Evaluation of the Engineering Properties of Powdered Activated Carbon Amendments in Porous Asphalt Pavement
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Methodology
2.2.1. Design and Preparation of PAP and PRP-PAC
2.2.2. Aqueous BTEX Adsorption Capacity Experiments
2.3. Analysis
3. Results and Discussion
3.1. Characterization of PACs
3.2. Permeable Reactive Pavement
3.2.1. PAP and PRP-PAC Preparation
3.2.2. PAP and PRP-PAC Performance
3.2.3. Comparison of Adsorption Capacity of PRP-PAC vs. PAP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Iordache, A.; Iordache, M.; Sandru, C.; Voica, C.; Stegarus, D.; Zgavarogea, R.; Ionete, R.E.; Ticu, S.C.; Miricioiu, M.G. A Fugacity Based Model for the Assessment of Pollutant Dynamic Evolution of VOCS and BTEX in the Olt River Basin (Romania). Rev. Chim. 2019, 70, 3456–3463. [Google Scholar] [CrossRef]
- Moradpour, M.; Afshin, H.; Farhanieh, B. A numerical investigation of reactive air pollutant dispersion in urban street canyons with tree planting. Atmos. Pollut. Res. 2016, 8, 253–266. [Google Scholar] [CrossRef]
- Mbanaso, F.U.; Coupe, S.J.; Charlesworth, S.M.; Nnadi, E.O. Laboratory-based experiments to investigate the impact of glyphosate-containing herbicide on pollution attenuation and biodegradation in a model pervious paving system. Chemosphere 2013, 90, 737–746. [Google Scholar] [CrossRef] [PubMed]
- MOTC. 2015 Statistical Yearbook; Directorate General of Highways of Ministry of Transportation and Communications (MOTC): Taipei, Taiwan, 2016. [Google Scholar]
- Zhang, H.; Li, H.; Zhang, Y.; Wang, D.; Harvey, J.; Wang, H. Performance enhancement of porous asphalt pavement using red mud as alternative filler. Constr. Build. Mater. 2018, 160, 707–713. [Google Scholar] [CrossRef]
- Liu, M.; Huang, X.; Xue, G. Effects of double layer porous asphalt pavement of urban streets on noise reduction. Int. J. Sustain. Built. Environ. 2016, 5, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Smit, A.D.F.; Prozzi, J.A. Quantification of the Reduction of Wet Weather Accidents Using Porous Friction Courses (PFC). Procedia Soc. Behav. Sci. 2013, 96, 2745–2755. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Huurman, M.; De Bruin, B.; Demmink, E.; Frunt, M. Towards 90% warm re-use of porous asphalt using foaming technology. J. Clean. Prod. 2018, 190, 251–260. [Google Scholar] [CrossRef]
- Chen, J.; Yin, X.; Wang, H.; Ding, Y. Evaluation of durability and functional performance of porous polyurethane mixture in porous pavement. J. Clean. Prod. 2018, 188, 12–19. [Google Scholar] [CrossRef]
- Huang, S.; Liang, C. A conceptual study on the formulation of a permeable reactive pavement with activated carbon additives for controlling the fate of non-point source environmental organic contaminants. Chemosphere 2018, 193, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Liang, C.; Chen, Y.-J. Persulfate chemical functionalization of carbon nano-tubes and associated adsorption behavior in aqueous phase. Ind. Eng. Chem. Res. 2016, 55, 6060–6068. [Google Scholar] [CrossRef]
- MOTC. Highway Construction Norms; Ministry of Transportation and Communications (MOTC): Taipei, Taiwan, 2015. [Google Scholar]
- Hammes, G.; Thives, L.P.; Ghisi, E. Application of stormwater collected from porous asphalt pavements for non-potable uses in buildings. J. Environ. Manag. 2018, 222, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Xu, G.; Zhang, H.; Xiao, F.; Amirkhanian, S.; Wu, C. Influence of different an-ti-stripping agents on the rheological properties of asphalt binder at high temperature. Constr. Build. Mater. 2018, 164, 317–325. [Google Scholar] [CrossRef]
- Sangiorgi, C.; Eskandarsefat, S.; Tataranni, P.; Simone, A.; Vignali, V.; Lantieri, C.; Dondi, G. A complete laboratory assessment of crumb rubber porous asphalt. Constr. Build. Mater. 2017, 132, 500–507. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Liang, C. Evaluation of the Engineering Properties of Powdered Activated Carbon Amendments in Porous Asphalt Pavement. Processes 2021, 9, 582. https://doi.org/10.3390/pr9040582
Huang S, Liang C. Evaluation of the Engineering Properties of Powdered Activated Carbon Amendments in Porous Asphalt Pavement. Processes. 2021; 9(4):582. https://doi.org/10.3390/pr9040582
Chicago/Turabian StyleHuang, Shengyi, and Chenju Liang. 2021. "Evaluation of the Engineering Properties of Powdered Activated Carbon Amendments in Porous Asphalt Pavement" Processes 9, no. 4: 582. https://doi.org/10.3390/pr9040582
APA StyleHuang, S., & Liang, C. (2021). Evaluation of the Engineering Properties of Powdered Activated Carbon Amendments in Porous Asphalt Pavement. Processes, 9(4), 582. https://doi.org/10.3390/pr9040582