Plastic Bending at Large Strain: A Review
Abstract
:1. Introduction
2. Analytic and Semi-Analytic Solutions for Finite Bending of Wide Sheets
- (i)
- AB and CD are circular arcs throughout the process of deformation;
- (ii)
- CB and AD are straight lines throughout the process of deformation;
- (iii)
- End effects near the surfaces CB and AD are neglected;
- (iv)
- Pressure P is uniformly distributed over the surface CD;
- (v)
- Friction at the surface CD is neglected.
2.1. Rigid/Plastic Solutions
2.2. Elastic/Plastic Solutions
3. Efficient Method for the Analysis of Bending
4. Comparison of Elastic/Plastic and Rigid/Plastic Solutions
5. Bending Test
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ikumapayi, O.M.; Akinlabi, E.T.; Madushele, N.; Fatoba, S.O. A Brief Overview of Bending Operation in Sheet Metal Forming. In Advances in Manufacturing Engineering; Lecture Notes in Mechanical Engineering; Emamian, S., Awang, M., Yusof, F., Eds.; Springer: Singapore, 2020; pp. 149–159. [Google Scholar] [CrossRef]
- Kitting, D.; Kunter, K.; Ofenheimer, A.; Till, E.T.; Grunbaum, M.; Wiegand, K.; Dietmaier, P. Categorization of stretch-bending deformation scenarios in complex shaped deep drawing parts. Steel Res. Int. 2012, 375–378. [Google Scholar]
- Kitting, D.; Ofenheimer, A.; van den Boogaard, A.H.; Dietmaier, P. Deformation scenarios of combined stretching and bending in complex shaped deep drawing parts. Key Eng. Mater. 2013, 554–557, 1252–1264. [Google Scholar] [CrossRef]
- Le Quilliec, G.; Breitkopf, P.; Roelandt, J.M.; Juillard, P. Semi-analytical approach for plane strain sheet metal forming using a bending-under-tension numerical model. Int. J. Mater. Form. 2014, 7, 221–232. [Google Scholar] [CrossRef]
- Roberts, S.M.; Hall, F.R.; Van Bael, A.; Hartley, P.; Pillinger, I.; Sturgess, C.E.N.; Van Houtte, P.; Aernoudt, E. Benchmark tests for 3-D, elasto-plastic, finite-element codes for the modelling of metal forming processes. J. Mater. Process. Technol. 1992, 34, 61–68. [Google Scholar] [CrossRef]
- Abali, B.E.; Reich, F.A. Verification of deforming polarized structure computation by using a closed-form solution. Contin. Mech. Thermodyn. 2020, 32, 693–708. [Google Scholar] [CrossRef]
- Arslan, E.; Eraslan, A. Analytical solution to the bending of a nonlinearly hardening wide curved bar. Acta Mech. 2010, 210, 71–84. [Google Scholar] [CrossRef]
- Yu, T.X.; Zhang, L.C. Plastic Bending: Theory and Applications; World Scientific: Singapore, 1996. [Google Scholar] [CrossRef]
- Hill, R. The Mathematical Theory of Plasticity; Clarendon Press: Oxford, UK, 1950. [Google Scholar]
- Yeh, G.C.K. Large plastic strains in sheet-bending. Int. J. Non-Linear Mech. 1971, 6, 393–399. [Google Scholar] [CrossRef]
- Tan, Z.; Persson, B.; Magnusson, C. Plastic bending of anisotropic sheet metals. Int. J. Mech. Sci. 1995, 37, 405–421. [Google Scholar] [CrossRef]
- Collins, I.F.; Meguid, S.A. On the influence of hardening and anisotropy on the plane-strain compression of thin metal strip. ASME J. Appl. Mech. 1977, 44, 271–278. [Google Scholar] [CrossRef]
- Rice, J.R. Plane strain slip line theory for anisotropic rigid/plastic materials. J. Mech. Phys. Solids 1973, 21, 63–74. [Google Scholar] [CrossRef]
- Verguts, H.; Sowerby, R. The pure plastic bending of laminated sheet metals. Int. J. Mech. Sci. 1975, 17, 31–51. [Google Scholar] [CrossRef]
- Dadras, P.; Majless, S.A. Plastic bending of work hardening materials. Trans. ASME J. Eng. Ind. 1982, 104, 224–230. [Google Scholar] [CrossRef]
- Abdolahi, J.; Baghani, M.; Arbabi, N.; Mazaheri, H. Analytical and numerical analysis of swelling-induced large bending of thermally-activated hydrogel bilayers. Int. J. Solids Struct. 2016, 99, 1–11. [Google Scholar] [CrossRef]
