Adsorption and Reaction Mechanisms of Direct Palladium Synthesis by ALD Using Pd(hfac)2 and Ozone on Si (100) Surface
Abstract
:1. Introduction
2. Procedures
2.1. Model
2.2. Experiment
3. Results and Discussion
3.1. Chemical Adsorption of Pd(hfac)2 on the Clean Si (100) Surface
3.2. Surface Reaction between Pd(hfac) and Ozone
3.3. Experiment Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Li, X.; Ling, H.; Tan, C.K.; Yeo, L.P.; Grimsdale, A.; Tok, A.I.Y. 3D FTO/FTO-Nanocrystal/TiO2 Composite Inverse Opal Photoanode for Efficient Photoelectrochemical Water Splitting. Small 2018, 14, e1800395. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Puttaswamy, M.; Wang, Z.; Tan, C.K.; Grimsdale, A.C.; Kherani, N.P.; Tok, A.I.Y. A pressure tuned stop-flow atomic layer deposition process for MoS2 on high porous nanostructure and fabrication of TiO2/MoS2 core/shell inverse opal structure. Appl. Surf. Sci. 2017, 422, 536–543. [Google Scholar] [CrossRef]
- Song, M.; Tan, H.; Li, X.; Tok, A.I.Y.; Liang, P.; Chao, D.; Fan, H.J. Atomic-Layer-Deposited Amorphous MoS2 for Durable and Flexible Li–O2 Batteries. Small Methods 2019, 4, 1900274. [Google Scholar] [CrossRef]
- Dendooven, J.; Van Daele, M.; Solano, E.; Ramachandran, R.K.; Minjauw, M.M.; Resta, A.; Vlad, A.; Garreau, Y.; Coati, A.; Portale, G.; et al. Surface mobility and impact of precursor dosing during atomic layer deposition of platinum: In situmonitoring of nucleation and island growth. Phys. Chem. Chem. Phys. 2020, 22, 24917–24933. [Google Scholar] [CrossRef]
- Van Daele, M.; Detavernier, C.; Dendooven, J. Surface species during ALD of platinum observed with in situ reflection IR spectroscopy. Phys. Chem. Chem. Phys. 2018, 20, 25343–25356. [Google Scholar] [CrossRef]
- Feng, J.-Y.; Minjauw, M.M.; Ramachandran, R.K.; Van Daele, M.; Poelman, H.; Sajavaara, T.; Dendooven, J.; Detavernier, C. The co-reactant role during plasma enhanced atomic layer deposition of palladium. Phys. Chem. Chem. Phys. 2020, 22, 9124–9136. [Google Scholar] [CrossRef]
- Yeo, S.; Choi, S.-H.; Park, J.-Y.; Kim, S.-H.; Cheon, T.; Lim, B.-Y.; Kim, S. Atomic layer deposition of ruthenium (Ru) thin films using ethylbenzen-cyclohexadiene Ru(0) as a seed layer for copper metallization. Thin Solid Films 2013, 546, 2–8. [Google Scholar] [CrossRef]
- Cao, K.; Liu, X.; Zhu, Q.; Shan, B.; Chen, R. Atomically Controllable Pd@Pt Core-Shell Nanoparticles towards Preferential Oxidation of CO in Hydrogen Reactions Modulated by Platinum Shell Thickness. ChemCatChem 2015, 8, 326–330. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, S.; Xu, Q.; Chen, W.; Tian, S.; Wang, Y.; Yan, W.; Luo, J.; Wang, D.; Li, Y. Mesoporous Nitrogen-Doped Carbon-Nanosphere-Supported Isolated Single-Atom Pd Catalyst for Highly Efficient Semihydrogenation of Acetylene. Adv. Mater. 2019, 31, 1901024. [Google Scholar] [CrossRef]
- Li, J.; Zhong, L.; Tong, L.; Yu, Y.; Liu, Q.; Zhang, S.; Yin, C.; Qiao, L.; Li, S.; Si, R.; et al. Atomic Pd on Graphdiyne/Graphene Heterostructure as Efficient Catalyst for Aromatic Nitroreduction. Adv. Funct. Mater. 2019, 29, 1905423. [Google Scholar] [CrossRef]
- Zhou, C.; Szpunar, J.A. Hydrogen Storage Performance in Pd/Graphene Nanocomposites. ACS Appl. Mater. Interfaces 2016, 8, 25933–25940. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, F.; Tan, J.; Li, P.; Wang, Z.; Zhu, K.; Mai, X.; Liu, H.; Wang, X.; Ma, Y.; et al. Preparation and hydrogen storage of Pd/MIL-101 nanocomposites. J. Alloys Compd. 2018, 772, 186–192. [Google Scholar] [CrossRef]
