Solvent-Free Method for Nanoparticles Synthesis by Solid-State Combustion Using Tetra(Imidazole)Copper(II) Nitrate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Synthesized Copper Complexes
2.2. Thermolysis of Copper Complex Prepared by Melting-Assisted Solvent-Free Synthesis
2.3. Solid Products of Combustion of Copper Complex Prepared by Melting-Assisted Solvent-Free Synthesis
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Copper Complex
3.3. Combustion of Copper Complex
3.4. Characterization of Complex and Solid Products of Combustion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donegá, C.d.M. Nanoparticles: Workhorses of Nanoscience, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2014; p. 299. [Google Scholar]
- Buffat, P.; Borel, J.-P. Size effect on the melting temperature of gold particles. Phys. Rev. A 1976, 13, 2287–2298. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.L.; Petroski, J.M.; Green, T.C.; El-Sayed, M.A. Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals. J. Phys. Chem. B 1998, 102, 6145–6151. [Google Scholar] [CrossRef]
- Netskina, O.V.; Kochubey, D.I.; Prosvirin, I.P.; Kellerman, D.G.; Simagina, V.I.; Komova, O.V. Role of the electronic state of rhodium in sodium borohydride hydrolysis. J. Mol. Catal. A 2014, 390, 125–132. [Google Scholar] [CrossRef]
- Hos, T.; Herskowitz, M. Utilization of CO-rich waste gases from the steel industry for production of renewable liquid fuels. Energ. Convers. Manag. 2021, 240, 114233. [Google Scholar] [CrossRef]
- Netskina, O.V.; Tayban, E.S.; Moiseenko, A.P.; Komova, O.V.; Mukha, S.A.; Simagina, V.I. Removal of 1,2-dichlorobenzene from water emulsion using adsorbent catalysts and its regeneration. J. Hazard. Mater. 2015, 285, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Tkachenko, I.; Tkachenko, S.N.; Lokteva, E.S.; Mamleeva, N.A.; Lunin, V.V. Two-stage ozonation–adsorption purification of ground water from trichloroethylene and tetrachloroethylene with application of commercial carbon adsorbents. Ozone Sci. Eng. 2020, 42, 357–370. [Google Scholar] [CrossRef]
- Netskina, O.V.; Mucha, S.S.; Veselovskaya, J.V.; Bolotov, V.A.; Komova, O.V.; Ishchenko, A.V.; Bulavchenko, O.A.; Prosvirin, I.P.; Pochtar, A.A.; Rogov, V.A. CO2 methanation: Nickel-alumina catalyst prepared by solid-state combustion. Materials 2021, 14, 6789. [Google Scholar] [CrossRef]
- Komova, O.V.; Mukha, S.A.; Ozerova, A.M.; Bulavchenko, O.A.; Pochtar, A.A.; Ishchenko, A.V.; Odegova, G.V.; Suknev, A.P.; Netskina, O.V. New solvent-free melting-assisted preparation of energetic compound of nickel with imidazole for combustion synthesis of ni-based materials. Nanomaterials 2021, 11, 3332. [Google Scholar] [CrossRef]
- Tappan, B.C.; Huynh, M.H.; Hiskey, M.A.; Chavez, D.E.; Luther, E.P.; Mang, J.T.; Son, S.F. Ultralow-density nanostructured metal foams: Combustion synthesis, morphology, and composition. J. Am. Chem. Soc. 2006, 128, 6589–6594. [Google Scholar] [CrossRef]
- Boldyrev, V.V.; Tukhtaev, R.K.; Gavrilov, A.I.; Larionov, S.V.; Savel’eva, Z.A.; Lavrenova, L.G. Combustion of nickel and copper nitrate complexes of hydrazine derivatives as a method for manufacturing fine-grained and porous metals. Russ. J. Inorg. Chem. 1998, 43, 362–366. [Google Scholar]
- Nichols, P.J.; Raston, C.L.; Steed, J.W. Engineering of porous π-stacked solids using mechanochemistry. Chem. Commun. 2001, 12, 1062–1063. [Google Scholar] [CrossRef]
- Tella, A.C.; Ameen, O.A.; Ajibade, P.A.; Alimi, L.O. Template metal-organic frameworks: Solvent-free synthesis, characterization and powder X-ray diffraction studies of [Cu(NO3)2(bipy)2](py)2]. J. Porous Mater. 2015, 22, 1599–1605. [Google Scholar] [CrossRef]
- Zangade, S.; Patil, P. A Review on solvent-free methods in organic synthesis. Curr. Org. Chem. 2019, 23, 2295–2318. [Google Scholar] [CrossRef]
