Reduction of Hf via Hf/Zr Substitution in Mechanically Alloyed (Hf,Ti)CoSb Half-Heusler Solid Solutions
Abstract
:1. Introduction
2. Results and Discussion
2.1. (Hf, Zr,Ti)CoSb0.8Sn0.2 Solid Solution Series
2.1.1. Structural Characterization
2.1.2. Thermoelectric Properties
2.2. Hf0.4Zr0.2Ti0.4CoSb1- ySny Solid Solution Series
2.2.1. Structural Characterization
2.2.2. Thermoelectric Properties
3. Materials and Methods
3.1. Synthesis and Consolidation
3.2. Structure and Morphology
3.3. Thermoelectric Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rowe, D.M. CRC Handbook of Thermoelectrics; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar] [CrossRef]
- Zhao, L.D.; Dravid, V.P.; Kanatzidis, M.G. The panoscopic approach to high performance thermoelectrics. Energy Environ. Sci. 2014, 7, 251–268. [Google Scholar] [CrossRef]
- Kanatzidis, M.G. Nanostructured thermoelectrics: The new paradigm? Chem. Mater. 2010, 22, 648–659. [Google Scholar] [CrossRef]
- Chen, S.; Ren, Z. Recent progress of half-Heusler for moderate temperature thermoelectric applications. Mater. Today 2013, 16, 387–395. [Google Scholar] [CrossRef]
- Graf, T.; Felser, C.; Parkin, S.S.P. Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem. 2011, 39, 1–50. [Google Scholar] [CrossRef]
- Zeier, W.G.; Schmitt, J.; Hautier, G.; Aydemir, U.; Gibbs, Z.M.; Felser, C.; Snyder, G.J. Engineering half-Heusler thermoelectric materials using Zintl chemistry. Nat. Rev. Mater. 2016, 1, 16032. [Google Scholar] [CrossRef]
- Culp, S.R.; Simonson, J.W.; Poon, S.J.; Ponnambalam, V.; Edwards, J.; Tritt, T.M. (Zr,Hf)Co(Sb,Sn) half-Heusler phases as high-temperature (>700 °C) p-type thermoelectric materials. Appl. Phys. Lett. 2008, 93, 022105. [Google Scholar] [CrossRef]
- Schwall, M.; Balke, B. On the phase separation in n-type thermoelectric half-Heusler materials. Materials 2018, 11, 649. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Joshi, G.; Liu, W.; Lan, Y.; Wang, H.; Lee, S.; Simonson, J.W.; Poon, S.J.; Tritt, T.M.; Chen, G.; et al. Enhanced thermoelectric figure of merit of p-type half-heuslers. Nano Lett. 2011, 11, 556–560. [Google Scholar] [CrossRef]
- Schwall, M.; Balke, B. Phase separation as a key to a thermoelectric high efficiency. Phys. Chem. Chem. Phys. 2013, 15, 1868–1872. [Google Scholar] [CrossRef]
- Rausch, E.; Balke, B.; Deschauer, T.; Ouardi, S.; Felser, C. Charge carrier concentration optimization of thermoelectric p-type half-Heusler compounds. APL Mater. 2015, 3, 041516. [Google Scholar] [CrossRef]
- Krez, J.; Schmitt, J.; Jeffrey Snyder, G.; Felser, C.; Hermes, W.; Schwind, M. Optimization of the carrier concentration in phase-separated half-Heusler compounds. J. Mater. Chem. A 2014, 2, 13513–13518. [Google Scholar] [CrossRef] [Green Version]
- Ioannou, I.; Ioannou, P.S.; Delimitis, A.; Gelbstein, Y.; Giapintzakis, I.; Kyratsi, T. High thermoelectric performance of p-type half-Heusler (Hf,Ti)Co(Sb,Sn) solid solutions fabricated by mechanical alloying. J. Alloys Compd. 2021, 858, 158330. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Pope, A.L.; Littleton IV, R.T.; Tritt, T.M.; Ponnambalam, V.; Xia, Y.; Poon, S.J. Effect of Sb doping on the thermoelectric properties of Ti-based half-Heusler compounds, TiNiSn1-xSbx. Appl. Phys. Lett. 2000, 77, 2476–2478. [Google Scholar] [CrossRef] [Green Version]
