Facile Construction of Bi2Sn2O7/g-C3N4 Heterojunction with Enhanced Photocatalytic Degradation of Norfloxacin
Abstract
:1. Introduction
2. Results and Discussion
2.1. XRD Analysis
2.2. FTIR Analysis
2.3. XPS Analysis
2.4. SEM and TEM Analysis
2.5. UV–Vis DRS Analysis
2.6. PL Analysis
2.7. Photocatalytic Performance
Sample Name | Degradation (%) | K (min−1) | R2 |
---|---|---|---|
BSO | 40% | 0.00325 | 0.95248 |
CN | 31% | 0.00216 | 0.9814 |
10BSCN | 78% | 0.00703 | 0.98684 |
20BSCN | 94% | 0.01261 | 0.96041 |
30BSCN | 70% | 0.0068 | 0.98331 |
40BSCN | 87% | 0.00997 | 0.97395 |
50BSCN | 85% | 0.00932 | 0.98105 |
Sample Name | Degradation | Time | Light Source | Target | Reference |
---|---|---|---|---|---|
CeO2/g-C3N4 | 88.6% | 60 min | Visible light | Norfloxacin | [41] |
NiWO4/g-C3N4 | 97% | 60 min | Visible light | Norfloxacin | [42] |
LaNiO3/g-C3N4 | 96% | 300 min | Visible light | Tetracycline | [43] |
TiO2/g-C3N4 | 99.4% | 120 min | Visible light | Tetracycline | [44] |
ZnIn2S4/g-C3N4 | 98% | 300 min | Visible light | Metronidazole | [45] |
BiOCl/g-C3N4 | 95% | 180 min | Visible light | Metronidazole | [46] |
Bi2Sn2O7/g-C3N4 | 94% | 180 min | Visible light | Norfloxacin | This work |
2.8. Possible Mechanism
3. Materials and Methods
3.1. Materials
3.2. Preparation of g-C3N4 Photocatalyst
3.3. Synthesis of Bi2Sn2O7 Photocatalyst
3.4. Fabrication of Bi2Sn2O7/g-C3N4 Heterojunction Photocatalysts
3.5. Characterization
3.6. Photocatalytic Activity and Stability Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, K.; Li, Y.; Zhang, G.; Li, J.; Wu, X. 0D Bi Nanodots/2D Bi3NbO7 Nanosheets Heterojunctions for Efficient Visible Light Photocatalytic Degradation of Antibiotics: Enhanced Molecular Oxygen Activation and Mechanism Insight. Appl. Catal. B Environ. 2019, 240, 39–49. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, M.; Xin, Y.; Chai, C.; Chen, Q. Construction of Immobilized CuS/TiO2 Nanobelts Heterojunction Photocatalyst for Photocatalytic Degradation of Enrofloxacin: Synthesis, Characterization, Influencing Factors and Mechanism Insight. J. Chem. Technol. Biotechnol. 2019, 94, 2219–2228. [Google Scholar] [CrossRef]
- Xu, M.; Wang, Y.; Ha, E.; Zhang, H.; Li, C. Reduced Graphene Oxide/Bi4O5Br2 Nanocomposite with Synergetic Effects on Improving Adsorption and Photocatalytic Activity for the Degradation of Antibiotics. Chemosphere 2021, 265, 129013. [Google Scholar] [CrossRef]
- Kumar, R.; Barakat, M.A.; Al-Mur, B.A.; Alseroury, F.A.; Eniola, J.O. Photocatalytic Degradation of Cefoxitin Sodium Antibiotic Using Novel BN/CdAl2O4 Composite. J. Clean. Prod. 2020, 246, 119076. [Google Scholar] [CrossRef]
- Kamranifar, M.; Allahresani, A.; Naghizadeh, A. Synthesis and Characterizations of a Novel CoFe2O4@CuS Magnetic Nanocomposite and Investigation of Its Efficiency for Photocatalytic Degradation of Penicillin G Antibiotic in Simulated Wastewater. J. Hazard. Mater. 2019, 366, 545–555. [Google Scholar] [CrossRef]