- Fernández-Bertran, J.F. Mechanochemistry: An overview. Pure Appl. Chem. 1999, 71, 581–586. [Google Scholar] [CrossRef]
- Orita, A.; Jiang, L.; Nakano, T.; Ma, N.; Otera, J. Solventless reaction dramatically accelerates supramolecular self-assembly. Chem. Commun. 2002, 13, 1362–1363. [Google Scholar] [CrossRef]
- Fujita, M.; Yazaki, J.; Ogura, K. Spectroscopic observation of self-assembly of a macrocyclic tetranuclear complex composed of Pt2+and 4,4′-bipyridine. Chem. Lett. 1991, 20, 1031–1032. [Google Scholar] [CrossRef]
- Garay, A.L.; Pichona, A.; James, S.L. Solvent-free synthesis of metal complexes. Chem. Soc. Rev. 2007, 36, 846–855. [Google Scholar] [CrossRef] [PubMed]
- Filatov, A.S.; Rogachev, A.Y.; Petrukhina, M.A. Gas-phase assembling of dirhodium units into a novel organometallic ladder: structural and DFT study. Cryst. Growth Des. 2006, 6, 1479–1484. [Google Scholar] [CrossRef]
- Taylor, C.E.; Underhill, A.E. Complexes of cobalt(II) and nickel(II) halides with lmidazole. J. Chem. Soc. A 1969, 368–372. [Google Scholar] [CrossRef]
- Trivedi, M.K.; Branton, A.; Trivedi, D.; Nayak, G.; Saikia, G.; Jana, S. Physical and structural characterization of biofield treated imidazole derivatives. Nat. Prod. Chem. Res. 2015, 3, 1000187. [Google Scholar] [CrossRef]
- Madanagopal, A.; Periandy, S.; Gayathri, P.; Ramalingam, S.; Xavier, S.; Ivanov, V.K. Spectroscopic and computational investigation of the structure and pharmacological activity of 1-benzylimidazole. J. Taibah Univ. Sci. 2017, 11, 975–996. [Google Scholar] [CrossRef]
- Van Bael, M.K.; Smets, J.; Schoone, K.; Houben, L.; McCarthy, W.; Adamowicz, L.; Nowak, M.J.; Maes, G. Matrix-isolation FTIR studies and theoretical calculations of hydrogen-bonded complexes of imidazole. A Comparison between Experimental Results and Different Calculation Methods. J. Phys. Chem. A 1997, 101, 2397–2413. [Google Scholar] [CrossRef]
- Ramasamy, R. Vibrational spectroscopic studies of imidazole. Armen. J. Phys. 2015, 8, 51–55. [Google Scholar]
- Morzyk-Ociepa, B.; Różycka-Sokołowska, E.; Michalska, D. Revised crystal and molecular structure, FT-IR spectra and DFT studies of chlorotetrakis(imidazole)copper(II) chloride. J. Mol. Struct. 2012, 1028, 49–56. [Google Scholar] [CrossRef]
- Lee, S.-K.; Lee, S.-J.; Ahn, A.-R.; Kim, Y.-S.; Min, A.-R.; Choi, M.-Y.; Miller, R. E. Infrared Spectroscopy of Imidazole Trimer in Helium Nanodroplets: Free NH Stretch Mode. Bull. Korean Chem. Soc. 2011, 32, 885–888. [Google Scholar] [CrossRef] [Green Version]
- Eilbeck, W.J.; Holmes, F.; Underhill, A.E. Cobalt(II), nickel(II), and copper(II) complexes of imidazole and thiazole. J. Chem. Soc. A 1967, 757–761. [Google Scholar] [CrossRef]
- Amini, S.K.; Hadipour, N.L.; Elmi, F. A study of hydrogen bond of imidazole and its 4-nitro derivative by ab initio and DFT calculated NQR parameters. Chem. Phys. Lett. 2004, 391, 95–100. [Google Scholar] [CrossRef]
- Mihaylov, M.Y.; Zdravkova, V.R.; Ivanova, E.Z.; Aleksandrov, H.A.; Petkov, P.S.; Vayssilov, G.N.; Hadjiivanov, K.I. Infrared spectra of surface nitrates: Revision of the current opinions based on the case study of ceria. J. Catal. 2021, 394, 245–258. [Google Scholar] [CrossRef]
- Kumar, A.; Wolf, E.E.; Mukasyan, A.S. Solution combustion synthesis of metal nanopowders: Copper and copper/nickel alloys. AIChE J. 2011, 57, 3473–3479. [Google Scholar] [CrossRef]
- Zsako, J. Kinetic analysis of thermogravimetric data. J. Phys. Chem. 1968, 72, 2406–2411. [Google Scholar] [CrossRef]
- Coats, A.W.; Redfern, J.P. Kinetic parameters from thermogravimetric data. Nature 1964, 201, 68–69. [Google Scholar] [CrossRef]
- Fetisova, O.Y.; Mikova, N.M.; Chesnokov, N.V. A kinetic study of the thermal degradation of fir and aspen ethanol lignins. Kinet. Catal. 2019, 60, 273–280. [Google Scholar] [CrossRef]