- Rausch, E.; Castegnaro, M.V.; Bernardi, F.; Martins Alves, M.C.; Morais, J.; Balke, B. Short and long range order of Half-Heusler phases in (Ti,Zr,Hf)CoSb thermoelectric compounds. Acta Mater. 2016, 115, 308–313. [Google Scholar] [CrossRef]
- Rausch, E.; Balke, B.; Stahlhofen, J.M.; Ouardi, S.; Burkhardt, U.; Felser, C. Fine tuning of thermoelectric performance in phase-separated half-Heusler compounds. J. Mater. Chem. C 2015, 3, 10409–10414. [Google Scholar] [CrossRef]
- Culp, S.R.; Poon, S.J.; Hickman, N.; Tritt, T.M.; Blumm, J. Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 °C. Appl. Phys. Lett. 2006, 88, 042106. [Google Scholar] [CrossRef]
- Joshi, G.; Dahal, T.; Chen, S.; Wang, H.; Shiomi, J.; Chen, G.; Ren, Z. Enhancement of thermoelectric figure-of-merit at low temperatures by titanium substitution for hafnium in n-type half-Heuslers Hf0.75-xTixZr0.25NiSn0.99Sb0.01. Nano Energy 2013, 2, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Appel, O.; Schwall, M.; Mogilyansky, D.; Köhne, M.; Balke, B.; Gelbstein, Y. Effects of microstructural evolution on the thermoelectric properties of spark-plasma-sintered Ti0.3Zr0.35Hf0.35NiSn half-heusler compound. J. Electron. Mater. 2013, 42, 1340–1345. [Google Scholar] [CrossRef]
- Yan, X.; Liu, W.; Wang, H.; Chen, S.; Shiomi, J.; Esfarjani, K.; Wang, H.; Wang, D.; Chen, G.; Ren, Z. Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1−xTixCoSb0.8Sn 0.2. Energy Environ. Sci. 2012, 5, 7543–7548. [Google Scholar] [CrossRef]
- Yan, X.; Liu, W.; Chen, S.; Wang, H.; Zhang, Q.; Chen, G.; Ren, Z. Thermoelectric property study of nanostructured p-type half-heuslers (Hf, Zr, Ti)CoSb0.8 Sn0.2. Adv. Energy Mater. 2013, 3, 1195–1200. [Google Scholar] [CrossRef]
- 22. U.S. Geological Survey. Metal Prices in the United States through 2010. 2012; pp. 1–204. Available online: http://pubs.usgs.gov/sir/2012/5188/ (accessed on 20 February 2022).
- He, R.; Kim, H.S.; Lan, Y.; Wang, D.; Chen, S.; Ren, Z. Investigating the thermoelectric properties of p-type half-Heusler Hfx(ZrTi)1-xCoSb0.8Sn0.2 by reducing Hf concentration for power generation. RSC Adv. 2015, 4, 64711–64716. [Google Scholar] [CrossRef]
- Benzoudji, F.; Miloud Abid, O.; Seddik, T.; Yakoubi, A.; Khenata, R.; Meradji, H.; Uğur, G.; Uğur, S.; Ocak, H.Y. Insight into the structural, elastic, electronic, thermoelectric, thermodynamic and optical properties of MRhSb (M = Ti, Zr, Hf) half-Heuslers from ab initio calculations. Chin. J. Phys. 2019, 59, 434–448. [Google Scholar] [CrossRef]
- Rausch, E.; Balke, B.; Ouardi, S.; Felser, C. Long-Term Stability of (Ti/Zr/Hf)CoSb1-xSnx Thermoelectric p-Type Half-Heusler Compounds Upon Thermal Cycling. Energy Technol. 2015, 3, 1217–1224. [Google Scholar] [CrossRef]
- Chauhan, N.S.; Bathula, S.; Gahtori, B.; Kolen’ko, Y.V.; Dhar, A. Enhanced Thermoelectric Performance in Hf-Free p-Type (Ti, Zr)CoSb Half-Heusler Alloys. J. Electron. Mater. 2019, 48, 6700–6709. [Google Scholar] [CrossRef]
- Page, A.; Van Der Ven, A.; Poudeu, P.F.P.; Uher, C. Origins of phase separation in thermoelectric (Ti, Zr, Hf)NiSn half-Heusler alloys from first principles. J. Mater. Chem. A 2016, 36, 13949–13956. [Google Scholar] [CrossRef]
- Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 2001, 46, 1–184. [Google Scholar] [CrossRef]
- Chauhan, N.S.; Bathula, S.; Vishwakarma, A.; Bhardwaj, R.; Kumar Johari, K.; Gahtori, B.; Dhar, A. Facile fabrication of p- and n-type half-Heusler alloys with enhanced thermoelectric performance and low specific contact resistance employing spark plasma sintering. Mater. Lett. 2018, 228, 250–253. [Google Scholar] [CrossRef]
- Gandi, A.N.; Schwingenschlögl, U. Thermoelectric Properties of the XCoSb (X: Ti,Zr,Hf) Half-Heusler alloys. Phys. Status Solidi Basic Res. 2017, 254, 1700419. [Google Scholar] [CrossRef]
- Slade, T.J.; Grovogui, J.A.; Kuo, J.J.; Anand, S.; Bailey, T.P.; Wood, M.; Uher, C.; Snyder, G.J.; Dravid, V.P.; Kanatzidis, M.G. Understanding the thermally activated charge transport in NaPbMSbQm +2(Q = S, Se, Te) thermoelectrics: Weak dielectric screening leads to grain boundary dominated charge carrier scattering. Energy Environ. Sci. 2020, 13, 1509–1518. [Google Scholar] [CrossRef]
- Wood, M.; Kuo, J.J.; Imasato, K.; Snyder, G.J. Improvement of Low-Temperature zT in a Mg3Sb2–Mg3Bi2 Solid Solution via Mg-Vapor Annealing. Adv. Mater. 2019, 31, 1902337. [Google Scholar] [CrossRef]
- Kuo, J.J.; Kang, S.D.; Imasato, K.; Tamaki, H.; Ohno, S.; Kanno, T.; Snyder, G.J. Grain boundary dominated charge transport in Mg3Sb2-based compounds. Energy Environ. Sci. 2018, 11, 429–434. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Gibbs, Z.M.; Tang, Y.; Wang, H.; Snyder, G.J. Characteriza tion of Lorenz number with Seebeck coefficient measurement. APL Mater. 2015, 3, 041506. [Google Scholar] [CrossRef] [Green Version]
- Kuo, J.J.; Wood, M.; Slade, T.J.; Kanatzidis, M.G.; Snyder, G.J. Systematic over-estimation of lattice thermal conductivity in materials with electrically-resistive grain boundaries. Energy Environ. Sci. 2020, 13, 1250. [Google Scholar] [CrossRef]
- Schrade, M.; Berland, K.; Eliassen, S.N.H.; Guzik, M.N.; Sørby, M.H.; Jenuš, P.; Hauback, B.C.; Tofan, R. The role of grain boundary scattering in reducing the thermal conductivity of polycrystalline X NiSn (X = Hf, Zr, Ti) half-Heusler alloys. Sci. Rep. 2017, 7, 13760. [Google Scholar] [CrossRef]
- Rausch, E.; Balke, B.; Ouardi, S.; Felser, C. Enhanced thermoelectric performance in the p-type half-Heusler (Ti/Zr/Hf)CoSb0.8Sn0.2 system via phase separation. Phys. Chem. Chem. Phys. 2014, 16, 25258–25262. [Google Scholar] [CrossRef]
- Joshi, H.; Rai, D.P.; Hnamte, L.; Laref, A.; Thapa, R.K. A theoretical analysis of elastic and optical properties of half Heusler MCoSb (M = Ti, Zr and Hf). Heliyon 2019, 5, e01155. [Google Scholar] [CrossRef] [Green Version]
- Nishino, Y.; Deguchi, S.; Mizutani, U. Thermal and transport properties of the Heusler-type Fe2 VAl1-x Gex (0 ≤ x ≤ 0.20) alloys: Effect of doping on lattice thermal conductivity, electrical resistivity, and Seebeck coefficient. Phys. Rev. B Condens. Matter Mater. Phys. 2006, 74, 115115. [Google Scholar] [CrossRef]
- Slack, G.A. Effect of isotopes on low-temperature thermal conductivity. Phys. Rev. 1957, 105, 829–831. [Google Scholar] [CrossRef]
- Abeles, B. Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys. Rev. 1963, 131, 1906–1911. [Google Scholar] [CrossRef]
