Enhancing the Performance of Ceramic-Rich Polymer Composite Electrolytes Using Polymer Grafted LLZO
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Synthesis of Cubic-LLZO
3.2. LLZO Surface Grafting (Modified LLZO)
3.3. X-ray Diffraction
3.4. Solid-State Nuclear Magnetic Resonance Spectroscopy (ss-NMR)
3.5. Preparation of Polymer Electrolyte Membranes
3.6. Thermal Behavior
3.7. Ionic Conductivity
3.8. Electrochemical Stability vs. Li Electrode
3.9. Anodic Stability
3.10. Li-Ion Transference Number
3.11. Cathode Preparation
3.12. Full Cells Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gür, T.M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy Environ. Sci. 2018, 11, 2696–2767. [Google Scholar] [CrossRef]
- Li, M.; Wang, C.; Chen, Z.; Xu, K.; Lu, J. New Concepts in Electrolytes. Chem. Rev. 2020, 120, 6783–6819. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H.; Wu, J.; Zhou, M.; Liu, W.; Zhou, H. Advanced electrolyte design for stable lithium metal anode: From liquid to solid. Nano Energy 2021, 80, 105516. [Google Scholar] [CrossRef]
- Chen, J.; Wu, J.; Wang, X.; Zhou, A.a.; Yang, Z. Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries. Energy Storage Mater. 2021, 35, 70–87. [Google Scholar] [CrossRef]
- Mauger, A.; Julien, C.M.; Paolella, A.; Armand, M.; Zaghib, K. Building Better Batteries in the Solid State: A Review. Materials 2019, 12, 3892. [Google Scholar] [CrossRef] [Green Version]
- Manthiram, A.; Yu, X.; Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103. [Google Scholar] [CrossRef]
- Wang, H.; Sheng, L.; Yasin, G.; Wang, L.; Xu, H.; He, X. Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Mater. 2020, 33, 188–215. [Google Scholar] [CrossRef]
- Fan, L.; Wei, S.; Li, S.; Li, Q.; Lu, Y. Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries. Adv. Energy Mater. 2018, 8, 1702657. [Google Scholar] [CrossRef]
- Forsyth, M.; Porcarelli, L.; Wang, X.; Goujon, N.; Mecerreyes, D. Innovative Electrolytes Based on Ionic Liquids and Polymers for Next-Generation Solid-State Batteries. Acc. Chem. Res. 2019, 52, 686–694. [Google Scholar] [CrossRef]
- Li, S.; Zhang, S.Q.; Shen, L.; Liu, Q.; Ma, J.B.; Lv, W.; He, Y.B.; Yang, Q.H. Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries. Adv. Sci. 2020, 7, 1903088. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Guo, W.; Fu, Y. Advances in Composite Polymer Electrolytes for Lithium Batteries and Beyond. Adv. Energy Mater. 2020, 11, 2000802. [Google Scholar] [CrossRef]
- Zhang, T.; He, W.; Zhang, W.; Wang, T.; Li, P.; Sun, Z.; Yu, X. Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries. Chem. Sci. 2020, 11, 8686–8707. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, X.; Qin, Y.; Ji, S.; Huo, Y.; Wang, Z.; Liu, Z.; Shen, J.; Liu, J. Recent Progress in Organic-Inorganic Composite Solid Electrolytes for All-Solid-State Lithium Batteries. Chemistry 2020, 26, 1720–1736. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, T.; Zhao, B.; Shen, F.; Jin, H.; Han, X. Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Energy Storage Mater. 2021, 34, 388–416. [Google Scholar] [CrossRef]
- Yu, X.; Manthiram, A. A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Mater. 2021, 34, 282–300. [Google Scholar] [CrossRef]
- Zagórski, J.; del Amo, J.M.L.; Cordill, M.J.; Aguesse, F.; Buannic, L.; Llordés, A. Garnet–Polymer Composite Electrolytes: New Insights on Local Li-Ion Dynamics and Electrodeposition Stability with Li Metal Anodes. ACS Appl. Energy Mater. 2019, 2, 1734–1746. [Google Scholar] [CrossRef]
- Bonilla, M.R.; Daza, F.A.G.; Ranque, P.; Aguesse, F.; Carrasco, J.; Akhmatskaya, E. Unveiling Interfacial Li-Ion Dynamics in Li7La3Zr2O12/PEO(LiTFSI) Composite Polymer-Ceramic Solid Electrolytes for All-Solid-State Lithium Batteries. ACS Appl. Mater. Interfaces 2021, 13, 30653–30667. [Google Scholar] [CrossRef]
- Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog. Polym. Sci. 2013, 38, 1232–1261. [Google Scholar] [CrossRef]
- Lago, N.; Garcia-Calvo, O.; del Amo, J.M.L.; Rojo, T.; Armand, M. All-Solid-State Lithium-Ion Batteries with Grafted Ceramic Nanoparticles Dispersed in Solid Polymer Electrolytes. ChemSusChem 2015, 8, 3039–3043. [Google Scholar] [CrossRef]
- Villaluenga, I.; Bogle, X.; Greenbaum, S.; de Muro, I.G.; Rojo, T.; Armand, M.J. Cation only conduction in new polymer–SiO2 nanohybrids: Na+ electrolytes. Mater. Chem. A 2013, 1, 8348–8352. [Google Scholar] [CrossRef]
- Zhao, H.; Asfour, F.; Fu, Y.; Jia, Z.; Yuan, W.; Bai, Y.; Ling, M.; Hu, H.; Baker, G.; Liu, G. Plasticized Polymer Composite Single-Ion Conductors for Lithium Batteries. ACS Appl. Mater. Interfaces 2015, 7, 19494–19499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porcarelli, L.; Shaplov, A.S.; Bella, F.; Nair, J.R.; Mecerreyes, D.; Gerbaldi, C. Single-Ion Conducting Polymer Electrolytes for Lithium Metal Polymer Batteries that Operate at Ambient Temperature. ACS Energy Lett. 2016, 1, 678–682. [Google Scholar] [CrossRef]
- Schaefer, J.L.; Yanga, D.A.; Archer, L.A. High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites. Chem. Mater. 2013, 25, 834–839. [Google Scholar] [CrossRef]
- Bashiri, P.; Rao, T.P.; Naik, V.M.; Nazri, G.A.; Naik, R. AC conductivity studies of polyethylene oxide-garnet-type Li7La3Zr2O12 hybrid composite solid polymer electrolyte films. Solid State Ion. 2019, 343, 115089. [Google Scholar] [CrossRef]
- Brogioli, D.; Langer, F.; Kun, R.; la Mantia, F. Space-Charge Effects at the Li7La3Zr2O12/Poly(ethylene oxide) Interface. ACS Appl. Mater. Interfaces 2019, 11, 11999–12007. [Google Scholar] [CrossRef]
- Choi, J.-H.; Lee, C.-H.; Yu, J.-H.; Doh, C.-H.; Lee, S.-M. Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. J. Power Sources 2015, 274, 458–463. [Google Scholar] [CrossRef]
- He, K.; Chen, C.; Fan, R.; Liu, C.; Liao, C.; Xu, Y.; Tang, J.; Li, R.K.Y. Polyethylene oxide/garnet-type Li6.4La3Zr1.4Nb0.6O12 composite electrolytes with improved electrochemical performance for solid state lithium rechargeable batteries. Compos. Sci. Technol. 2019, 175, 28–34. [Google Scholar] [CrossRef]
- Huang, Y.; Ma, M.; Guo, Y.J. Melt crystallization and segmental dynamics of poly(ethylene oxide) confined in a solid electrolyte composite. Polym. Sci. 2020, 58, 466–477. [Google Scholar] [CrossRef]
- Langer, F.; Kun, R.; Schwenzel, J. Li7La3Zr2O12 and Poly(Ethylene Oxide) Based Composite Electrolytes; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Langer, F.; Palagonia, M.S.; Bardenhagen, I.; Glenneberg, J.; la Mantia, F.; Kun, R.J. Impedance Spectroscopy Analysis of the Lithium Ion Transport through the Li7La3Zr2O12/P(EO)20Li Interface. Electrochem. Soc. 2017, 164, A2298–A2303. [Google Scholar] [CrossRef]
- Li, Z.; Huang, H.M.; Zhu, J.K.; Wu, J.F.; Yang, H.; Wei, L.; Guo, X. Ionic Conduction in Composite Polymer Electrolytes: Case of PEO:Ga-LLZO Composites. ACS Appl. Mater. Interfaces 2019, 11, 784–791. [Google Scholar] [CrossRef]
- Samsinger, R.F.; Schopf, S.O.; Schuhmacher, J.; Treis, P.; Schneider, M.; Roters, A.; Kwade, A.J. Influence of the Processing on the Ionic Conductivity of Solid-State Hybrid Electrolytes Based on Glass-Ceramic Particles Dispersed in PEO with LiTFSI. Electrochem. Soc. 2020, 167, 120538. [Google Scholar] [CrossRef]
- Zaman, W.; Hortance, N.; Dixit, M.B.; de Andrade, V.; Hatzell, K.B. Visualizing percolation and ion transport in hybrid solid electrolytes for Li–metal batteries. J. Mater. Chem. A 2019, 7, 23914–23921. [Google Scholar] [CrossRef]