- Abdolahi, J.; Baghani, M.; Arbabi, N.; Mazaheri, H. Finite bending of a temperature-sensitive hydrogel tri-layer: An analytical and finite element analysis. Compos. Struct. 2017, 164, 219–228. [Google Scholar] [CrossRef]
- Bayat, M.R.; Kargar-Estahbanaty, A.; Baghani, M. A semi-analytical solution for finite bending of a functionally graded hydrogel strip. Acta Mech. 2019, 230, 2625–2637. [Google Scholar] [CrossRef]
- Morimoto, T.; Ashida, F. Temperature-responsive bending of a bilayer gel. Int. J. Solids Struct. 2015, 56–57, 20–28. [Google Scholar] [CrossRef]
- Arbabi, N.; Baghani, M.; Abdolahi, J.; Mazaheri, H.; Mashhadi, M.M. Finite bending of bilayer pH-responsive hydrogels: A novel analytic method and finite element analysis. Compos. B Eng. 2017, 110, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Parsa, M.H.; Nasheralahkami, S. Bending of work hardening sheet metals subjected to tension. Int. J. Mater. Form. 2008, 1, 173–176. [Google Scholar] [CrossRef]
- Zhang, Z.T.; Lee, D. Development of a new model for plane strain bending and springback analysis. J. Mater. Eng. Perform. 1995, 4, 291–300. [Google Scholar] [CrossRef]
- Hill, R. Theoretical plasticity of textured aggregates. Proc. Camb. Philos. Soc. 1979, 85, 179–191. [Google Scholar] [CrossRef]
- Zhang, Z.T.; Hu, S.J. Stress and residual stress distributions in plane strain bending. Int. J. Mech. Sci. 1998, 40, 533–543. [Google Scholar] [CrossRef]
- Yu, T.X.; Johnson, W. Influence of axial force on the elastic-plastic bending and springback of a beam. J. Mech. Work. Technol. 1982, 6, 5–21. [Google Scholar] [CrossRef]
- El-Domiaty, A.; Shabaik, A.H. Bending of work-hardening metals under the influence of axial load. J. Mech. Work. Technol. 1984, 10, 57–66. [Google Scholar] [CrossRef]
- Pourboghrat, F.; Chu, E. Prediction of spring-back and side-wall curl in 2-D draw bending. J. Mater. Process. Technol. 1995, 50, 361–374. [Google Scholar] [CrossRef]
- Perduijn, A.B.; Hoogenboom, S.M. The pure bending of sheet. J. Mater. Process. Technol. 1995, 51, 274–295. [Google Scholar] [CrossRef]
- Yuen, W.Y.D. A generalised solution for the prediction of springback in laminated strip. J. Mater. Process. Technol. 1996, 61, 254–264. [Google Scholar] [CrossRef]
- Denton, A.A. Plane strain bending with work hardening. J. Strain Anal. 1966, 1, 196–203. [Google Scholar] [CrossRef]
- Gau, J.-T.; Kinzel, G.L. A new model for springback prediction in which the Bauschinger effect is considered. Int. J. Mech. Sci. 2001, 43, 1813–1832. [Google Scholar] [CrossRef]
- Mróz, Z. On the description of anisotropic work hardening. J. Mech. Phys. Solids 1967, 15, 163–175. [Google Scholar] [CrossRef]
- Gao, X.-L. Finite deformation elasto-plastic solution for the pure bending problem of a wide plate of elastic linear-hardening material. Int. J. Solids Struct. 1994, 31, 1357–1376. [Google Scholar] [CrossRef]
- Kanner, L.; Horgan, C. Plane strain bending of strain-stiffening rubber-like rectangular beams. Int. J. Solids Struct. 2008, 45, 1713–1729. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.X. Large deformation pure bending of an elastic plastic power-law-hardening wide plate: Analysis and application. Int. J. Mech. Sci. 2007, 49, 500–514. [Google Scholar] [CrossRef]
- Bruhns, O.T.; Gupta, N.K.; Meyers, A.T.M.; Xiao, H. Bending of an elastoplastic strip with isotropic and kinematic hardening. Arch. Appl. Mech. 2003, 72, 759–778. [Google Scholar] [CrossRef]
- Alexandrov, S.; Kim, J.-H.; Chung, K.; Kang, T.-J. An alternative approach to analysis of plane-strain pure bending at large strains. J. Strain Anal. Eng. Des. 2006, 41, 397–410. [Google Scholar] [CrossRef]
