Graphite Felt Electrode Modified by Quaternary Ammonium for Vanadium Redox Flow Battery with an Ultra-Long Cycle Life
Abstract
:1. Introduction
2. Results
2.1. Morphological Characterization
2.2. Electrochemical Test Analysis
3. Materials and Methods
3.1. Materials
3.2. Material Testing and Characterization
3.3. Electrode Fabrication
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lin, D.; Li, Y. Recent Advances of Aqueous Rechargeable Zinc-Iodine Batteries: Challenges, Solutions, and Prospects. Adv. Mater. 2022, 34, 2108856. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Lv, Y.; Zhang, T.; Zhu, Y.; Dai, L.; Yao, S.; Zhu, W.; Wang, L. Electrode materials for vanadium redox flow batteries: Intrinsic treatment and introducing catalyst. Chem. Eng. J. 2022, 427, 131680. [Google Scholar] [CrossRef]
- Vinco, J.H.; Domingos, A.E.E.d.C.; Espinosa, D.C.R.; Tenório, J.A.S.; Baltazar, M.d.P.G. Unfolding the Vanadium Redox Flow Batteries: An indeep perspective on its components and current operation challenges. J. Energy Storage 2021, 43, 103180. [Google Scholar] [CrossRef]
- Cheng, D.; Tian, M.; Wang, B.; Zhang, J.; Chen, J.; Feng, X.; He, Z.; Dai, L.; Wang, L. One-step activation of high-graphitization N-doped porous biomass carbon as advanced catalyst for vanadium redox flow battery. J. Colloid Interface Sci. 2020, 572, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Huang, B.; Liu, Y.; Chen, D.; Xie, Z. Glucose-derived hydrothermal carbons as energy storage booster for vanadium redox flow batteries. J. Energy Chem. 2020, 45, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Deng, Q.; Tian, Y.; Ding, P.; Yue, J.; Zeng, X.-X.; Yin, Y.-X.; Wu, X.-W.; Lu, X.-Y.; Guo, Y.-G. Porous lamellar carbon assembled from Bacillus mycoides as high-performance electrode materials for vanadium redox flow batteries. J. Power Sources 2020, 450, 227633. [Google Scholar] [CrossRef]
- Hou, B.; Tang, R.; Zhang, Q.; Cui, X.; Chen, Y. Graphitization of carbon-based catalyst for improving the performance of negative electrode in vanadium redox flow battery. Mater. Res. Express 2021, 8, 045604. [Google Scholar] [CrossRef]
- Busacca, C.; Blasi, O.D.; Giacoppo, G.; Briguglio, N.; Antonucci, V.; Blasi, A.D. High performance electrospun nickel manganite on carbon nanofibers electrode for vanadium redox flow battery. Electrochim. Acta 2020, 355, 136755–136764. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, H.R.; Zhang, B.W.; Chao, C.Y.H.; Zhao, T.S. Towards uniform distributions of reactants via the aligned electrode design for vanadium redox flow batteries. Appl. Energy 2020, 259, 114198. [Google Scholar] [CrossRef]
- He, Y.; Zhuang, X.; Lei, C.; Lei, L.; Hou, Y.; Mai, Y.; Feng, X. Porous carbon nanosheets: Synthetic strategies and electrochemical energy related applications. Nano Today 2019, 24, 103–119. [Google Scholar] [CrossRef]
- Jiang, Y.; Cheng, G.; Li, Y.; He, Z.; Zhu, J.; Meng, W.; Zhou, H.; Dai, L.; Wang, L. Superior electrocatalytic performance of porous, graphitic, and oxygen-functionalized carbon nanofiber as bifunctional electrode for vanadium redox flow battery. Appl. Surf. Sci. 2020, 525, 146453. [Google Scholar] [CrossRef]
- Daugherty, M.C.; Hsieh, C.-T.; Aaron, D.S.; Ashraf Gandomi, Y.; Li, J.; Zheng, Y.; Pfleging, W. Enabling high rate capability, low internal resistance, and excellent cyclability for vanadium redox flow batteries utilizing ultrafast laser-structured graphite felt. Electrochim. Acta 2020, 344, 136171. [Google Scholar] [CrossRef]
- Sun, J.; Wu, M.C.; Fan, X.Z.; Wan, Y.H.; Chao, C.Y.H.; Zhao, T.S. Aligned microfibers interweaved with highly porous carbon nanofibers: A Novel electrode for high-power vanadium redox flow batteries. Energy Storage Mater. 2021, 43, 30–41. [Google Scholar] [CrossRef]
- Deng, Q.; HuangYang, X.Y.; Zhang, X.; Xiao, Z.H.; Zhou, W.B.; Wang, H.R.; Liu, H.Y.; Zhang, F.; Li, C.Z.; Wu, X.W.; et al. Edge-Rich Multidimensional Frame Carbon as High-Performance Electrode Material for Vanadium Redox Flow Batteries. Adv. Energy Mater. 2022, 12, 2103186. [Google Scholar] [CrossRef]
