Plasmonic Vortices: A Promising Tool Utilizing Plasmonic Orbital Angular Momentum
Abstract
:1. Introduction
2. Generation and Manipulation of Plasmonic Vortices
2.1. Direct Transformation from Optical Vortices to Plasmonic Vortices
2.2. Modified Archimedes Spirals or Other Methods
2.3. Spatiotemporal Dynamics/Modulation of Plasmonic Vortices
3. Characterization of Plasmonic Vortices
3.1. Detection of Plasmonic Vortices
3.2. Dynamics Detection of Plasmonic Vortices
4. Applications of Plasmonic Vortices
4.1. Tip-Enhanced Raman Spectroscopy Based on Spiral Plasmonic Lens Excitation
4.2. Chirality Detection
4.3. Circular Polarization Analyzer
4.4. Generation and Readout of Optical OAM
4.5. Plasmonic Vortex Interferometers
4.6. Plasmonic Tweezers and Particle Manipulation
4.7. Electron Beam Shaping
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital Angular Momentum of Light and the Transformation of Laguerre-Gaussian Laser Modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
- Willner, A.E.; Pang, K.; Song, H.; Zou, K.; Zhou, H. Orbital Angular Momentum of Light for Communications. Appl. Phys. Rev. 2021, 8, 041312. [Google Scholar] [CrossRef]
- Lian, Y.; Qi, X.; Wang, Y.; Bai, Z.; Wang, Y.; Lu, Z. OAM Beam Generation in Space and Its Applications: A Review. Opt. Lasers Eng. 2022, 151, 106923. [Google Scholar] [CrossRef]
- Pu, M.; Li, X.; Ma, X.; Wang, Y.; Zhao, Z.; Wang, C.; Hu, C.; Gao, P.; Huang, C.; Ren, H.; et al. Catenary Optics for Achromatic Generation of Perfect Optical Angular Momentum. Sci. Adv. 2015, 1, e1500396. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wan, C.; Zhan, Q. Engineering Photonic Angular Momentum with Structured Light: A Review. Adv. Photonics 2021, 3, 064001. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical Vortices 30 Years on: OAM Manipulation from Topological Charge to Multiple Singularities. Light Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef] [PubMed]
- Tu, Q.; Liu, J.; Ke, S.; Wang, B.; Lu, P. Directional Excitation of Surface Plasmon Polaritons by Circularly Polarized Vortex Beams. Plasmonics 2020, 15, 727–734. [Google Scholar] [CrossRef]
- Ritchie, R.H. Plasma Losses by Fast Electrons in Thin Films. Phys. Rev. 1957, 106, 874–881. [Google Scholar] [CrossRef]
- Liu, S.; Hou, Y.; Xie, W.; Schlücker, S.; Yan, F.; Lei, D.Y. Quantitative Determination of Contribution by Enhanced Local Electric Field, Antenna-Amplified Light Scattering, and Surface Energy Transfer to the Performance of Plasmonic Organic Solar Cells. Small 2018, 14, e1800870. [Google Scholar] [CrossRef] [PubMed]
- Atwater, H.A.; Polman, A. Plasmonics for Improved Photovoltaic Devices. Nat. Mater. 2010, 9, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, J.; Khan, S.A.; Li, F.; Shen, J.; Duan, Q.; Liu, X.; Zhu, J. Plasmonic Metasurfaces for Medical Diagnosis Applications: A Review. Sensors 2022, 22, 133. [Google Scholar] [CrossRef] [PubMed]
- Zhan, C.; Yi, J.; Hu, S.; Zhang, X.-G.; Wu, D.-Y.; Tian, Z.-Q. Plasmon-Mediated Chemical Reactions. Nat. Rev. Methods Primers 2023, 3, 12. [Google Scholar] [CrossRef]
- Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Van Duyne, R.P. Biosensing with Plasmonic Nanosensors. Nat. Mater. 2008, 7, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Shrivastav, A.M.; Cvelbar, U.; Abdulhalim, I. A Comprehensive Review on Plasmonic-Based Biosensors Used in Viral Diagnostics. Commun. Biol. 2021, 4, 70. [Google Scholar] [CrossRef] [PubMed]
- Divya, J.; Selvendran, S.; Raja, A.S.; Sivasubramanian, A. Surface Plasmon Based Plasmonic Sensors: A Review on Their Past, Present and Future. Biosens. Bioelectron. X 2022, 11, 100175. [Google Scholar] [CrossRef]
- Wang, M.; Wang, T.; Ojambati, O.S.; Duffin, T.J.; Kang, K.; Lee, T.; Scheer, E.; Xiang, D.; Nijhuis, C.A. Plasmonic Phenomena in Molecular Junctions: Principles and Applications. Nat. Rev. Chem. 2022, 6, 681–704. [Google Scholar] [CrossRef]
- Xu, Q.; Lang, Y.; Jiang, X.; Yuan, X.; Xu, Y.; Gu, J.; Tian, Z.; Ouyang, C.; Zhang, X.; Han, J.; et al. Meta-Optics Inspired Surface Plasmon Devices. Photonics Insights 2023, 2, R02. [Google Scholar] [CrossRef]
- Fang, Y.; Sun, M. Nanoplasmonic Waveguides: Towards Applications in Integrated Nanophotonic Circuits. Light Sci. Appl. 2015, 4, e294. [Google Scholar] [CrossRef]
- Kristensen, A.; Yang, J.K.W.; Bozhevolnyi, S.I.; Link, S.; Nordlander, P.; Halas, N.J.; Mortensen, N.A. Plasmonic Colour Generation. Nat. Rev. Mater. 2016, 2, 16088. [Google Scholar] [CrossRef]
- Wang, X.; Huang, S.-C.; Hu, S.; Yan, S.; Ren, B. Fundamental Understanding and Applications of Plasmon-Enhanced Raman Spectroscopy. Nat. Rev. Phys. 2020, 2, 253–271. [Google Scholar] [CrossRef]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef]
- Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A Review on Surface-Enhanced Raman Scattering. Biosensors 2019, 9, 57. [Google Scholar] [CrossRef]
- Lee, S.G.; Kwak, S.; Son, W.-K.; Kim, S.; Nam, K.T.; Lee, H.-Y.; Jeong, D.H. Chiral-Induced Surface-Enhanced Raman Optical Activity on a Single-Particle Substrate. Anal. Chem. 2024, 96, 9894–9900. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-F.; Li, C.-Y.; Aroca, R.F. Plasmon-Enhanced Fluorescence Spectroscopy. Chem. Soc. Rev. 2017, 46, 3962–3979. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Li, Y.; Peng, Y.; Zhao, S.; Xu, M.; Zhang, L.; Huang, Z.; Shi, J.; Yang, Y. Recent Development of Surface-Enhanced Raman Scattering for Biosensing. J. Nanobiotechnol. 2023, 21, 149. [Google Scholar] [CrossRef]
- He, Q.; Zhang, Y.; Yang, Z.; Dong, J.; Lin, X.; Li, J. Surface-Enhanced Raman Spectroscopy: Principles, Methods, and Applications in Energy Systems. Chin. J. Chem. 2023, 41, 355–369. [Google Scholar] [CrossRef]
- He, Z.; Han, Z.; Kizer, M.; Linhardt, R.J.; Wang, X.; Sinyukov, A.M.; Wang, J.; Deckert, V.; Sokolov, A.V.; Hu, J.; et al. Tip-Enhanced Raman Imaging of Single-Stranded DNA with Single Base Resolution. J. Am. Chem. Soc. 2019, 141, 753–757. [Google Scholar] [CrossRef]
- Ohno, T.; Miyanishi, S. Study of Surface Plasmon Chirality Induced by Archimedes’ Spiral Grooves. Opt. Express 2006, 14, 6285–6290. [Google Scholar] [CrossRef]