- Alexandrov, S.; Manabe, K.; Furushima, T. A general analytic solution for plane strain bending under tension for strain hardening material at large strains. Arch. Appl. Mech. 2011, 81, 1935–1952. [Google Scholar] [CrossRef]
- Durban, D.; Baruch, M. Behaviour of an incrementally elastic thick walled sphere under internal and external pressure. Int. J. Non-Linear Mech. 1974, 9, 105–119. [Google Scholar] [CrossRef]
- Durban, D.; Fleck, N.A. Spherical cavity expansion in a Drucker-Prager solid. ASME J. Appl. Mech. 1997, 64, 743–750. [Google Scholar] [CrossRef]
- Alexandrov, S.; Pirumov, A.; Jeng, Y.-R. Expansion/contraction of a spherical elastic/plastic shell revisited. Cont. Mech. Therm. 2015, 27, 483–494. [Google Scholar] [CrossRef]
- Alexandrov, S.; Hwang, Y.-M. Plane strain bending with isotropic strain hardening at large strains. Trans. ASME J. Appl. Mech. 2010, 77, 064502. [Google Scholar] [CrossRef]
- Alexandrov, S.; Hwang, Y.-M. The bending moment and springback in pure bending of anisotropic sheets. Int. J. Solids Struct. 2009, 46, 4361–4368. [Google Scholar] [CrossRef] [Green Version]
- Alexandrov, S.; Hwang, Y.-M. Influence of Bauschinger effect on springback and residual stresses in plane strain pure bending. Acta Mech. 2011, 220, 47–59. [Google Scholar] [CrossRef]
- Alexandrov, S.; Kien, N.D.; Manh, D.V.; Grechnikov, F.V. Plane strain bending of a bimetallic sheet at large strains. Struct. Eng. Mech. 2016, 58, 641–659. [Google Scholar] [CrossRef]
- Alexandrov, S.; Wang, Y.-C.; Lang, L. A theory of elastic/plastic plane strain pure bending of FGM sheets at large strain. Materials 2019, 12, 456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandrov, S.; Lyamina, E.; Hwang, Y.-M. Finite pure plane strain bending of inhomogeneous anisotropic sheets. Symmetry 2021, 13, 145. [Google Scholar] [CrossRef]
- Alexandrov, S.; Gelin, J.-C. Plane strain pure bending of sheets with damage evolution at large strains. Int. J. Solids Struct. 2011, 48, 1637–1643. [Google Scholar] [CrossRef] [Green Version]
- Tai, W.H. Plastic damage and ductile fracture in mild steels. Eng. Fract. Mech. 1990, 37, 853–880. [Google Scholar] [CrossRef]
- Chandrakanth, S.; Pandey, P.C. A new ductile damage evolution model. Int. J. Fract. 1993, 60, R73–R76. [Google Scholar] [CrossRef]
- Bonora, N. A nonlinear CDM model for ductile failure. Eng. Fract. Mech. 1997, 58, 11–28. [Google Scholar] [CrossRef]
- Andrade Pires, F.M.; Cesar de Sa, J.M.A.; Costa Sousa, L.; Natal Jorge, R.M. Numerical modelling of ductile plastic damage in bulk metal forming. Int. J. Mech. Sci. 2003, 45, 273–294. [Google Scholar] [CrossRef]
- Richmond, O.; Devenpeck, M.L. A Die Profile for Maximum Efficiency in Strip Drawing. In Proceedings of 4th U.S. National Congress of Applied Mechanics Vol. 2; Rosenberg, R.M., Ed.; ASME: New York, NY, USA, 1962; pp. 1053–1057. [Google Scholar]
- Chung, K.; Richmond, O. Ideal forming-II. Sheet forming with optimum deformation. Int. J. Mech. Sci. 1992, 34, 617–633. [Google Scholar] [CrossRef]
- Barlat, F.; Chung, K.; Richmond, O. Anisotropic potentials for polycrystals and application to the design of optimum blank shapes in sheet forming. Metall. Mater. Trans. A 1994, 25, 1209–1216. [Google Scholar] [CrossRef]
- Richmond, O.; Alexandrov, S. Non-steady planar ideal plastic flow: General and special analytical solutions. J. Mech. Phys. Solids 2000, 48, 1735–1759. [Google Scholar] [CrossRef]
- Alexandrov, S.; Lee, W.; Chung, K.; Kang, T.J. Effect of constitutive laws on plane strain ideal flow design: An analytical example. Acta Mech. 2004, 173, 49–63. [Google Scholar] [CrossRef]