- Wang, R.; Li, Y.; He, Y.-L. Achieving gradient-pore-oriented graphite felt for vanadium redox flow batteries: Meeting improved electrochemical activity and enhanced mass transport from nano- to micro-scale. J. Mater. Chem. A 2019, 7, 10962–10970. [Google Scholar] [CrossRef]
- Kim, S.-C.; Lim, H.; Kim, H.; Yi, J.S.; Lee, D. Nitrogen and oxygen dual-doping on carbon electrodes by urea thermolysis and its electrocatalytic significance for vanadium redox flow battery. Electrochim. Acta 2020, 348, 136286–136299. [Google Scholar] [CrossRef]
- He, Z.; Zhou, X.; Zhang, Y.; Jiang, F.; Yu, Q. Low-Temperature Nitrogen-Doping of Graphite Felt Electrode for Vanadium Redox Flow Batteries. J. Electrochem. Soc. 2019, 166, A2336–A2340. [Google Scholar] [CrossRef]
- Jiang, Y.; Du, M.; Cheng, G.; Gao, P.; Dong, T.; Zhou, J.; Feng, X.; He, Z.; Li, Y.; Dai, L.; et al. Nanostructured N-doped carbon materials derived from expandable biomass with superior electrocatalytic performance towards V2+/V3+ redox reaction for vanadium redox flow battery. J. Energy Chem. 2021, 59, 706–714. [Google Scholar] [CrossRef]
- Chen, Z.; Gao, Y.; Zhang, C.; Zeng, X.; Wu, X. Surface-Wrinkle-Modified Graphite Felt with High Effectiveness for Vanadium Redox Flow Batteries. Adv. Electron. Mater. 2019, 5, 1900036–1900044. [Google Scholar] [CrossRef]
- Radinger, H.; Ghamlouche, A.; Ehrenberg, H.; Scheiba, F. Origin of the catalytic activity at graphite electrodes in vanadium flow batteries. J. Mater. Chem. A 2021, 9, 18280–18293. [Google Scholar] [CrossRef]
- Zhang, K.; Yan, C.; Tang, A. Oxygen-induced electrode activation and modulation essence towards enhanced anode redox chemistry for vanadium flow batteries. Energy Storage Mater. 2021, 34, 301–310. [Google Scholar] [CrossRef]
- Gursu, H.; Gencten, M.; Sahin, Y. Synthesis of Phosphorus Doped Graphenes via the Yucel’s Method as the Positive Electrode of a Vanadium Redox Flow Battery. J. Electrochem. Soc. 2021, 168, 060504. [Google Scholar] [CrossRef]
- Wang, R.; Li, Y.; Wang, Y.; Fang, Z. Phosphorus-doped graphite felt allowing stabilized electrochemical interface and hierarchical pore structure for redox flow battery. Appl. Energy 2020, 261, 114369. [Google Scholar] [CrossRef]
- Park, S.E.; Yang, S.Y.; Kim, K.J. Boron-functionalized carbon felt electrode for enhancing the electrochemical performance of vanadium redox flow batteries. Appl. Surf. Sci. 2021, 546, 148941. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751–758. [Google Scholar] [CrossRef]
- Jorio, A.; Saito, R. Raman spectroscopy for carbon nanotube applications. J. Appl. Phys. 2021, 129, 021102. [Google Scholar] [CrossRef]
- Zheng, Y.; Deng, T.; Yue, N.; Zhang, W.; Zhu, X.; Yang, H.; Chu, X.; Zheng, W. Raman spectroscopy and correlative-Raman technology excel as an optimal stage for carbon-based electrode materials in electrochemical energy storage. J. Raman Spectrosc. 2021, 52, 2119–2130. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, C.; Zhou, M.; Fu, Q.; Zhao, C.; Wu, M.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720. [Google Scholar] [CrossRef] [Green Version]
- Ling, W.; Deng, Q.; Ma, Q.; Wang, H.R.; Zhou, C.J.; Xu, J.K.; Yin, Y.X.; Wu, X.W.; Zeng, X.X.; Guo, Y.G. Hierarchical Carbon Micro/Nanonetwork with Superior Electrocatalysis for High-Rate and Endurable Vanadium Redox Flow Batteries. Adv. Sci. 2018, 5, 1801281. [Google Scholar] [CrossRef]
- Liu, S.; Tian, J.; Wang, L.; Zhang, Y.; Qin, X.; Luo, Y.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater. 2012, 24, 2037–2041. [Google Scholar] [CrossRef]
- Park, M.; Ryu, J.; Kim, Y.; Cho, J. Corn protein-derived nitrogen-doped carbon materials with oxygen-rich functional groups: A highly efficient electrocatalyst for all-vanadium redox flow batteries. Energy Environ. Sci. 2014, 7, 3727–3735. [Google Scholar] [CrossRef]
- Alazmi, A.; Wan, C.T.-C.; Costa, P.M.F.J.; Brushett, F.R. Exploration of reduced graphene oxide microparticles as electrocatalytic materials in vanadium redox flow batteries. J. Energy Storage 2022, 50, 104192. [Google Scholar] [CrossRef]