- Hu, C.; Xia, K.; Chen, X.; Zhao, X.; Zhu, T. Transport mechanisms and property optimization of p-type (Zr, Hf)CoSb half-Heusler thermoelectric materials. Mater. Today Phys. 2018, 7, 69–76. [Google Scholar] [CrossRef]
- Yang, J.; Meisner, G.P.; Chen, L. Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds. Appl. Phys. Lett. 2004, 85, 1140–1142. [Google Scholar] [CrossRef]
Composition | Lattice Parameter (nm) | Geometrical Density (g/cm3) | Relative Density (%) |
---|---|---|---|
Hf0.6Ti0.4CoSb0.8Sn0.2 | 0.599 | 9.13 | 97 |
Hf0.5Zr0.1Ti0.4CoSb0.8Sn0.2 | 0.601 | 8.59 | 94 |
Hf0.4Zr0.2Ti0.4CoSb0.8Sn0.2 | 0.601 | 8.51 | 96 |
Hf0.3Zr0.3Ti0.4CoSb0.8Sn0.2 | 0.602 | 8.14 | 95 |
Hf0.2Zr0.4Ti0.4CoSb0.8Sn0.2 | 0.601 | 8.12 | 98 |
Zr0.6Ti0.4CoSb0.8Sn0.2 | 0.599 | 7.50 | 96 |
Nominal Composition | Hf | Zr | Ti | Co | Sb | Sn |
---|---|---|---|---|---|---|
Hf0.6Ti0.4CoSb0.8Sn0.2 | 0.56 | - | 0.45 | 1.02 | 0.84 | 0.14 |
Hf0.5Zr0.1Ti0.4CoSb0.8Sn0.2 | 0.45 | 0.12 | 0.43 | 1.01 | 0.84 | 0.14 |
Hf0.4Zr0.2Ti0.4CoSb0.8Sn0.2 | 0.35 | 0.22 | 0.42 | 1.02 | 0.84 | 0.15 |
Hf0.3Zr0.3Ti0.4CoSb0.8Sn0.2 | 0.27 | 0.33 | 0.43 | 0.98 | 0.86 | 0.13 |
Hf0.2Zr0.4Ti0.4CoSb0.8Sn0.2 | 0.17 | 0.43 | 0.44 | 0.99 | 0.85 | 0.12 |
Zr0.6Ti0.4CoSb0.8Sn0.2 | - | 0.62 | 0.43 | 0.97 | 0.84 | 0.13 |
Element | Nominal | SEM | TEM |
---|---|---|---|
Hf | 0.4 | 0.35 | 0.42 |
Zr | 0.2 | 0.22 | 0.19 |
Ti | 0.4 | 0.42 | 0.41 |
Co | 1 | 1.02 | 0.99 |
Sb | 0.8 | 0.84 | 0.75 |
Sn | 0.2 | 0.15 | 0.23 |
Sb + Sn | 1 | 0.99 | 0.98 |
Sn(y) | Lattice Parameter (nm) | Geometrical Density (g/cm3) | Relative Density (%) |
---|---|---|---|
0.15 | 0.601 | 8.47 | 96 |
0.17 | 0.600 | 8.44 | 95 |
0.20 | 0.601 | 8.51 | 96 |
0.23 | 0.600 | 8.86 | 100 |
0.25 | 0.600 | 8.30 | 94 |
Nominal Composition | Hf | Zr | Ti | Co | Sb | Sn |
---|---|---|---|---|---|---|
Hf0.4Zr0.2Ti0.4CoSb0.85Sn0.15 | 0.36 | 0.22 | 0.43 | 1.01 | 0.88 | 0.09 |
Hf0.4Zr0.2Ti0.4CoSb0.83Sn0.17 | 0.36 | 0.23 | 0.44 | 1.00 | 0.87 | 0.11 |
Hf0.4Zr0.2Ti0.4CoSb0.8Sn0.2 | 0.35 | 0.22 | 0.42 | 1.02 | 0.84 | 0.15 |
Hf0.4Zr0.2Ti0.4CoSb0.77Sn0.23 | 0.36 | 0.22 | 0.44 | 1.00 | 0.85 | 0.13 |
Hf0.4Zr0.2Ti0.4CoSb0.75Sn0.25 | 0.36 | 0.22 | 0.43 | 1.01 | 0.79 | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioannou, I.; Delimitis, A.; Gelbstein, Y.; Kyratsi, T. Reduction of Hf via Hf/Zr Substitution in Mechanically Alloyed (Hf,Ti)CoSb Half-Heusler Solid Solutions. Inorganics 2022, 10, 51. https://doi.org/10.3390/inorganics10040051
Ioannou I, Delimitis A, Gelbstein Y, Kyratsi T. Reduction of Hf via Hf/Zr Substitution in Mechanically Alloyed (Hf,Ti)CoSb Half-Heusler Solid Solutions. Inorganics. 2022; 10(4):51. https://doi.org/10.3390/inorganics10040051
Chicago/Turabian StyleIoannou, Ioanna, Andreas Delimitis, Yaniv Gelbstein, and Theodora Kyratsi. 2022. "Reduction of Hf via Hf/Zr Substitution in Mechanically Alloyed (Hf,Ti)CoSb Half-Heusler Solid Solutions" Inorganics 10, no. 4: 51. https://doi.org/10.3390/inorganics10040051
APA StyleIoannou, I., Delimitis, A., Gelbstein, Y., & Kyratsi, T. (2022). Reduction of Hf via Hf/Zr Substitution in Mechanically Alloyed (Hf,Ti)CoSb Half-Heusler Solid Solutions. Inorganics, 10(4), 51. https://doi.org/10.3390/inorganics10040051