- Lee, Y.; Dawson, P.R. Obtaining residual stresses in metal forming after neglecting elasticity on loading. ASME. J. Appl. Mech. 1989, 56, 318–327. [Google Scholar] [CrossRef]
- Kitamura, K.; Terano, M. Determination of local properties of plastic anisotropy in thick plate by small-cube compression test for precise simulation of plate forging. CIRP Ann. 2014, 63, 293–296. [Google Scholar] [CrossRef]
- Mayville, R.A.; Finnie, I. Uniaxial stress-strain curves from a bending test. Exp. Mech. 1982, 22, 197–201. [Google Scholar] [CrossRef]
- Poquillon, D.; Baco-Carles, V.; Tailhades, P.; Andrieu, E. Cold compaction of iron powders—Relations between powder morphology and mechanical properties: Part II. Bending tests: Results and analysis. Powder Technol. 2002, 126, 75–84. [Google Scholar] [CrossRef]
- Zhou, P.; Beeh, E.; Friedrich, H.E. Influence of tension-compression asymmetry on the mechanical behavior of az31b magnesium alloy sheets in bending. J. Mater. Eng. Perform. 2016, 25, 853–865. [Google Scholar] [CrossRef] [Green Version]
- Oldroyd, P.W.J. Tension-compression stress-strain curves from bending tests. J. Strain Anal. 1971, 6, 286–292. [Google Scholar] [CrossRef]
- Laws, V. Derivation of the tensile stress-strain curve from bending data. J. Mater. Sci. 1981, 16, 1299–1304. [Google Scholar] [CrossRef]
- Kato, H.; Tottori, Y.; Sasaki, K. Four-point bending test of determining stress-strain curves asymmetric between tension and compression. Exp. Mech. 2014, 54, 489–492. [Google Scholar] [CrossRef] [Green Version]
- Urriolagoitia-Sosa, G.; Durodola, J.F.; Lopez-Castro, A.; Fellows, N.A. A method for the simultaneous derivation of tensile and compressive behaviour of materials under Bauschinger effect using bend tests. Proc. Inst. Mech. Eng. Part C 2006, 220, 1509–1518. [Google Scholar] [CrossRef]
- Maeda, T.; Noma, N.; Kuwabara, T.; Barlat, F.; Korkolis, Y.P. Measurement of the strength differential effect of DP980 steel sheet and experimental validation using pure bending test. J. Mater. Process. Technol. 2018, 256, 247–253. [Google Scholar] [CrossRef]
- Kato, H. Four-point bending tests to reveal tension-compression flow stress asymmetry in NiTi shape memory alloy thin plate. Mater. Sci. Eng. A 2019, 755, 258–266. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; Shen, Y.; Diehl, A.; Hagenah, H.; Engel, U.; Merklein, M. Size effect on springback behavior due to plastic strain gradient hardening in microbending process of pure aluminum foils. Mater. Sci. Eng. A 2010, 527, 4497–4504. [Google Scholar] [CrossRef]
- Härtel, S.; Graf, M.; Lehmann, T.; Ullmann, M. Influence of tension-compression anomaly during bending of magnesium alloy AZ31. Mater. Sci. Eng. A 2017, 705, 62–71. [Google Scholar] [CrossRef]
- Sanchez Vega, L.R.; Hanzon, D.W. Quantification of large uniaxial Bauschinger effects in sheet metal from pure bending/unbending tests and interferometer techniques. Int. J. Mech. Sci. 2016, 118, 144–154. [Google Scholar] [CrossRef]
- Nie, D.; Lu, Z.; Zhang, K. Mechanical properties and microstructure evolution during bending–unbending deformation of pure titanium sheet. J. Mater. Eng. Perform. 2018, 27, 705–713. [Google Scholar] [CrossRef]
- Brunet, M.; Morestin, F.; Godereaux, S. Nonlinear kinematic hardening identification for anisotropic sheet metals with bending-unbending tests. ASME. J. Eng. Mater. Technol. 2001, 123, 378–383. [Google Scholar] [CrossRef]
- Wagoner, R.H.; Lim, H.; Lee, M.-G. Advanced Issues in springback. Int. J. Plast. 2013, 45, 3–20. [Google Scholar] [CrossRef]
- Huang, H.; Liu, S.; Jiang, S. Stress and strain histories of multiple bending-unbending springback process. ASME. J. Eng. Mater. Technol. 2001, 123, 384–390. [Google Scholar] [CrossRef]