- An, H.; Noh, C.; Jeon, S.; Shin, M.; Kwon, Y.; Chung, Y. The effect of low-defected carboxylic acid functional group–rich carbon nanotube–doped electrode on the performance of aqueous vanadium redox flow battery. Int. J. Energy Res. 2022, 46, 11802–11817. [Google Scholar] [CrossRef]
- Yoon, S.J.; Kim, S.; Kim, D.K.; Yu, D.M.; Hempelmann, R.; Hong, Y.T.; So, S. Nitrogen-Doping Through Two-Step Pyrolysis of Polyacrylonitrile on Graphite Felts for Vanadium Redox Flow Batteries. Energy Fuels 2020, 34, 5052–5059. [Google Scholar] [CrossRef]
- Vujković, M.; Gavrilov, N.; Pašti, I.; Krstić, J.; Travas-Sejdic, J.; Ćirić-Marjanović, G.; Mentus, S. Superior capacitive and electrocatalytic properties of carbonized nanostructured polyaniline upon a low-temperature hydrothermal treatment. Carbon 2013, 64, 472–486. [Google Scholar] [CrossRef]
- Li, O.L.; Chiba, S.; Wada, Y.; Panomsuwan, G.; Ishizaki, T. Synthesis of graphitic-N and amino-N in nitrogen-doped carbon via a solution plasma process and exploration of their synergic effect for advanced oxygen reduction reaction. J. Mater. Chem. A 2017, 5, 2073–2082. [Google Scholar] [CrossRef]
- Dang, H.X.; Barz, D.P.J. Graphene electrode functionalization for high performance hybrid energy storage with vanadyl sulfate redox electrolytes. J. Power Sources 2022, 517, 230712. [Google Scholar] [CrossRef]
- Ersozoglu, M.G.; Gursu, H.; Gencten, M.; Sarac, A.S.; Sahin, Y. A new approach to prepare N-/S-doped free-standing graphene oxides for vanadium redox flow battery. Int. J. Energy Res. 2022, 46, 19992–20003. [Google Scholar] [CrossRef]
- Faggiano, L.; Lacarbonara, G.; Badenhorst, W.D.; Murtomäki, L.; Sanz, L.; Arbizzani, C. Short thermal treatment of carbon felts for copper-based redox flow batteries. J. Power Sources 2022, 520, 230846. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, P.; Wang, G.; Nia, A.S.; Yu, M.; Feng, X. Functional Electrolytes: Game Changers for Smart Electrochemical Energy Storage Devices. Small Sci. 2021, 2, 2100080. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, Q.; Zhong, W.; Deng, Q.; Yang, C.; Liu, Y.; Hu, J.; Yang, C. Construction of defective MoxW1-xS2/Cu7.2S4 polyhedral heterostructures for fast sodium storage. Chem. Eng. J. 2023, 451, 138645. [Google Scholar] [CrossRef]
- Xu, W.; Long, J.; Liu, J.; Luo, H.; Duan, H.; Zhang, Y.; Li, J.; Qi, X.; Chu, L. A novel porous polyimide membrane with ultrahigh chemical stability for application in vanadium redox flow battery. Chem. Eng. J. 2022, 428, 131203. [Google Scholar] [CrossRef]
- Shi, Y.; Wei, Z.; Liu, H.; Zhao, J. Dynamic modeling of long-term operations of vanadium/air redox flow battery with different membranes. J. Energy Storage 2022, 50, 104171. [Google Scholar] [CrossRef]
- Ko, Y.; Park, H.; Lee, B.; Bae, Y.; Park, S.K.; Kang, K. A comparative kinetic study of redox mediators for high-power lithium–oxygen batteries. J. Mater. Chem. A 2019, 7, 6491–6498. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Hu, J.; Liu, J.; Liu, H.; Fu, S.; Wu, X.; Wu, Y. Graphite Felt Electrode Modified by Quaternary Ammonium for Vanadium Redox Flow Battery with an Ultra-Long Cycle Life. Inorganics 2022, 10, 208. https://doi.org/10.3390/inorganics10110208
Liu X, Hu J, Liu J, Liu H, Fu S, Wu X, Wu Y. Graphite Felt Electrode Modified by Quaternary Ammonium for Vanadium Redox Flow Battery with an Ultra-Long Cycle Life. Inorganics. 2022; 10(11):208. https://doi.org/10.3390/inorganics10110208
Chicago/Turabian StyleLiu, Xuejiao, Junping Hu, Jun Liu, Hongyi Liu, Sha Fu, Xiongwei Wu, and Yuping Wu. 2022. "Graphite Felt Electrode Modified by Quaternary Ammonium for Vanadium Redox Flow Battery with an Ultra-Long Cycle Life" Inorganics 10, no. 11: 208. https://doi.org/10.3390/inorganics10110208
APA StyleLiu, X., Hu, J., Liu, J., Liu, H., Fu, S., Wu, X., & Wu, Y. (2022). Graphite Felt Electrode Modified by Quaternary Ammonium for Vanadium Redox Flow Battery with an Ultra-Long Cycle Life. Inorganics, 10(11), 208. https://doi.org/10.3390/inorganics10110208