- Li, J.; Fang, W.; Yu, C.; Zhou, W.; Zhu, L.; Xie, Y. Ag-Based Semiconductor Photocatalysts in Environmental Purification. Appl. Surf. Sci. 2015, 358, 46–56. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Khan, S.; Takagi, K.; Suzuki, N.; Teshima, K.; Terashima, C.; Fujishima, A. Photocatalytic Degradation of Bisphenol A Using Titanium Dioxide@nanodiamond Composites under UV Light Illumination. J. Colloid Interface Sci. 2021, 582, 1058–1066. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, G.; Li, J.; Wang, K. Novel Three-Dimensional Flowerlike BiOBr/Bi2SiO5 p-n Heterostructured Nanocomposite for Degradation of Tetracycline: Enhanced Visible Light Photocatalytic Activity and Mechanism. ACS Sustain. Chem. Eng. 2018, 6, 14221–14229. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Z.; Kong, X.; He, F.; Zhao, R.; Wu, R.; Wei, T.; Wang, L.; Feng, J. A Novel P-N Heterojunction with Staggered Energy Level Based on ZnFe2O4 Decorating SnS2 Nanosheet for Efficient Photocatalytic Degradation. Appl. Surf. Sci. 2020, 510, 145442. [Google Scholar] [CrossRef]
- Wan, H.; Yao, W.; Zhu, W.; Tang, Y.; Ge, H.; Shi, X.; Duan, T. Fe-N Co-Doped SiO2 @TiO2 Yolk-Shell Hollow Nanospheres with Enhanced Visible Light Photocatalytic Degradation. Appl. Surf. Sci. 2018, 444, 355–363. [Google Scholar] [CrossRef]
- Santos, L.M.M.; Nascimento, M.M.; dos Santos Borges, S.; Bomfim, E.; de Jesus Macedo, V.; Silva, L.A. Green Photocatalytic Remediation of Fenthion Using Composites with Natural Red Clay and Non-Toxic Metal Oxides with Visible Light Irradiation. Environ. Technol. 2021. Online ahead of print. [Google Scholar] [CrossRef]
- Jalalah, M.; Faisal, M.; Bouzid, H.; Park, J.G.; Al-Sayari, S.A.; Ismail, A.A. Comparative Study on Photocatalytic Performances of Crystalline α- and β-Bi2O3 Nanoparticles under Visible Light. J. Ind. Eng. Chem. 2015, 30, 183–189. [Google Scholar] [CrossRef]
- Liang, Q.; Jin, J.; Liu, C.; Xu, S.; Li, Z. Constructing a Novel P-n Heterojunction Photocatalyst LaFeO3/g-C3N4 with Enhanced Visible-Light-Driven Photocatalytic Activity. J. Alloys Compd. 2017, 709, 542–548. [Google Scholar] [CrossRef]
- Huang, Y.; Kang, S.; Yang, Y.; Qin, H.; Ni, Z.; Yang, S.; Li, X. Facile Synthesis of Bi/Bi2WO6 Nanocomposite with Enhanced Photocatalytic Activity under Visible Light. Appl. Catal. B Environ. 2016, 196, 89–99. [Google Scholar] [CrossRef]
- Zhao, W.; Feng, Y.; Huang, H.; Zhou, P.; Li, J.; Zhang, L.; Dai, B.; Xu, J.; Zhu, F.; Sheng, N.; et al. A Novel Z-Scheme Ag3VO4/BiVO4 Heterojunction Photocatalyst: Study on the Excellent Photocatalytic Performance and Photocatalytic Mechanism. Appl. Catal. B Environ. 2019, 245, 448–458. [Google Scholar] [CrossRef]
- Song, T.; Yu, X.; Tian, N.; Huang, H. wei Preparation, Structure and Application of g-C3N4/BiOX Composite Photocatalyst. Int. J. Hydrogen Energy 2021, 46, 1857–1878. [Google Scholar] [CrossRef]
- Han, C.; Su, P.; Tan, B.; Ma, X.; Lv, H.; Huang, C.; Wang, P.; Tong, Z.; Li, G.; Huang, Y.; et al. Defective Ultra-Thin Two-Dimensional g-C3N4 Photocatalyst for Enhanced Photocatalytic H2 Evolution Activity. J. Colloid Interface Sci. 2021, 581, 159–166. [Google Scholar] [CrossRef]
- Feng, D.; Cheng, Y.; He, J.; Zheng, L.; Shao, D.; Wang, W.; Wang, W.; Lu, F.; Dong, H.; Liu, H.; et al. Enhanced Photocatalytic Activities of g-C3N4 with Large Specific Surface Area via a Facile One-Step Synthesis Process. Carbon 2017, 125, 454–463. [Google Scholar] [CrossRef]
