A Low-Cost System for Moisture Content Detection of Bagasse upon a Conveyor Belt with Multispectral Image and Various Machine Learning Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Measurement System
2.3. Image Acquisition
2.4. Reference Method
2.5. Modeling and Performance Analysis
3. Results and Discussion
3.1. Measured MC
3.2. Prediction Models for Estimation of Moisture Content in the Bagasse Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Production of Electricity from Bagasse: The Major Help of the Alternative Energy and Alternative Energy Development Plan 2015 (AEDP 2015). Available online: http://webkc.dede.go.th/testmax/node/2331 (accessed on 10 August 2020).
- Utilization of Sugarcane and Sugarcane Products. Available online: http://www.ocsb.go.th/upload/bioindustry/fileupload/9659-4776.pdf (accessed on 10 August 2020).
- Statistical Data of Sugarcane and Sugar in Thailand for Innovation Development of Competitiveness in Sugarcane and Sugar. Available online: http://opendata.ocsb.go.th/ (accessed on 10 August 2020).
- Demirbas, A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energ. Combust. 2005, 31, 171–192. [Google Scholar] [CrossRef]
- Chen, C.; Qin, S.; Chen, F.; Lu, Z.; Cheng, Z. Co-combustion characteristics study of bagasse, coal and their blends by thermogravimetric analysis. J. Energy Inst. 2019, 92, 364–369. [Google Scholar] [CrossRef]
- Uzun, H.; Yıldız, Z.; Goldfarb, J.L.; Ceylan, S. Improved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysis. Bioresour. Technol. 2017, 234, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Castro, Z.S.; Gauthier-Maradei, P.; Hernández, H.E. Effect of particle size and humidity on sugarcane bagasse combustion in a fixed bed furnace. Rev. Ion 2013, 26, 73–85. [Google Scholar]
- Isabirye, M.; Raju, D.V.N.; Kitutu, M.; Yemeline, V.; Deckers, J.; Poesen, J. Sugarcane Biomass Production and Renewable Energy, Biomass Now-Cultivation and Utilization, Miodrag Darko Matovic, IntechOpen. Available online: https://www.intechopen.com/books/biomass-now-cultivation-and-utilization/sugarcane-biomass-production-and-renewable-energy. [CrossRef] [Green Version]
- Nakawajana, N.; Posom, J.; Paeoui, J. Prediction of higher heating value, lower heating value and ash content of rice husk using FT-NIR spectroscopy. Eng. J. 2018, 22, 45–56. [Google Scholar] [CrossRef]
- Sims, R.E.H. The Brilliance of Bioenergy: In Business and in Practice, 1st ed.; Earthscan: London, UK, 2009; p. 70. [Google Scholar]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W.J. Predicting vegetation water content in wheat using normalized difference water indices derived from ground measurements. J. Plant Res. 2019, 122, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cao, Y.; Wang, Q.; Pan, W.; Ma, F.; Liu, C.; Chen, W.; Yang, J. Rapid and non-destructive identification of water-injected beef samples using multispectral imaging analysis. Food Chem. 2016, 190, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Julrat, S.; Trabelsi, S. In-line microwave reflection measurement technique for determining moisture content od biomass. Biosyst. Eng. 2019, 188, 24–30. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, F.; Xu, J.; Sha, J.; Zhao, Z.; He, Y.; Li, X. Visual detection of the moisture content of tea leaves with hyperspectral imaging technology. J. Food Eng. 2019, 248, 89–96. [Google Scholar] [CrossRef]
- Sirisomboon, P.; Funke, A.; Posom, J. Improvement of proximate data and calorific value assessment of bamboo through near infrared wood chips acquisition. Renew Energ. 2020, 147, 1921–1931. [Google Scholar] [CrossRef]
- Xue, J.; Yang, Z.; Han, L.; Liu, Y.; Liu, Y.; Zhou, C. On-line measurement of proximates and lignocellulose components of corn stover using NIRS. Appl. Energ. 2015, 137, 18–25. [Google Scholar]
- Phetpan, K.; Udompetaikul, V.; Sirisomboon, P. In-line near infrared spectroscopy for the prediction of moisture content in the tapioca starch drying process. Powder Technol. 2019, 345, 608–615. [Google Scholar] [CrossRef]