- Honarpazhouh, Y.; Astaraei, F.R.; Naderi, H.R.; Tavakoli, O. Electrochemical hydrogen storage in Pd-coated porous silicon/graphene oxide. Int. J. Hydrog. Energy 2016, 41, 12175–12182. [Google Scholar] [CrossRef]
- Weber, M.; Kim, J.-Y.; Lee, J.-H.; Kim, J.-H.; Iatsunskyi, I.; Coy, E.; Miele, P.; Bechelany, M.; Kim, S.S. Highly efficient hydrogen sensors based on Pd nanoparticles supported on boron nitride coated ZnO nanowires. J. Mater. Chem. A 2019, 7, 8107–8116. [Google Scholar] [CrossRef]
- Cho, S.-Y.; Ahn, H.; Park, K.; Choi, J.; Kang, H.; Jung, H.-T. Ultrasmall Grained Pd Nanopattern H2 Sensor. ACS Sens. 2018, 3, 1876–1883. [Google Scholar] [CrossRef]
- Kumar, M.; Bhati, V.S.; Ranwa, S.; Singh, J.; Kumar, M. Pd/ZnO nanorods based sensor for highly selective detection of extremely low concentration hydrogen. Sci. Rep. 2017, 7, 236. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Cao, K.; Gong, M.; Shan, B.; Chen, R. Atomically decorating of MnOx on palladium nanoparticles towards selective oxidation of benzyl alcohol with high yield. J. Catal. 2020, 386, 60–69. [Google Scholar] [CrossRef]
- Goldstein, D.; George, S. Surface poisoning in the nucleation and growth of palladium atomic layer deposition with Pd(hfac)2 and formalin. Thin Solid Films 2011, 519, 5339–5347. [Google Scholar] [CrossRef]
- Senkevich, J.; Tang, F.; Rogers, D.; Drotar, J.; Jezewski, C.; Lanford, W.; Wang, G.-C.; Lu, T.-M. Substrate-Independent Palladium Atomic Layer Deposition. Chem. Vap. Depos. 2003, 9, 258–264. [Google Scholar] [CrossRef]
- Elam, J.; Zinovev, A.; Han, C.; Wang, H.; Welp, U.; Hryn, J.; Pellin, M. Atomic layer deposition of palladium films on Al2O3 surfaces. Thin Solid Films 2006, 515, 1664–1673. [Google Scholar] [CrossRef]
- Weber, M.J.; Mackus, A.J.M.; Verheijen, M.A.; Longo, V.; Bol, A.A.; Kessels, W.M.M. Atomic Layer Deposition of High-Purity Palladium Films from Pd(hfac)2 and H2 and O2 Plasmas. J. Phys. Chem. C 2014, 118, 8702–8711. [Google Scholar] [CrossRef]
- Dendooven, J.; Ramachandran, R.K.; Devloo-Casier, K.; Rampelberg, G.; Filez, M.; Poelman, H.; Marin, G.B.; Fonda, E.; Detavernier, C. Low-Temperature Atomic Layer Deposition of Platinum Using (Methylcyclopentadienyl)trimethylplatinum and Ozone. J. Phys. Chem. C 2013, 117, 20557–20561. [Google Scholar] [CrossRef]
- Hämäläinen, J.; Munnik, F.; Ritala, M.; Leskela, M. Atomic Layer Deposition of Platinum Oxide and Metallic Platinum Thin Films from Pt(acac)2 and Ozone. Chem. Mater. 2008, 20, 6840–6846. [Google Scholar] [CrossRef]
- Park, S.-J.; Kim, W.-H.; Maeng, W.; Yang, Y.; Park, C.; Kim, H.; Lee, K.-N.; Jung, S.-W.; Seong, W. Effect oxygen exposure on the quality of atomic layer deposition of ruthenium from bis(cyclopentadienyl)ruthenium and oxygen. Thin Solid Films 2008, 516, 7345–7349. [Google Scholar] [CrossRef]
- Zou, Y.; Cheng, C.; Guo, Y.; Ong, A.J.; Goei, R.; Li, S.; Tok, A.I.Y. Atomic layer deposition of rhodium and palladium thin film using low-concentration ozone. RSC Adv. 2021, 11, 22773–22779. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initiomolecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Chadi, D.J. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Henkelman, G.; Uberuaga, B.P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904. [Google Scholar] [CrossRef] [Green Version]
- Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Liu, B.; Lu, J.; Lin, X.; Gao, L.; Guisinger, N.P.; Greeley, J.P.; Elam, J.W. Synthesis of palladium nanoparticles on TiO2(110) using a beta-diketonate precursor. Phys. Chem. Chem. Phys. 2015, 17, 6470–6477. [Google Scholar] [CrossRef]