- Kumar, A.; Wolf, E.E.; Mukasyan, A.S. Solution combustion synthesis of metal nanopowders: Nickel—Reaction pathways. AIChE J. 2011, 57, 2207–2214. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Wang, J.; Fu, T.; Meng, F.; Zhao, D.; Chuang, S.S.C.; Li, Z. Highly active catalysis of methanol oxidative carbonylation over nano Cu2O supported on micropore-rich mesoporous carbon. Appl. Catal. B 2022, 303, 120890. [Google Scholar] [CrossRef]
- Verma, A.; Anand, P.; Kumar, S.; Fu, Y.-P. Cu-cuprous/cupric oxide nanoparticles towards dual application for nitrophenol conversion and electrochemical hydrogen evolution. Appl. Surf. Sci. 2022, 578, 151795. [Google Scholar] [CrossRef]
- Hu, S.; Shi, J.; Luo, B.; Ai, C.; Jing, D. Significantly enhanced photothermal catalytic hydrogen evolution over Cu2O-rGO/TiO2 composite with full spectrum solar light. J. Colloid Interface Sci. 2022, 608, 2058–2065. [Google Scholar] [CrossRef]
- Manukyan, K.V.; Cross, A.; Roslyakov, S.; Rouvimov, S.; Rogachev, A.S.; Wolf, E.E.; Mukasyan, A.S. Solution Combustion Synthesis of Nano-Crystalline Metallic Materials: Mechanistic Studies. J. Phys. Chem. C 2013, 117, 24417–24427. [Google Scholar] [CrossRef]
- Podbolotov, K.B.; Khort, A.A.; Tarasov, A.B.; Trusov, G.V.; Roslyakov, S.I.; Mukasyan, A.S. Solution Combustion Synthesis of Copper Nanopowders: The Fuel Effect. Combust. Sci. Technol. 2017, 189, 1878–1890. [Google Scholar] [CrossRef]
- Sheng, N.; Zhu, C.; Rao, Z. Solution combustion synthesized copper foams for enhancing the thermal transfer properties of phase change material. J. Alloys Compd. 2021, 871, 159458. [Google Scholar] [CrossRef]
Complex (Synthesis Method) | Calculated Composition of Complex and Its Molar Mass | Content, wt% | Oxygen Balance, % | |
---|---|---|---|---|
Calculated | Found | |||
[Cu(C3H4N2)4](NO3)2 (solvent-free) | [Cu(C3H4N2)4](NO3)2 or CuC12H16N10O6 460 g/mol | Cu–13.9 C–31.3 H–3.5 N–30.4 O–20.9 | Cu–14.2 C–30.9 H–3.4 N–30.1 Residue–21.4 | −94 |
[Cu(C3H4N2)4](NO3)2 (in aqueous solution) | Cu–13.5 C–31.4 H–3.2 N–30.9 Residue–21.0 |
Method | Parameter | Helium | Air |
---|---|---|---|
Coats-Redfern | E, kJ/mol | 246 | 236 |
n | 1 | 1 | |
α 1 | 0.01–0.80 | 0.01–0.60 | |
R2 | 0.994 | 0.990 |
Complex | Phase | No. PDF Card | Content, wt% | Average Crystallite Size, nm | |
---|---|---|---|---|---|
LVol-IB | LVol-FWHM | ||||
[Cu(C3H4N2)4](NO3)2 | CuO | 45-937 | 74 | 28 | 37 |
Cu2O | 5-667 | 24 | 30 | 37 | |
Cu | 4-836 | 2 | 76 | 72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Netskina, O.V.; Mukha, S.A.; Dmitruk, K.A.; Ishchenko, A.V.; Bulavchenko, O.A.; Pochtar, A.A.; Suknev, A.P.; Komova, O.V. Solvent-Free Method for Nanoparticles Synthesis by Solid-State Combustion Using Tetra(Imidazole)Copper(II) Nitrate. Inorganics 2022, 10, 15. https://doi.org/10.3390/inorganics10020015
Netskina OV, Mukha SA, Dmitruk KA, Ishchenko AV, Bulavchenko OA, Pochtar AA, Suknev AP, Komova OV. Solvent-Free Method for Nanoparticles Synthesis by Solid-State Combustion Using Tetra(Imidazole)Copper(II) Nitrate. Inorganics. 2022; 10(2):15. https://doi.org/10.3390/inorganics10020015
Chicago/Turabian StyleNetskina, Olga V., Svetlana A. Mukha, Kirill A. Dmitruk, Arkady V. Ishchenko, Olga A. Bulavchenko, Alena A. Pochtar, Alexey P. Suknev, and Oxana V. Komova. 2022. "Solvent-Free Method for Nanoparticles Synthesis by Solid-State Combustion Using Tetra(Imidazole)Copper(II) Nitrate" Inorganics 10, no. 2: 15. https://doi.org/10.3390/inorganics10020015
APA StyleNetskina, O. V., Mukha, S. A., Dmitruk, K. A., Ishchenko, A. V., Bulavchenko, O. A., Pochtar, A. A., Suknev, A. P., & Komova, O. V. (2022). Solvent-Free Method for Nanoparticles Synthesis by Solid-State Combustion Using Tetra(Imidazole)Copper(II) Nitrate. Inorganics, 10(2), 15. https://doi.org/10.3390/inorganics10020015