- Zheng, J.; Dang, H.; Feng, X.; Chien, P.-H.; Hu, Y.-Y. Li-ion transport in a representative ceramic–polymer–plasticizer composite electrolyte: Li7La3Zr2O12–polyethylene oxide–tetraethylene glycol dimethyl ether. J. Mater. Chem. A 2017, 5, 18457–18463. [Google Scholar] [CrossRef]
- Zheng, J.; Tang, M.; Hu, Y.-Y. Lithium Ion Pathway within Li7La3Zr2O12-Polyethylene Oxide Composite Electrolytes. Angew. Chem. Int. Ed. 2016, 55, 12538–12542. [Google Scholar] [CrossRef] [PubMed]
- Bernuy-Lopez, C.; Manalastas, W.; del Amo, J.M.L.; Aguadero, A.; Aguesse, F.; Kilner, J.A. Atmosphere Controlled Processing of Ga-Substituted Garnets for High Li-Ion Conductivity Ceramics. Chem. Mater. 2014, 26, 3610–3617. [Google Scholar] [CrossRef]
- Li, Y.; Han, J.-T.; Wang, C.-A.; Xie, H.; Goodenough, J.B. Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem. 2012, 22, 15357–15361. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, K.; Chen, T.; Zhang, X.; Armand, M.; Chen, S. Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces. Energy Storage Mater. 2020, 31, 401–433. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, K.; Wen, Y.; Kong, Y.; Wen, Y.; Zhang, Q.; Liu, N.; Li, J.; Ma, C.; Du, Y. Advances in solid lithium ion electrolyte based on the composites of polymer and LLTO/LLZO of rare earth oxides. Eng. Rep. 2022, 4, e12448. [Google Scholar] [CrossRef]
- Queffelec, C.; Petit, M.; Janvier, P.; Knight, D.A.; Bujoli, B. Surface modification using phosphonic acids and esters. Chem. Rev. 2012, 112, 3777–3807. [Google Scholar] [CrossRef]
- Rettenwander, D.; Wagner, R.; Reyer, A.; Bonta, M.; Cheng, L.; Doeff, M.M.; Limbeck, A.; Wilkening, M.; Amthauer, G. A Synthesis and Crystal Chemical Study of the Fast Ion Conductor Li7–3xGaxLa3Zr2O12 with x = 0.08 to 0.84. J. Phys. Chem. C 2018, 122, 3780–3785. [Google Scholar] [CrossRef]
- Bruce, P.G.; Vincent, C.A. Steady state current flow in solid binary electrolyte cells. J. Electroanal. Chem. Interf. Electrochem. 1987, 225, 1–17. [Google Scholar] [CrossRef]
- Buannic, L.; Orayech, B.; del Amo, J.-M.L.; Carrasco, J.; Katcho, N.A.; Aguesse, F.; Manalastas, W.; Zhang, W.; Kilner, J.; Llordés, A. Dual Substitution Strategy to Enhance Li+ Ionic Conductivity in Li7La3Zr2O12 Solid Electrolyte. Chem. Mater. 2017, 29, 1769–1778. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranque, P.; Zagórski, J.; Accardo, G.; Orue Mendizabal, A.; López del Amo, J.M.; Boaretto, N.; Martinez-Ibañez, M.; Arrou-Vignod, H.; Aguesse, F.; Armand, M.; et al. Enhancing the Performance of Ceramic-Rich Polymer Composite Electrolytes Using Polymer Grafted LLZO. Inorganics 2022, 10, 81. https://doi.org/10.3390/inorganics10060081
Ranque P, Zagórski J, Accardo G, Orue Mendizabal A, López del Amo JM, Boaretto N, Martinez-Ibañez M, Arrou-Vignod H, Aguesse F, Armand M, et al. Enhancing the Performance of Ceramic-Rich Polymer Composite Electrolytes Using Polymer Grafted LLZO. Inorganics. 2022; 10(6):81. https://doi.org/10.3390/inorganics10060081
Chicago/Turabian StyleRanque, Pierre, Jakub Zagórski, Grazia Accardo, Ander Orue Mendizabal, Juan Miguel López del Amo, Nicola Boaretto, Maria Martinez-Ibañez, Hugo Arrou-Vignod, Frederic Aguesse, Michel Armand, and et al. 2022. "Enhancing the Performance of Ceramic-Rich Polymer Composite Electrolytes Using Polymer Grafted LLZO" Inorganics 10, no. 6: 81. https://doi.org/10.3390/inorganics10060081
APA StyleRanque, P., Zagórski, J., Accardo, G., Orue Mendizabal, A., López del Amo, J. M., Boaretto, N., Martinez-Ibañez, M., Arrou-Vignod, H., Aguesse, F., Armand, M., & Devaraj, S. (2022). Enhancing the Performance of Ceramic-Rich Polymer Composite Electrolytes Using Polymer Grafted LLZO. Inorganics, 10(6), 81. https://doi.org/10.3390/inorganics10060081