- Palummo, M.; Onida, G.; Del Sole, R.; Mendoza, B.S. Ab initiooptical properties of Si(100). Phys. Rev. B 1999, 60, 2522. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Zhang, Q.; Lin, M.C. Adsorption of methanol, formaldehyde and formic acid on the Si(100)-2×1 surface: A computational study. Phys. Chem. Chem. Phys. 2001, 3, 2156–2161. [Google Scholar] [CrossRef]
- Siedle, A.R.; Newmark, R.A.; Pignolet, L.H. Structure of palladium bis (hexafluoroacetylacetonate) and the systematics of its acid-base chemistry. Inorg. Chem. 1983, 22, 2281–2286. [Google Scholar] [CrossRef]
- Basova, T.; Kiselev, V.; Filatov, E.S.; Sheludyakova, L.A.; Igumenov, I.K. Experimental and theoretical study of vibrational spectra of palladium(II) β-diketonates. Vib. Spectrosc. 2012, 61, 219–225. [Google Scholar] [CrossRef]
- Goldstein, D.N.; McCormick, J.A.; George, S. Al2O3 Atomic Layer Deposition with Trimethylaluminum and Ozone Studied by in Situ Transmission FTIR Spectroscopy and Quadrupole Mass Spectrometry. J. Phys. Chem. C 2008, 112, 19530–19539. [Google Scholar] [CrossRef]
- Elliott, S.D.; Scarel, G.; Wiemer, A.C.; Fanciulli, M.; Pavia, G. Ozone-Based Atomic Layer Deposition of Alumina from TMA: Growth, Morphology, and Reaction Mechanism. Chem. Mater. 2006, 18, 3764–3773. [Google Scholar] [CrossRef]
- Wagner, C.D.; Naumkin, A.V.; Kraut-Vass, A.; Allison, J.W.; Powell, C.J.; Rumble, J.R., Jr. NIST Standard Reference Database; Version 3.4 (Web Version); US Department of Commerce: Washington, DC, USA, 2003. Available online: https://www.nist.gov/srd (accessed on 15 February 2021).
- Evangelisti, C.; Panziera, N.; Pertici, P.; Vitulli, G.; Salvadori, P.; Battocchio, C.; Polzonetti, G. Palladium nanoparticles supported on polyvinylpyridine: Catalytic activity in Heck-type reactions and XPS structural studies. J. Catal. 2009, 262, 287–293. [Google Scholar] [CrossRef]
- Zhou, X.; Goh, S.; Lee, S.; Tan, K. X-ray photoelectron spectroscopic studies of ionic interactions in poly(styrenesulfonic acid)/poly(vinylpyridine) complexes. Appl. Surf. Sci. 1998, 126, 141–147. [Google Scholar] [CrossRef]
- Kim, K.S.; Gossmann, A.F.; Winograd, N. X-ray photoelectron spectro-scopic studies of palladium oxides and the palladium-oxygen electrode. Anal. Chem. 1974, 46, 197–200. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.; Zou, Y.; Li, J.; Ong, A.J.; Goei, R.; Huang, J.; Li, S.; Tok, A.I.Y. Adsorption and Reaction Mechanisms of Direct Palladium Synthesis by ALD Using Pd(hfac)2 and Ozone on Si (100) Surface. Processes 2021, 9, 2246. https://doi.org/10.3390/pr9122246
Cheng C, Zou Y, Li J, Ong AJ, Goei R, Huang J, Li S, Tok AIY. Adsorption and Reaction Mechanisms of Direct Palladium Synthesis by ALD Using Pd(hfac)2 and Ozone on Si (100) Surface. Processes. 2021; 9(12):2246. https://doi.org/10.3390/pr9122246
Chicago/Turabian StyleCheng, Chunyu, Yiming Zou, Jiahui Li, Amanda Jiamin Ong, Ronn Goei, Jingfeng Huang, Shuzhou Li, and Alfred Iing Yoong Tok. 2021. "Adsorption and Reaction Mechanisms of Direct Palladium Synthesis by ALD Using Pd(hfac)2 and Ozone on Si (100) Surface" Processes 9, no. 12: 2246. https://doi.org/10.3390/pr9122246
APA StyleCheng, C., Zou, Y., Li, J., Ong, A. J., Goei, R., Huang, J., Li, S., & Tok, A. I. Y. (2021). Adsorption and Reaction Mechanisms of Direct Palladium Synthesis by ALD Using Pd(hfac)2 and Ozone on Si (100) Surface. Processes, 9(12), 2246. https://doi.org/10.3390/pr9122246