- Sun, Y.; Qi, X.; Li, R.; Xie, Y.; Tang, Q.; Ren, B. Hydrothermal Synthesis of 2D/2D BiOCl/g-C3N4 Z-Scheme: For TC Degradation and Antimicrobial Activity Evaluation. Opt. Mater. 2020, 108, 110170. [Google Scholar] [CrossRef]
- Hu, K.; Li, R.; Ye, C.; Wang, A.; Wei, W.; Hu, D.; Qiu, R.; Yan, K. Facile Synthesis of Z-Scheme Composite of TiO2 Nanorod/g-C3N4 Nanosheet Efficient for Photocatalytic Degradation of Ciprofloxacin. J. Clean. Prod. 2020, 253, 120055. [Google Scholar] [CrossRef]
- Zhang, D.; Qi, J.; Ji, H.; Li, S.; Chen, L.; Huang, T.; Xu, C.; Chen, X.; Liu, W. Photocatalytic Degradation of Ofloxacin by Perovskite-Type NaNbO3 Nanorods Modified g-C3N4 Heterojunction under Simulated Solar Light: Theoretical Calculation, Ofloxacin Degradation Pathways and Toxicity Evolution. Chem. Eng. J. 2020, 400, 125918. [Google Scholar] [CrossRef]
- Xu, W.; Fang, J.; Chen, Y.; Lu, S.; Zhou, G.; Zhu, X.; Fang, Z. Novel Heterostructured Bi2S3/Bi2Sn2O7 with Highly Visible Light Photocatalytic Activity for the Removal of Rhodamine B. Mater. Chem. Phys. 2015, 154, 30–37. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, Z.; Hao, J.; Zhang, T.; Sun, Q.; Wang, Y. Boosted Charge Transfer in Dual Z-Scheme BiVO4@ZnIn2S4/Bi2Sn2O7 Heterojunctions: Towards Superior Photocatalytic Properties for Organic Pollutant Degradation. Chemosphere 2021, 276, 130226. [Google Scholar] [CrossRef] [PubMed]
- Elhaddad, E.; Rehman, W.; Waseem, M.; Nawaz, M.; Haq, S.; Guo, C.Y. Fabrication of Highly Efficient Bi2Sn2O7/C3N4 Composite with Enhanced Photocatalytic Activity for Degradation of Organic Pollutants. J. Inorg. Organomet. Polym. Mater. 2021, 31, 172–179. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, J.; Cui, H.; Wang, T. Preparation of Direct Z-Scheme Bi2Sn2O7/g-C3N4 Composite with Enhanced Photocatalytic Performance. J. Photochem. Photobiol. A Chem. 2017, 335, 130–139. [Google Scholar] [CrossRef]
- Heidari, S.; Haghighi, M.; Shabani, M. Ultrasound Assisted Dispersion of Bi2Sn2O7-C3N4 Nanophotocatalyst over Various Amount of Zeolite Y for Enhanced Solar-Light Photocatalytic Degradation of Tetracycline in Aqueous Solution. Ultrason. Sonochem. 2018, 43, 61–72. [Google Scholar] [CrossRef]
- Hu, T.; Dai, K.; Zhang, J.; Zhu, G.; Liang, C. One-Pot Synthesis of Step-Scheme Bi2S3/Porous g-C3N4 Heterostructure for Enhanced Photocatalytic Performance. Mater. Lett. 2019, 257, 126740. [Google Scholar] [CrossRef]
- Wu, J.; Huang, F.; Lü, X.; Chen, P.; Wan, D.; Xu, F. Improved Visible-Light Photocatalysis of Nano-Bi2Sn2O7 with Dispersed s-Bands. J. Mater. Chem. 2011, 21, 3872–3876. [Google Scholar] [CrossRef]
- Miao, X.; Shen, X.; Wu, J.; Ji, Z.; Wang, J.; Kong, L.; Liu, M.; Song, C. Fabrication of an All Solid Z-Scheme Photocatalyst g-C3N4/GO/AgBr with Enhanced Visible Light Photocatalytic Activity. Appl. Catal. A Gen. 2017, 539, 104–113. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Ismail, A.A. Mesoporous BiVO4/2D-g-C3N4 Heterostructures for Superior Visible Light-Driven Photocatalytic Reduction of Hg(II) Ions. Ceram. Int. 2021, 47, 26063–26073. [Google Scholar] [CrossRef]
- Gnanamoorthy, G.; Muthamizh, S.; Sureshbabu, K.; Munusamy, S.; Padmanaban, A.; Kaaviya, A.; Nagarajan, R.; Stephen, A.; Narayanan, V. Photocatalytic Properties of Amine Functionalized Bi2Sn2O7/rGO Nanocomposites. J. Phys. Chem. Solids 2018, 118, 21–31. [Google Scholar] [CrossRef]