- Liu, D.; Sun, D.W.; Qu, J.; Zeng, X.A.; Pu, H.; Ma, J. Feasibility of using hyperspectral imaging to predict moisture content of porcine meat during salting process. Food Chem. 2014, 152, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, Q.; Liu, F.; He, Y.; Xiao, Y. Rapid and non-destructive measurement of spinach pigments content during storage using hyperspectral imaging with chemometrics. Measurement 2017, 97, 149–155. [Google Scholar] [CrossRef]
- Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Williams, P.C.; Norris, K.H. Qualitative applications of near-infrared reflectance spectroscopy. In Near-Infrared Technology in the Agricultural and Food Industries; Williams, P.C., Norris, K.H., Eds.; American Association of Cereal Chemistry: Saint Paul, MN, USA, 1987; pp. 241–246. [Google Scholar]
- Acquah, G.E.; Via, B.K.; Fasina, O.O.; Eckhardt, L.G. Non-destructive prediction of the properties of forest biomass for chemical and bioenergy applications using near infrared spectroscopy. J. Near Infrared Spec. 2015, 23, 93–102. [Google Scholar] [CrossRef]
- Oshima, T.; Hiraguri, Y.; Okuzono, T. Distinct effects of moisture and air contents on acoustic properties of sandy soil. J. Acoust. Soc. Am. 2015, 138, 258–263. [Google Scholar] [CrossRef] [Green Version]
Red | Green | Blue | Nir | RedEdge | MC | |
---|---|---|---|---|---|---|
Max | 0.8597 | 0.7938 | 0.8650 | 0.9709 | 0.8828 | 79.885 |
Min | 0.1449 | 0.0568 | 0.0577 | 0.2794 | 0.1600 | 7.394 |
AVE | 0.5079 | 0.4141 | 0.4316 | 0.6630 | 0.5660 | 46.956 |
SD | 0.1775 | 0.1780 | 0.2019 | 0.1393 | 0.1746 | 21.580 |
R | G | B | NIR | RedEdge | MC | |
---|---|---|---|---|---|---|
R | 1 | |||||
G | 0.841783 | 1 | ||||
B | 0.762676 | 0.952336 | 1 | |||
NIR | 0.877205 | 0.734013 | 0.670882 | 1 | ||
RedEdge | 0.910461 | 0.914875 | 0.855379 | 0.863542 | 1 | |
MC | −0.75247 | −0.6161 | −0.52945 | −0.56149 | −0.63922 | 1 |
Algorithm | Calibration Set | Validation Set | ||||||
---|---|---|---|---|---|---|---|---|
N | Variables or PC | R2 | RMSEC, %wt | n | r2 | RMSEP, %wt | RPD | |
MLR | 150 | R, G, B, NIR, RedEdge | 0.65 | 12.69 | 50 | 0.67 | 12.42 | 1.76 |
PCR | 150 | PC1, PC2, PC3 | 0.65 | 12.76 | 50 | 0.48 | 15.63 | 1.40 |
ANN | 150 | R, G, B, NIR, RedEdge | 0.70 | 11.82 | 50 | 0.63 | 13.09 | 1.67 |
PCA-ANN | 150 | PC1, PC2, PC3, PC4, PC5 | 0.45 | 15.43 | 50 | 0.35 | 17.28 | 1.26 |
GPR | 150 | R, G, B, NIR, RedEdge | 0.70 | 11.58 | 50 | 0.69 | 11.96 | 1.82 |
PCA-GPR | 150 | PC1, PC2, PC3, PC4, PC5 | 0.73 | 11.04 | 50 | 0.68 | 12.19 | 1.79 |
RFR | 150 | R, G, B, NIR, RedEdge | 0.83 | 8.83 | 50 | 0.65 | 12.73 | 1.71 |
PCA- RFR | 150 | PC1, PC2, PC3, PC4, PC5 | 0.83 | 8.71 | 50 | 0.72 | 11.28 | 1.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakawajana, N.; Lerdwattanakitti, P.; Saechua, W.; Posom, J.; Saengprachatanarug, K.; Wongpichet, S. A Low-Cost System for Moisture Content Detection of Bagasse upon a Conveyor Belt with Multispectral Image and Various Machine Learning Methods. Processes 2021, 9, 777. https://doi.org/10.3390/pr9050777
Nakawajana N, Lerdwattanakitti P, Saechua W, Posom J, Saengprachatanarug K, Wongpichet S. A Low-Cost System for Moisture Content Detection of Bagasse upon a Conveyor Belt with Multispectral Image and Various Machine Learning Methods. Processes. 2021; 9(5):777. https://doi.org/10.3390/pr9050777
Chicago/Turabian StyleNakawajana, Natrapee, Patchara Lerdwattanakitti, Wanphut Saechua, Jetsada Posom, Khwantri Saengprachatanarug, and Seree Wongpichet. 2021. "A Low-Cost System for Moisture Content Detection of Bagasse upon a Conveyor Belt with Multispectral Image and Various Machine Learning Methods" Processes 9, no. 5: 777. https://doi.org/10.3390/pr9050777
APA StyleNakawajana, N., Lerdwattanakitti, P., Saechua, W., Posom, J., Saengprachatanarug, K., & Wongpichet, S. (2021). A Low-Cost System for Moisture Content Detection of Bagasse upon a Conveyor Belt with Multispectral Image and Various Machine Learning Methods. Processes, 9(5), 777. https://doi.org/10.3390/pr9050777