Hydrothermal Synthesis of Layered Double Hydroxides Doped with Holmium, Thulium and Lutetium
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cavani, F.; Trifirò, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 1991, 11, 173–301. [Google Scholar] [CrossRef]
- Mohapatra, L.; Parida, K. A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts. J. Mater. Chem. A 2006, 4, 10744–10766. [Google Scholar] [CrossRef]
- Zümreoglu-Karan, B.; Ay, A.N. Layered double hydroxides—Multifunctional nanomaterials. Chem. Pap. 2012, 66, 1–10. [Google Scholar] [CrossRef]
- Kuthati, Y.; Kankala, R.K.; Lee, C.-H. Layered double hydroxide nanoparticles for biomedical applications: Current status and recent prospects. Appl. Clay Sci. 2015, 112–113, 100–116. [Google Scholar] [CrossRef]
- Long, X.; Wang, Z.; Xiao, S.; An, Y.; Yang, S. Transition metal based layered double hydroxides tailored for energy conversion and storage. Mater. Today 2016, 19, 213–226. [Google Scholar] [CrossRef]
- Lezhnina, M.M.; Kynast, U.H. Optical properties of matrix confined species. Opt. Mater. 2010, 33, 4–13. [Google Scholar] [CrossRef]
- Bellardita, M.; Di Paola, A.; Palmisano, L.; Parrino, F.; Buscarino, G.; Amadelli, R. Preparation and photoactivity of samarium loaded anatase, brookite and rutile catalysts. Appl. Catal. B 2011, 104, 291–299. [Google Scholar] [CrossRef]
- Linh, N.H.; Trang, N.T.; Cuong, N.T.; Thao, P.H.; Cong, B.T. Influence of doped rare earth elements on electronic properties of the R0.25Ca0.75MnO3 systems. Comput. Mater. Sci. 2010, 50, 2–5. [Google Scholar] [CrossRef]
- Seliverstov, E.S.; Golovin, S.N.; Lebedeva, O.E. Layered double hydroxides containing rare earth cations: Synthesis and applications. Front. Chem. Eng. 2022, 4, 867615. [Google Scholar] [CrossRef]
- Hu, M.; Zuo, S.; Yang, R.; Zhang, H.; Yan, Y.; Lie, L. Modification of lutetium for the structural and electrochemical stability of Ni-Al layered double hydroxide. J. Solid State Electrochem. 2015, 19, 671–683. [Google Scholar] [CrossRef]
- Shen, S.; Guo, W.; Zhuang, W.; Yang, W.; Qin, L.; Liu, X.; Yue, Z. Effect of Sm-doped Ni-Al layered double hydroxide on electrochemical performance for supercapacitors. J. Phys. Conf. Ser. 2021, 2009, 012008. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.J. New type ternary NiAlCe layered double hydroxide photocatalyst for efficient visible-light photoreduction of CO2 into CH4. Mater. Res. Express 2018, 5, 026204. [Google Scholar] [CrossRef]
- Ramesh, T.N.; Jayashree, R.S.; Kamath, P.V. Disorder in layered hydroxides: DIFFaX simulation of the X-ray powder diffraction patterns of nickel hydroxide. Clays Clay Miner. 2003, 51, 570–576. [Google Scholar] [CrossRef]
- Radha, A.V.; Shivakumara, C.; Kamath, P.V. DIFFaX simulation of stacking faults in layered double hydroxides (LDHs). Clays Clay Miner. 2005, 53, 520–527. [Google Scholar] [CrossRef]
- Sławińsky, W.A.; Sjåstad, A.O.; Fjellvåg, H. Stacking faults and polytypes for layered double hydroxides: What can we learn from simulated and experimental X-raypowder diffraction data? Inorg. Chem. 2016, 55, 12881–12889. [Google Scholar] [CrossRef]
- He, J.; Wei, M.; Li, B.; Kang, Y.; Evans, D.G.; Duan, X. Preparation of Layered Double Hydroxides. In Structure and Bonding; Duan, X., Evans, D.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 119, pp. 89–119. [Google Scholar] [CrossRef]
- Bugaenko, L.T.; Ryabykh, S.M.; Bugaenko, A.L. A nearly complete system of average crystallographic ionic radii and its use for determining ionization potentials. Moscow Univ. Chem. Bull. 2008, 63, 303–317. [Google Scholar] [CrossRef]
- Kovanda, F.; Rojka, T.; Bezdička, P.; Jirátová, K.; Obalová, L.; Pacultová, K.; Bastl, Z.; Grygar, T. Effect of hydrothermal treatment on properties of Ni-Al double hydroxides and related mixed oxides. J. Solid State Chem. 2009, 182, 27–36. [Google Scholar] [CrossRef]
- Wang, L.; Lü, Z.; Li, F.; Duan, X. Study on the mechanism and kinetics of the thermal decomposition of Ni/Al layered double hydroxide nitrate. Ind. Eng. Chem. Res. 2008, 47, 7211–7218. [Google Scholar] [CrossRef]
- Wang, J.; Song, Y.; Li, Z.; Liu, Q.; Zhou, J.; Jing, X.; Zhang, M.; Jiang, Z. In Situ Ni/Al layered double hydroxide and its electrochemical capacitance performance. Energy Fuels 2010, 24, 6463–6467. [Google Scholar] [CrossRef]
- Golovin, S.N.; Yapryntsev, M.N.; Ryl’tsova, I.G.; Savilov, S.V.; Maslakov, K.I.; Lebedeva, O.E. Synthesis and thermal behavior of Co/AlCe layered double hydroxide. Solid State Sci. 2021, 111, 106498. [Google Scholar] [CrossRef]
Sample | Molar Ratios of Cations | M2+/M3+ | Ln3+/(Ln3+ + Al3+) | Lattice Parameters | Average Crystallite Size *, nm | |||
---|---|---|---|---|---|---|---|---|
Ni2+ | Al3+ | Ln3+ | a, Å | c, Å | ||||
Ni/AlHo | 0.796 | 0.193 | 0.011 | 3.9 | 0.054 | 3.103 | 23.39 | 6.67 |
Ni/AlTm | 0.808 | 0.178 | 0.015 | 4.2 | 0.078 | 3.056 | 23.72 | 6.89 |
Ni/AlLu | 0.765 | 0.219 | 0.016 | 3.3 | 0.068 | 3.049 | 23.59 | 5.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golovin, S.N.; Yapryntsev, M.N.; Lebedeva, O.E. Hydrothermal Synthesis of Layered Double Hydroxides Doped with Holmium, Thulium and Lutetium. Inorganics 2022, 10, 217. https://doi.org/10.3390/inorganics10120217
Golovin SN, Yapryntsev MN, Lebedeva OE. Hydrothermal Synthesis of Layered Double Hydroxides Doped with Holmium, Thulium and Lutetium. Inorganics. 2022; 10(12):217. https://doi.org/10.3390/inorganics10120217
Chicago/Turabian StyleGolovin, Sergei N., Maksim N. Yapryntsev, and Olga E. Lebedeva. 2022. "Hydrothermal Synthesis of Layered Double Hydroxides Doped with Holmium, Thulium and Lutetium" Inorganics 10, no. 12: 217. https://doi.org/10.3390/inorganics10120217
APA StyleGolovin, S. N., Yapryntsev, M. N., & Lebedeva, O. E. (2022). Hydrothermal Synthesis of Layered Double Hydroxides Doped with Holmium, Thulium and Lutetium. Inorganics, 10(12), 217. https://doi.org/10.3390/inorganics10120217