- Liu, L.; Qi, Y.; Hu, J.; An, W.; Lin, S.; Liang, Y.; Cui, W. Stable Cu2O@g-C3N4 Core@shell Nanostructures: Efficient Visible-Light Photocatalytic Hydrogen Evolution. Mater. Lett. 2015, 158, 278–281. [Google Scholar] [CrossRef]
- Wang, M.; Zeng, Y.; Dong, G.; Wang, C. Br-Doping of g-C3N4 towards Enhanced Photocatalytic Performance in Cr(VI) Reduction. Chin. J. Catal. 2020, 41, 1498–1510. [Google Scholar] [CrossRef]
- Shi, L.; Wang, F.; Sun, J. The Preparation of Spherical Mesoporous g-C3N4 with Highly Improved Photocatalytic Performance for H2 Production and Rhodamine B Degradation. Mater. Res. Bull. 2019, 113, 115–121. [Google Scholar] [CrossRef]
- Xing, Y.; Que, W.; Yin, X.; He, Z.; Liu, X.; Yang, Y.; Shao, J.; Kong, L.B. In2O3/Bi2Sn2O7 Heterostructured Nanoparticles with Enhanced Photocatalytic Activity. Appl. Surf. Sci. 2016, 387, 36–44. [Google Scholar] [CrossRef]
- Hu, C.; Zhuang, J.; Zhong, L.; Zhong, Y.; Wang, D.; Zhou, H. Significantly Enhanced Photocatalytic Activity of Visible Light Responsive AgBr/Bi2Sn2O7 Heterostructured Composites. Appl. Surf. Sci. 2017, 426, 1173–1181. [Google Scholar] [CrossRef]
- Deng, Y.; Tang, L.; Zeng, G.; Wang, J.; Zhou, Y.; Wang, J.; Tang, J.; Liu, Y.; Peng, B.; Chen, F. Facile Fabrication of a Direct Z-Scheme Ag2CrO4/g-C3N4 Photocatalyst with Enhanced Visible Light Photocatalytic Activity. J. Mol. Catal. A Chem. 2016, 421, 209–221. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, Q.; Tan, K.M.; Wang, F.; Ng, H.Y. Insights into Mechanisms, Kinetics and Pathway of Continuous Visible-Light Photodegradation of PPCPs via Porous g-C3N4 with Highly Dispersed Fe(III) Active Sites. Chem. Eng. J. 2021, 423, 130095. [Google Scholar] [CrossRef]
- Ragupathi, V.; Raja, M.A.; Panigrahi, P.; Ganapathi Subramaniam, N. CuO/g-C3N4 Nanocomposite as Promising Photocatalyst for Photoelectrochemical Water Splitting. Optik 2020, 208, 164569. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, S.; Yu, H.; Quan, X. g-C3N4/TiO2 Hybrid Photocatalyst with Wide Absorption Wavelength Range and Effective Photogenerated Charge Separation. Sep. Purif. Technol. 2012, 99, 50–54. [Google Scholar] [CrossRef]
- Liu, W.; Zhou, J.; Yao, J. Shuttle-like CeO2/g-C3N4 Composite Combined with Persulfate for the Enhanced Photocatalytic Degradation of Norfloxacin under Visible Light. Ecotoxicol. Environ. Saf. 2020, 190, 110062. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi Prabavathi, S.; Muthuraj, V. Superior Visible Light Driven Photocatalytic Degradation of Fluoroquinolone Drug Norfloxacin over Novel NiWO4 Nanorods Anchored on g-C3N4 Nanosheets. Colloids Surf. A Physicochem. Eng. Asp. 2019, 567, 43–54. [Google Scholar]
- Zhou, X.; Chen, Y.; Li, C.; Zhang, L.; Zhang, X.; Ning, X.; Zhan, L.; Luo, J. Construction of LaNiO3 Nanoparticles Modified g-C3N4 Nanosheets for Enhancing Visible Light Photocatalytic Activity towards Tetracycline Degradation. Sep. Purif. Technol. 2019, 211, 179–188. [Google Scholar] [CrossRef]
- Zhang, B.; He, X.; Ma, X.; Chen, Q.; Liu, G.; Zhou, Y.; Ma, D.; Cui, C.; Ma, J.; Xin, Y. In Situ Synthesis of Ultrafine TiO2 Nanoparticles Modified g-C3N4 Heterojunction Photocatalyst with Enhanced Photocatalytic Activity. Sep. Purif. Technol. 2020, 247, 116932. [Google Scholar] [CrossRef]