- Gorodetski, Y.; Niv, A.; Kleiner, V.; Hasman, E. Observation of the Spin-Based Plasmonic Effect in Nanoscale Structures. Phys. Rev. Lett. 2008, 101, 043903. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.-Y.; Sun, Q.; Hu, G.; Wu, P.C.; Lin, R.J.; Qiu, C.-W.; Ueno, K.; Misawa, H.; Tsai, D.P. Twisted Surface Plasmons with Spin-Controlled Gold Surfaces. Adv. Opt. Mater. 2019, 7, 1801060. [Google Scholar] [CrossRef]
- Tan, Q.; Guo, Q.; Liu, H.; Huang, X.; Zhang, S. Controlling the Plasmonic Orbital Angular Momentum by Combining the Geometric and Dynamic Phases. Nanoscale 2017, 9, 4944–4949. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, X.; Ma, L.; Zhang, R.; Zhan, Z.; Chen, C.; Ren, X.; He, C.; Liu, C.; Cheng, C. Manipulation for Superposition of Orbital Angular Momentum States in Surface Plasmon Polaritons. Adv. Opt. Mater. 2019, 7, 1900372. [Google Scholar] [CrossRef]
- Zang, X.; Zhu, Y.; Mao, C.; Xu, W.; Ding, H.; Xie, J.; Cheng, Q.; Chen, L.; Peng, Y.; Hu, Q.; et al. Manipulating Terahertz Plasmonic Vortex Based on Geometric and Dynamic Phase. Adv. Opt. Mater. 2019, 7, 1801328. [Google Scholar] [CrossRef]
- Prinz, E.; Spektor, G.; Hartelt, M.; Mahro, A.-K.; Aeschlimann, M.; Orenstein, M. Functional Meta Lenses for Compound Plasmonic Vortex Field Generation and Control. Nano Lett. 2021, 21, 3941–3946. [Google Scholar] [CrossRef] [PubMed]
- Shutova, M.; Quintero-Torres, R.; Kamble, M.; Sokolov, A.V. Gold Nanolens for Chiral Single Molecule Spectroscopy. Laser Phys. Lett. 2022, 19, 035701. [Google Scholar] [CrossRef]
- Sunaba, Y.; Ide, M.; Takei, R.; Sakai, K.; Pin, C.; Sasaki, K. Nano-Shaping of Chiral Photons. Nanophotonics 2023, 12, 2499–2506. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, P.; Feng, X.; Xu, Y.; Liu, F.; Cui, K.; Zhang, W.; Huang, Y. Dynamically Sculpturing Plasmonic Vortices: From Integer to Fractional Orbital Angular Momentum. Sci. Rep. 2016, 6, 36269. [Google Scholar] [CrossRef] [PubMed]
- Zang, X.; Li, Z.; Zhu, Y.; Xu, J.; Xie, J.; Chen, L.; Balakin, A.V.; Shkurinov, A.P.; Zhu, Y.; Zhuang, S. Geometric Metasurface for Multiplexing Terahertz Plasmonic Vortices. Appl. Phys. Lett. 2020, 117, 171106. [Google Scholar] [CrossRef]
- Huang, F.; Jiang, X.; Yuan, H.; Sun, X. Generation of Plasmonic Vortex with Linearly Polarized Light. Plasmonics 2017, 12, 751–757. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, Q.; Yang, Y. Generation of Tunable Plasmonic Vortices by Varying Wavelength of Incident Light. Photonics 2022, 9, 809. [Google Scholar] [CrossRef]
- Gu, K.; Zhang, Y.; Zhao, H.; Xu, B.; Ni, B.; Sun, M.; Liu, X.; Xiong, J. Manipulation of Plasmonic Vortex Fields Using Positive Elliptically Polarized Beams. Opt. Laser Technol. 2024, 169, 110132. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, J.; Wang, S.; Li, X.; Han, J.; Shen, X.; Hao, Z.-C.; Zhao, L. Localized Plasmonic Vortex Printing Technology Based on the Metaparticle and Spoof Surface Plasmon Polaritons. Phys. Status Solidi A 2021, 218, 2000708. [Google Scholar] [CrossRef]