- Benedyk, J.C.; Stawarz, D.; Parikh, N.M. Method for increasing elongation values for ferrous and nonferrous sheet metals. J. Mater. 1971, 6, 16–29. [Google Scholar]
- Poulin, C.; Barrett, T.; Knezevic, M. Inferring post-necking strain hardening behavior of sheets by a combination of continuous bending under tension testing and finite element modeling. Exp. Mech. 2020, 60, 459–473. [Google Scholar] [CrossRef]
- Benedyk, J.C.; Kinsey, B.L.; Korkolis, Y.P.; Roemer, T.J. Fundamental studies of continuous bending under tension (CBT) and potential automotive forming applications. Mater. Today 2015, 2, 4998–5005. [Google Scholar] [CrossRef]
- Zecevic, M.; Roemer, T.J.; Knezevic, M.; Korkolis, Y.P.; Kinsey, B.L. Residual ductility and microstructural evolution in continuous-bending-under-tension of AA-6022-T4. Materials 2016, 9, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roemer, T.J.; Barrett, T.J.; Knezevic, M.; Kinsey, B.L.; Korkolis, Y.P. Experimental study of continuous-bending-under-tension of AA6022-T4. J. Mater. Process. Technol. 2019, 266, 707–714. [Google Scholar] [CrossRef]
- Antherieu, G.; Connesson, N.; Favier, D.; Mozer, P.; Payan, Y. Principle and experimental validation of a new apparatus allowing large deformation in pure bending: Application to thin wire. Exp. Mech. 2016, 56, 475–482. [Google Scholar] [CrossRef]
- Ben Zineb, T.; Sedrakian, A.; Billoet, J.L. An original pure bending device with large displacements and rotations for static and fatigue tests of composite structures. Compos. Part B Eng. 2003, 5, 447–458. [Google Scholar] [CrossRef] [Green Version]
- Boers, S.H.A.; Geers, M.G.D.; Kouznetsova, V.G. Contactless and frictionless pure bending. Exp. Mech. 2010, 50, 683–693. [Google Scholar] [CrossRef] [Green Version]
- Murphey, T.W.; Peterson, M.E.; Grigoriev, M.M. Large strain four-point bending of thin unidirectional composites. J. Spacecr. Rockets 2015, 52, 882–895. [Google Scholar] [CrossRef]
- Capilla, G.; Hamasaki, H.; Yoshida, F. Determination of uniaxial large-strain workhardening of high-strength steel sheets from in-plane stretch-bending testing. J. Mater. Process. Technol. 2017, 243, 152–169. [Google Scholar] [CrossRef]
- Andreasen, J.L.; Olsson, D.D.; Chodnikiewicz, K.; Bay, N. Bending under tension test with direct friction measurement. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2006, 220, 73–80. [Google Scholar] [CrossRef]
- Trzepieciński, T.; Lemu, H.G. Effect of lubrication on friction in bending under tension test-experimental and numerical approach. Metals 2020, 10, 544. [Google Scholar] [CrossRef] [Green Version]
- Hemmerich, E.; Rolfe, B.; Hodgson, P.D.; Weiss, M. The effect of pre-strain on the material behaviour and the Bauschinger effect in the bending of hot rolled and aged steel. Mater. Sci. Eng. A 2011, 528, 3302–3309. [Google Scholar] [CrossRef]
- Kato, H.; Sasaki, K.; Mori, T. Four-point bending test of the Bauschinger effect in prestrained IF steel thin sheet. Mater. Sci. Eng. A 2015, 642, 150–156. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexandrov, S.; Lyamina, E.; Hwang, Y.-M. Plastic Bending at Large Strain: A Review. Processes 2021, 9, 406. https://doi.org/10.3390/pr9030406
Alexandrov S, Lyamina E, Hwang Y-M. Plastic Bending at Large Strain: A Review. Processes. 2021; 9(3):406. https://doi.org/10.3390/pr9030406
Chicago/Turabian StyleAlexandrov, Sergei, Elena Lyamina, and Yeong-Maw Hwang. 2021. "Plastic Bending at Large Strain: A Review" Processes 9, no. 3: 406. https://doi.org/10.3390/pr9030406
APA StyleAlexandrov, S., Lyamina, E., & Hwang, Y. -M. (2021). Plastic Bending at Large Strain: A Review. Processes, 9(3), 406. https://doi.org/10.3390/pr9030406