- Xu, Y.; Yifeng, E.; Wang, G. Controlled Growth of “Cookie-like” ZnIn2S4 Nanoparticles on g-C3N4 for Enhanced Visible Light Photocatalytic Activity. Inorg. Chem. Commun. 2019, 108, 107485. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Fang, F.; Yifeng, E.; Zhao, G. Novel Visible-Light-Induced BiOCl/g-C3N4 Photocatalyst for Efficient Degradation of Metronidazole. Inorg. Chem. Commun. 2021, 132, 108820. [Google Scholar] [CrossRef]
- Gao, Y.; Lin, J.; Zhang, Q.; Yu, H.; Ding, F.; Xu, B.; Sun, Y.; Xu, Z. Facile Synthesis of Heterostructured YVO4/g-C3N4/Ag Photocatalysts with Enhanced Visible-Light Photocatalytic Performance. Appl. Catal. B Environ. 2018, 224, 586–593. [Google Scholar] [CrossRef]
- Pan, T.; Chen, D.; Fang, J.; Wu, K.; Feng, W.; Zhu, X.; Fang, Z. Facile Synthesis of Iron and Cerium Co-Doped g-C3N4 with Synergistic Effect to Enhance Visible-Light Photocatalytic Performance. Mater. Res. Bull. 2020, 125, 110812. [Google Scholar] [CrossRef]
- Zhang, B.; Hu, X.; Liu, E.; Fan, J. Novel S-Scheme 2D/2D BiOBr/g-C3N4 Heterojunctions with Enhanced Photocatalytic Activity. Chin. J. Catal. 2021, 42, 1519–1529. [Google Scholar] [CrossRef]
- Wang, T.; Quan, W.; Jiang, D.; Chen, L.; Li, D.; Meng, S.; Chen, M. Synthesis of Redox-Mediator-Free Direct Z-Scheme AgI/WO3 Nanocomposite Photocatalysts for the Degradation of Tetracycline with Enhanced Photocatalytic Activity. Chem. Eng. J. 2016, 300, 280–290. [Google Scholar] [CrossRef]
- Jiang, E.; Song, N.; Che, G.; Liu, C.; Dong, H.; Yang, L. Construction of a Z-Scheme MoS2/CaTiO3 Heterostructure by the Morphology-Controlled Strategy towards Enhancing Photocatalytic Activity. Chem. Eng. J. 2020, 399, 125721. [Google Scholar] [CrossRef]
- Luo, J.; Ning, X.; Zhan, L.; Zhou, X. Facile Construction of a Fascinating Z-Scheme AgI/Zn3V2O8 Photocatalyst for the Photocatalytic Degradation of Tetracycline under Visible Light Irradiation. Sep. Purif. Technol. 2021, 255, 117691. [Google Scholar] [CrossRef]
- Wei, K.; Wang, B.; Hu, J.; Chen, F.; Hao, Q.; He, G.; Wang, Y.; Li, W.; Liu, J.; He, Q. Photocatalytic Properties of a New Z-Scheme System BaTiO3/In2S3 with a Core-Shell Structure. RSC Adv. 2019, 9, 11377–11384. [Google Scholar] [CrossRef]
- Jiang, D.; Zhu, Y.; Chen, M.; Huang, B.; Zeng, G.; Huang, D.; Song, B.; Qin, L.; Wang, H.; Wei, W. Modified Crystal Structure and Improved Photocatalytic Activity of MIL-53 via Inorganic Acid Modulator. Appl. Catal. B Environ. 2019, 255, 117746. [Google Scholar] [CrossRef]
- Gao, Z.; Yao, B.; Xu, T.; Ma, M. Effect and Study of Reducing Agent NaBH4 on Bi/BiOBr/CdS Photocatalyst. Mater. Lett. 2020, 259, 126874. [Google Scholar] [CrossRef]
- Che, H.; Liu, C.; Hu, W.; Hu, H.; Li, J.; Dou, J.; Shi, W.; Li, C.; Dong, H. NGQD Active Sites as Effective Collectors of Charge Carriers for Improving the Photocatalytic Performance of Z-Scheme g-C3N4/Bi2WO6 Heterojunctions. Catal. Sci. Technol. 2018, 8, 622–631. [Google Scholar] [CrossRef]
- Hao, C.C.; Tang, Y.B.; Shi, W.L.; Chen, F.Y.; Guo, F. Facile Solvothermal Synthesis of a Z-Scheme 0D/3D CeO2/ZnIn2S4 Heterojunction with Enhanced Photocatalytic Performance under Visible Light Irradiation. Chem. Eng. J. 2021, 409, 128168. [Google Scholar] [CrossRef]
- Zhu, Z.; Xia, H.; Wu, R.; