by reducing the threshold for luminal Ca2+ activation of the ryanodine receptor. Biochem. J. 2008, 414, 441–452. [Google Scholar] [CrossRef] [Green Version]
- Patil, H.; Lavie, C.J.; O’Keefe, J.H. Cuppa joe: Friend or foe? Effects of chronic coffee consumption on cardiovascular and brain health. Mo. Med. 2011, 108, 431–438. [Google Scholar]
- Grioni, S.; Agnoli, C.; Sieri, S.; Pala, V.; Ricceri, F.; Masala, G.; Saieva, C.; Panico, S.; Mattiello, A.; Chiodini, P.; et al. Espresso coffee consumption and risk of coronary heart disease in a large Italian cohort. PLoS ONE 2015, 10, e0126550. [Google Scholar] [CrossRef]
- Klatsky, A.L.; Friedman, G.D.; Armstrong, M.A. Coffee use prior to myocardial infarction restudied: Heavier intake may increase the risk. Am. J. Epidemiol. 1990, 132, 479–488. [Google Scholar] [CrossRef]
- Mostofsky, E.; Rice, M.S.; Levitan, E.B.; Mittleman, M.A. Habitual coffee consumption and risk of heart failure: A dose-response meta-analysis. Circ. Heart Fail. 2012, 5, 401–405. [Google Scholar] [CrossRef] [Green Version]
- Heckman, M.A.; Weil, J.; Gonzalez de Mejia, E. Caffeine (1,3,7-trimethylxanthine) in foods: A comprehensive review on consumption, functionality, safety, and regulatory matters. J. Food Sci. 2010, 75, R77–R87. [Google Scholar] [CrossRef]
- Turnbull, D.; Rodricks, J.V.; Mariano, G.F.; Chowdhury, F. Caffeine and cardiovascular health. Regul. Toxicol. Pharmacol. 2017, 89, 165–185. [Google Scholar] [CrossRef] [PubMed]
- Pelchovitz, D.J.; Goldberger, J.J. Caffeine and cardiac arrhythmias: A review of the evidence. Am. J. Med. 2011, 124, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Nawrot, P.; Jordan, S.; Eastwood, J.; Rotstein, J.; Hugenholtz, A.; Feeley, M. Effects of caffeine on human health. Food Addit. Contam. 2003, 20, 1–30. [Google Scholar] [CrossRef] [PubMed]
- De Koning Gans, J.M.; Uiterwaal, C.S.; van der Schouw, Y.T.; Boer, J.M.; Grobbee, D.E.; Verschuren, W.M.; Beulens, J.W. Tea and coffee consumption and cardiovascular morbidity and mortality. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1665–1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crippa, A.; Discacciati, A.; Larsson, S.C.; Wolk, A.; Orsini, N. Coffee consumption and mortality from all causes, cardiovascular disease, and cancer: A dose-response meta-analysis. Am. J. Epidemiol. 2014, 180, 763–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Wu, K.; Zheng, J.; Zuo, R.; Li, D. Association of coffee drinking with all-cause mortality: A systematic review and meta-analysis. Public Health Nutr. 2015, 18, 1282–1291. [Google Scholar] [CrossRef]
- Ding, M.; Bhupathiraju, S.N.; Satija, A.; van Dam, R.M.; Hu, F.B. Long-term coffee consumption and risk of cardiovascular disease: A systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation 2014, 129, 643–659. [Google Scholar] [CrossRef] [Green Version]
- Cornelis, M.C.; El-Sohemy, A.; Kabagambe, E.K.; Campos, H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA 2006, 295, 1135–1141. [Google Scholar] [CrossRef] [Green Version]
- Kashuba, A.D.; Bertino, J.S., Jr.; Kearns, G.L.; Leeder, J.S.; James, A.W.; Gotschall, R.; Nafziger, A.N. Quantitation of three-month intraindividual variability and influence of sex and menstrual cycle phase on CYP1A2, N-acetyltransferase-2, and xanthine oxidase activity determined with caffeine phenotyping. Clin. Pharmacol. Ther. 1998, 63, 540–551. [Google Scholar] [CrossRef]
- Carrillo, J.A.; Benitez, J. CYP1A2 activity, gender and smoking, as variables influencing the toxicity of caffeine. Br. J. Clin. Pharmacol. 1996, 41, 605–608. [Google Scholar] [CrossRef] [Green Version]
- Gavrieli, A.; Fragopoulou, E.; Mantzoros, C.S.; Yannakoulia, M. Gender and body mass index modify the effect of increasing amounts of caffeinated coffee on postprandial glucose and insulin concentrations; a randomized, controlled, clinical trial. Metabolism 2013, 62, 1099–1106. [Google Scholar] [CrossRef]
- Kamimori, G.H.; Somani, S.M.; Knowlton, R.G.; Perkins, R.M. The effects of obesity and exercise on the pharmacokinetics of caffeine in lean and obese volunteers. Eur. J. Clin. Pharmacol. 1987, 31, 595–600. [Google Scholar] [CrossRef]
- Schreiber, G.B.; Robins, M.; Maffeo, C.E.; Masters, M.N.; Bond, A.P.; Morganstein, D. Confounders contributing to the reported associations of coffee or caffeine with disease. Prev. Med. 1988, 17, 295–309. [Google Scholar] [CrossRef]
- Hewlett, P.; Smith, A. Correlates of daily caffeine consumption. Appetite 2006, 46, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Klatsky, A.L.; Koplik, S.; Kipp, H.; Friedman, G.D. The confounded relation of coffee drinking to coronary artery disease. Am. J. Cardiol. 2008, 101, 825–827. [Google Scholar] [CrossRef] [PubMed]
- Temple, J.L.; Ziegler, A.M. Gender Differences in Subjective and Physiological Responses to Caffeine and the Role of Steroid Hormones. J. Caffeine Res. 2011, 1, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Temple, J.L.; Ziegler, A.M.; Graczyk, A.; Bendlin, A.; Sion, T.; Vattana, K. Cardiovascular responses to caffeine by gender and pubertal stage. Pediatrics 2014, 134, e112–e119. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Lee, J.-E.; Kim, Y. Relationship between coffee consumption and stroke risk in Korean population: The Health Examinees (HEXA) Study. Nutr. J. 2017, 16, 7. [Google Scholar] [CrossRef] [Green Version]
- Thelle, D.S.; Arnesen, E.; Forde, O.H. The Tromso heart study. Does coffee raise serum cholesterol? N. Engl. J. Med. 1983, 308, 1454–1457. [Google Scholar] [CrossRef]
- Miyake, Y.; Kono, S.; Nishiwaki, M.; Hamada, H.; Nishikawa, H.; Koga, H.; Ogawa, S. Relationship of coffee consumption with serum lipids and lipoproteins in Japanese men. Ann. Epidemiol. 1999, 9, 121–126. [Google Scholar] [CrossRef]
- Noh, H.M.; Park, Y.S.; Kim, J.H. Coffee consumption and coronary heart disease risk using the Framingham risk score. Asia Pac. J. Clin. Nutr. 2017, 26, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, K.; Kuriyama, S.; Akhter, M.; Kakizaki, M.; Nakaya, N.; Ohmori-Matsuda, K.; Shimazu, T.; Nagai, M.; Sugawara, Y.; Hozawa, A. Coffee consumption and mortality due to all causes, cardiovascular disease, and cancer in Japanese women. J. Nutr. 2010, 140, 1007–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodward, M.; Tunstall-Pedoe, H. Coffee and tea consumption in the Scottish Heart Health Study follow up: Conflicting relations with coronary risk factors, coronary disease, and all cause mortality. J. Epidemiol. Community Health 1999, 53, 481–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, P.W.; Garrison, R.J.; Kannel, W.B.; McGee, D.L.; Castelli, W.P. Is coffee consumption a contributor to cardiovascular disease? Insights from the Framingham Study. Arch. Intern. Med. 1989, 149, 1169–1172. [Google Scholar] [CrossRef]
Component | Effect on Circulatory System | Mechanisms | Reference |
---|---|---|---|
Caffeine | Vasodilation Vasoconstriction (Depending on adenosine receptor) | Increase serum adenosine | [22] |
Increase peripheral resistance | Sympathetic stimulation | [31] | |
Inotropic effect | Inhibiting cyclic adenosine monophosphate (cAMP) phosphodiesterase | [22] | |
Cardioacceleratory effect | Baroreflex activation | [32] | |
Chlorogenic acid | Endothelial dysfunction | Increase inflammation (via homocysteine) | [25] |
Vascular protection | NAD(P)H inhibition (Anti-oxidant) | [28] | |
Hypotensive effect | Angiotensin converting enzyme inhibition | [28] | |
Ferulic acid | Hypotensive effect | Angiotensin converting enzyme inhibition | [29] |
Cafestol | Cholesterol-increasing effect | CYP7A1 suppression farnesoid-x-receptor (FXR), pregnane-x-receptor (PXR) agonist | [33] |
Study Model | Subjects | Study Design | Measured Parameters | Significant Outcomes | Reference |
---|---|---|---|---|---|
Randomized Controlled Trial | Healthy men and women with a family history of hypertension * (n = 52) | 0 mg/kg (placebo) or 3.3 mg/kg of anhydrous caffeine single dose | Systolic BP Diastolic BP Heart rate Cortisol CRP | Both sexes showed significant additional increase in systolic BP and cortisol response to the stressor | [38] |
Randomized Cross-over trial | Healthy men and women without glucosuria, proteinuria, and current drug administration (n = 11) | Coffee oil (Arabica, Robusta), 2 g per day administered for 3 weeks | Total-C LDL-C HDL-C Triglycerides Thyroid hormones | Average serum cholesterol levels significantly rose by 13% on Arabica oil. Triglycerides levels significantly rose by 71% on Arabica oil and 61% on Robusta oil | [39] |
Randomized Controlled Cross-over trial | Healthy men without drug administration (n = 15) | 3.3 mg/kg caffeine sodium benzoate 2 days | Systolic BP Diastolic BP Heart rate Stroke volume System vascular resistance | Caffeine increased systolic and diastolic BP and progressively increased systemic vascular resistance | [40] |
Study Model | Population | Classification | Variables and Clinical Characteristics | Significant Outcomes | Reference |
---|---|---|---|---|---|
Prospective Cohort Study | Patients with lone atrial fibrillation cardioverted within 48 h of the onset of arrhythmia (n = 116) | Classified with atrial fibrillation and control group with daily coffee intake (0, 1–3, >3 cups per day) | BMI Coffee consumption Stress Type A personality * | Coffee intake (>3 cups of coffee/day) significantly increased risk of atrial fibrillation | [41] |
Retrospective Cohort Study | Middle-aged adults Swedish men (n = 7495) | Classified all population with daily coffee intake (0, 1–4, ≥5 cups per day) | Age Myocardial infarction in brother and sister Diabetes Chest pain Smoking Alcohol abuse BP BMI | Significantly increased risk of heart failure in subjects who drank 5< cups of coffee per day compared to non-coffee drinkers | [42] |
Prospective Cohort Study | Factory employees Italian men and women (n = 900) | Classified all subject with daily coffee intake (0, 1–2, 3–4, ≥5 cups per day) | Age BMI Total-C LDL-C Serum Triglycerides HDL-C Alcohol consumption Cigarette smoking | After stratification for smoking status, significant linear trend between coffee consumption and total cholesterol only in smokers | [43] |
Cross-sectional Study | Greek men (n = 1514) and women (n = 1528) | Classified all subject with daily coffee intake (0, <200, 200–400, >400 mL) | Age Education Smoking Physical activity Obese SBP DBP Hypercholesterolemia Diabetes mellitus Family history of CHD | Coffee consumed >200 mL had higher IL-6, CRP, SAA, TNF-a, WBC count (all significant) | [44] |
Independent Variable | Variables (Confounding Factor) | Dependent Variable | Reference |
---|---|---|---|
Coffee consumption (instant, brewed) | alcohol, BMI, hospital *, rank **, smoking, tea consumption | Total-C LDL-C HDL-C Triglycerides | [102] |
Coffee consumption (Turkish, instant) | age, BMI, daily total energy, food variates (fat, polyunsaturated fat, monounsaturated fat, omega 3, omega 6, carbohydrate and fiber intake, coffee consumption habit), sex, smoking, tea consumption, | Total-C LDL-C HDL-C VLDL-C Triglycerides | [49] |
Coffee and tea consumption | age, BMI, education ***, ethnic origin †, saturated fatty acid, season, smoking, sugar, tea consumption | Total-C LDL-C HDL-C | [53] |
Coffee and tea consumption | activity at work, age, alcohol, BMI, BP, cotinine, housing tenure ††, leisure activity †††, smoking, occupational social class #, personality score ##, plasma fibrinogen, total-C, HDL-C, triglycerides, vitamin C | Coronary risk factors Coronary disease All-cause mortality | [106] |
Coffee consumption | age, alcohol, BMI, education ###, food variates (vegetable, fish, fruit, rice), history of HT, DM, smoking, walking hour, | All-cause mortality CVD mortality Cancer mortality Other causes mortality | [105] |
Coffee consumption | age | Total-C LDL-C VLDL-C HDL-C | [107] |
age, BMI, BP, smoking, total-C | CVD events | ||
Coffee consumption | age, alcohol, BMI, number of cigarettes, smoking, physical activity, time since last meal & | Total-C HDL-C Triglycerides | [102] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, D.; Chang, J.; Ahn, J.; Kim, J. Conflicting Effects of Coffee Consumption on Cardiovascular Diseases: Does Coffee Consumption Aggravate Pre-existing Risk Factors? Processes 2020, 8, 438. https://doi.org/10.3390/pr8040438
Lim D, Chang J, Ahn J, Kim J. Conflicting Effects of Coffee Consumption on Cardiovascular Diseases: Does Coffee Consumption Aggravate Pre-existing Risk Factors? Processes. 2020; 8(4):438. https://doi.org/10.3390/pr8040438
Chicago/Turabian StyleLim, Dongwoo, Jiung Chang, Jungyun Ahn, and Jaieun Kim. 2020. "Conflicting Effects of Coffee Consumption on Cardiovascular Diseases: Does Coffee Consumption Aggravate Pre-existing Risk Factors?" Processes 8, no. 4: 438. https://doi.org/10.3390/pr8040438
APA StyleLim, D., Chang, J., Ahn, J., & Kim, J. (2020). Conflicting Effects of Coffee Consumption on Cardiovascular Diseases: Does Coffee Consumption Aggravate Pre-existing Risk Factors? Processes, 8(4), 438. https://doi.org/10.3390/pr8040438