- Xu, Q.; Ma, S.; Hu, C.; Xu, Y.; Ouyang, C.; Zhang, X.; Li, Y.; Zhang, W.; Tian, Z.; Gu, J.; et al. Coupling-Mediated Selective Spin-to-Plasmonic-Orbital Angular Momentum Conversion. Adv. Opt. Mater. 2019, 7, 1900713. [Google Scholar] [CrossRef]
- Gu, K.; Zhang, Y.; Zhao, H.; Sun, M.; Xu, B.; Ni, B.; Liu, X.; Xiong, J. Manipulating Plasmonic Vortex Based on Meta-Atoms with Four Rectangular Slits. Opt. Express 2023, 31, 39927–39940. [Google Scholar] [CrossRef] [PubMed]
- Triolo, C.; Savasta, S.; Settineri, A.; Trusso, S.; Saija, R.; Agarwal, N.R.; Patanè, S. Near-Field Imaging of Surface-Plasmon Vortex-Modes around a Single Elliptical Nanohole in a Gold Film. Sci. Rep. 2019, 9, 5320. [Google Scholar] [CrossRef]
- Ghanei, A.M.; Aghili, A.; Darbari, S.; Talebi, N. Plasmonic Vortices for Tunable Manipulation of Target Particles, Using Arrays of Elliptical Holes in a Gold Layer. Sci. Rep. 2023, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wu, L.; Liu, Y.; Xie, D.; Jin, Z.; Li, J.; Hu, G.; Qiu, C.-W. Deuterogenic Plasmonic Vortices. Nano Lett. 2020, 20, 6774–6779. [Google Scholar] [CrossRef]
- Spektor, G.; Prinz, E.; Hartelt, M.; Mahro, A.-K.; Aeschlimann, M.; Orenstein, M. Orbital Angular Momentum Multiplication in Plasmonic Vortex Cavities. Sci. Adv. 2021, 7, eabg5571. [Google Scholar] [CrossRef]
- Yuan, X.; Xu, Q.; Lang, Y.; Jiang, X.; Xu, Y.; Chen, X.; Han, J.; Zhang, X.; Han, J.; Zhang, W. Tailoring Spatiotemporal Dynamics of Plasmonic Vortices. Opto-Electron. Adv. 2023, 6, 220133. [Google Scholar] [CrossRef]
- Yuan, X.; Xu, Q.; Lang, Y.; Yao, Z.; Jiang, X.; Li, Y.; Zhang, X.; Han, J.; Zhang, W. Temporally Deuterogenic Plasmonic Vortices. Nanophotonics 2024, 13, 955–963. [Google Scholar] [CrossRef]
- Li, W.; Zhang, S.; Zhou, Z.; Fu, Y.; Zhang, Y.; Yuan, X.; Min, C. Spatiotemporal Modulation of Ultrafast Plasmonic Vortices with Spin–Orbit Coupling. New J. Phys. 2024, 26, 053011. [Google Scholar] [CrossRef]
- Michaelis, J.; Hettich, C.; Mlynek, J.; Sandoghdar, V. Optical Microscopy Using a Single-Molecule Light Source. Nature 2000, 405, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Krenn, J.R.; Dereux, A.; Weeber, J.C.; Bourillot, E.; Lacroute, Y.; Goudonnet, J.P.; Schider, G.; Gotschy, W.; Leitner, A.; Aussenegg, F.R.; et al. Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles. Phys. Rev. Lett. 1999, 82, 2590–2593. [Google Scholar] [CrossRef]
- Sandtke, M.; Kuipers, L. Slow Guided Surface Plasmons at Telecom Frequencies. Nat. Photonics 2007, 1, 573–576. [Google Scholar] [CrossRef]
- Ghenuche, P.; Cherukulappurath, S.; Taminiau, T.H.; van Hulst, N.F.; Quidant, R. Spectroscopic Mode Mapping of Resonant Plasmon Nanoantennas. Phys. Rev. Lett. 2008, 101, 116805. [Google Scholar] [CrossRef]
- Lahiri, B.; Holland, G.; Aksyuk, V.; Centrone, A. Nanoscale Imaging of Plasmonic Hot Spots and Dark Modes with the Photothermal-Induced Resonance Technique. Nano Lett. 2013, 13, 3218–3224. [Google Scholar] [CrossRef] [PubMed]
- Stockman, M.I.; Kling, M.F.; Kleineberg, U.; Krausz, F. Attosecond Nanoplasmonic-Field Microscope. Nat. Photonics 2007, 1, 539–544. [Google Scholar] [CrossRef]
- Carli, M.; Zilio, P.; Garoli, D.; Giorgis, V.; Romanato, F. Sub-Wavelength Confinement of the Orbital Angular Momentum of Light Probed by Plasmonic Nanorods Resonances. Opt. Express 2014, 22, 26302–26311. [Google Scholar] [CrossRef]
- Hachtel, J.A.; Cho, S.-Y.; Davidson, R.B.; Feldman, M.A.; Chisholm, M.F.; Haglund, R.F.; Idrobo, J.C.; Pantelides, S.T.; Lawrie, B.J. Spatially and Spectrally Resolved Orbital Angular Momentum Interactions in Plasmonic Vortex Generators. Light Sci. Appl. 2019, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Spektor, G.; Kilbane, D.; Mahro, A.K.; Frank, B.; Ristok, S.; Gal, L.; Kahl, P.; Podbiel, D.; Mathias, S.; Giessen, H.; et al. Revealing the Subfemtosecond Dynamics of Orbital Angular Momentum in Nanoplasmonic Vortices. Science 2017, 355, 1187–1191. [Google Scholar] [CrossRef] [PubMed]
- Spektor, G.; Kilbane, D.; Mahro, A.K.; Hartelt, M.; Prinz, E.; Aeschlimann, M.; Orenstein, M. Mixing the Light Spin with Plasmon Orbit by Nonlinear Light-Matter Interaction in Gold. Phys. Rev. X 2019, 9, 021031. [Google Scholar] [CrossRef]
- Dai, Y.; Zhou, Z.; Ghosh, A.; Mong, R.S.K.; Kubo, A.; Huang, C.-B.; Petek, H. Plasmonic Topological Quasiparticle on the Nanometre and Femtosecond Scales. Nature 2020, 588, 616–619. [Google Scholar] [CrossRef] [PubMed]
- Bauer, T.; Davis, T.J.; Frank, B.; Dreher, P.; Janoschka, D.; Meiler, T.C.; Heringdorf, M.-J.M.Z.; Kuipers, L.; Giessen, H. Ultrafast Time Dynamics of Plasmonic Fractional Orbital Angular Momentum. ACS Photonics 2023, 10, 4252–4258. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Tian, Q. Tip-Enhanced Raman Spectroscopy Based on Plasmonic Lens Excitation and Experimental Detection. Opt. Express 2013, 21, 9414–9421. [Google Scholar] [CrossRef]
- Gu, K.; Sun, M.; Zhang, Y. Tip-Enhanced Raman Spectroscopy Based on Spiral Plasmonic Lens Excitation. Sensors 2022, 22, 5636. [Google Scholar] [CrossRef]
- Gu, K.; Zhao, H.; Sun, M.; Xu, B.; Ni, B.; Usman, M.; Liu, X.; Xiong, J. A Feasibility Study on Scanning Imaging of Tip-Enhanced Raman Spectroscopy Using a Spiral Plasmonic Lens. Opt. Quant. Electron. 2024, 56, 1274. [Google Scholar] [CrossRef]
- Brullot, W.; Vanbel, M.K.; Swusten, T.; Verbiest, T. Resolving Enantiomers Using the Optical Angular Momentum of Twisted Light. Sci. Adv. 2016, 2, e1501349. [Google Scholar] [CrossRef]
- Bégin, J.-L.; Jain, A.; Parks, A.; Hufnagel, F.; Corkum, P.; Karimi, E.; Brabec, T.; Bhardwaj, R. Nonlinear Helical Dichroism in Chiral and Achiral Molecules. Nat. Photonics 2023, 17, 82–88. [Google Scholar] [CrossRef]
- Hachtel, J.; Davidson, R.; Chisholm, M.; Haglund, R.; Pantelides, S.; Cho, S.-Y.; Lawrie, B. Nano-Chirality Detection with Vortex Plasmon Modes. In Proceedings of the 2017 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 14–19 May 2017; pp. 1–2. [Google Scholar]
- Karimi, E.; Schulz, S.A.; De Leon, I.; Qassim, H.; Upham, J.; Boyd, R.W. Generating Optical Orbital Angular Momentum at Visible Wavelengths Using a Plasmonic Metasurface. Light Sci. Appl. 2014, 3, e167. [Google Scholar] [CrossRef]
- Chen, W.; Abeysinghe, D.C.; Nelson, R.L.; Zhan, Q. Experimental Confirmation of Miniature Spiral Plasmonic Lens as a Circular Polarization Analyzer. Nano Lett. 2010, 10, 2075–2079. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Chen, W.; Nelson, R.L.; Zhan, Q. Miniature Circular Polarization Analyzer with Spiral Plasmonic Lens. Opt. Lett. 2009, 34, 3047–3049. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Guo, Z.; Li, R.; Wang, W.; Zhang, A.; Liu, J.; Qu, S.; Gao, J. Circular Polarization Analyzer Based on the Combined Coaxial Archimedes’ Spiral Structure. Plasmonics 2015, 10, 1255–1261. [Google Scholar] [CrossRef]
- Afshinmanesh, F.; White, J.S.; Cai, W.; Brongersma, M.L. An Integrated Plasmonic Polarimeter. In Proceedings of the CLEO: 2011—Laser Science to Photonic Applications, Baltimore, MD, USA, 1–6 May 2011; pp. 1–2. [Google Scholar]
- Afshinmanesh, F.; White, J.S.; Cai, W.; Brongersma, M.L. Measurement of the Polarization State of Light Using an Integrated Plasmonic Polarimeter. Nanophotonics 2012, 1, 125–129. [Google Scholar] [CrossRef]
- Garoli, D.; Zilio, P.; Gorodetski, Y.; Tantussi, F.; De Angelis, F. Beaming of Helical Light from Plasmonic Vortices via Adiabatically Tapered Nanotip. Nano Lett. 2016, 16, 6636–6643. [Google Scholar] [CrossRef] [PubMed]
- Maccaferri, N.; Gorodetski, Y.; Garoli, D. Helical Light Emission from Plasmonic Vortices via Magnetic Tapered Tip. J. Phys. Conf. Ser. 2018, 961, 012001. [Google Scholar] [CrossRef]
- Gorodetski, Y.; Zilio, P.; Ponzellini, P.; Ardini, M.; Zambrana-Puyalto, X.; Jacassi, A.; Calandrini, E.; Garoli, D. Efficient OAM Generation at the Nanoscale Level by Means of Plasmonic Vortex Lens. In Proceedings of the Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XV, San Diego, CA, USA, 6–10 August 2017; Volume 10346, pp. 196–203. [Google Scholar]
- Zilio, P.; Parisi, G.; Garoli, D.; Carli, M.; Romanato, F. Bilayer Holey Plasmonic Vortex Lenses for the Far Field Transmission of Pure Orbital Angular Momentum Light States. Opt. Lett. 2014, 39, 4899–4902. [Google Scholar] [CrossRef] [PubMed]
- Garoli, D.; Zilio, P.; Gorodetski, Y.; Tantussi, F.; De Angelis, F. Optical Vortex Beam Generator at Nanoscale Level. Sci. Rep. 2016, 6, 29547. [Google Scholar] [CrossRef]
- Prinz, E.; Hartelt, M.; Spektor, G.; Orenstein, M.; Aeschlimann, M. Orbital Angular Momentum in Nanoplasmonic Vortices. ACS Photonics 2023, 10, 340–367. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, T.; Yuan, Z.; Fang, Z. Plasmonic Spiral Nanostructure for Analyzing the Angular Momentum of Light. IEEE Photonics J. 2017, 9, 4800306. [Google Scholar] [CrossRef]
- Liu, A.-P.; Xiong, X.; Ren, X.-F.; Cai, Y.-J.; Rui, G.-H.; Zhan, Q.-W.; Guo, G.-C.; Guo, G.-P. Detecting Orbital Angular Momentum through Division-of-Amplitude Interference with a Circular Plasmonic Lens. Sci. Rep. 2013, 3, 2402. [Google Scholar] [CrossRef]
- Mei, S.; Huang, K.; Liu, H.; Qin, F.; Mehmood, M.Q.; Xu, Z.; Hong, M.; Zhang, D.; Teng, J.; Danner, A.; et al. On-Chip Discrimination of Orbital Angular Momentum of Light with Plasmonic Nanoslits. Nanoscale 2016, 8, 2227–2233. [Google Scholar] [CrossRef]
- Lang, Y.; Xu, Q.; Chen, X.; Han, J.; Jiang, X.; Xu, Y.; Kang, M.; Zhang, X.; Alù, A.; Han, J.; et al. On-Chip Plasmonic Vortex Interferometers. Laser Photonics Rev. 2022, 16, 2200242. [Google Scholar] [CrossRef]
- Zaman, M.A.; Padhy, P.; Hesselink, L. Solenoidal Optical Forces from a Plasmonic Archimedean Spiral. Phys. Rev. A 2019, 100, 013857. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, W.; Shen, Z.; Man, Z.; Min, C.; Shen, J.; Zhu, S.; Urbach, H.P.; Yuan, X. A Plasmonic Spanner for Metal Particle Manipulation. Sci. Rep. 2015, 5, 15446. [Google Scholar] [CrossRef]
- Ju, Z.; Ma, H.; Zhang, S.; Xie, X.; Min, C.; Zhang, Y.; Yuan, X. All-Optically Controlled Holographic Plasmonic Vortex Array for Multiple Metallic Particles Manipulation. Opt. Lett. 2023, 48, 6577–6580. [Google Scholar] [CrossRef]
- Tsai, W.-Y.; Huang, J.-S.; Huang, C.-B. Selective Trapping or Rotation of Isotropic Dielectric Microparticles by Optical Near Field in a Plasmonic Archimedes Spiral. Nano Lett. 2014, 14, 547–552. [Google Scholar] [CrossRef]
- Madan, I.; Leccese, V.; Mazur, A.; Barantani, F.; LaGrange, T.; Sapozhnik, A.; Tengdin, P.M.; Gargiulo, S.; Rotunno, E.; Olaya, J.-C.; et al. Ultrafast Transverse Modulation of Free Electrons by Interaction with Shaped Optical Fields. ACS Photonics 2022, 9, 3215–3224. [Google Scholar] [CrossRef]
- Huo, P.; Yu, R.; Liu, M.; Zhang, H.; Lu, Y.; Xu, T. Tailoring Electron Vortex Beams with Customizable Intensity Patterns by Electron Diffraction Holography. Opto-Electron. Adv. 2024, 7, 230184. [Google Scholar] [CrossRef]
- Vanacore, G.M.; Berruto, G.; Madan, I.; Pomarico, E.; Biagioni, P.; Lamb, R.J.; McGrouther, D.; Reinhardt, O.; Kaminer, I.; Barwick, B.; et al. Ultrafast Generation and Control of an Electron Vortex Beam via Chiral Plasmonic near Fields. Nat. Mater. 2019, 18, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Tsesses, S.; Dahan, R.; Wang, K.; Bucher, T.; Cohen, K.; Reinhardt, O.; Bartal, G.; Kaminer, I. Tunable Photon-Induced Spatial Modulation of Free Electrons. Nat. Mater. 2023, 22, 345–352. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Voronine, D.V.; Sokolov, A.V. Plasmonic Vortices: A Promising Tool Utilizing Plasmonic Orbital Angular Momentum. Photonics 2025, 12, 125. https://doi.org/10.3390/photonics12020125
Gao Z, Voronine DV, Sokolov AV. Plasmonic Vortices: A Promising Tool Utilizing Plasmonic Orbital Angular Momentum. Photonics. 2025; 12(2):125. https://doi.org/10.3390/photonics12020125
Chicago/Turabian StyleGao, Zhi, Dmitri V. Voronine, and Alexei V. Sokolov. 2025. "Plasmonic Vortices: A Promising Tool Utilizing Plasmonic Orbital Angular Momentum" Photonics 12, no. 2: 125. https://doi.org/10.3390/photonics12020125
APA StyleGao, Z., Voronine, D. V., & Sokolov, A. V. (2025). Plasmonic Vortices: A Promising Tool Utilizing Plasmonic Orbital Angular Momentum. Photonics, 12(2), 125. https://doi.org/10.3390/photonics12020125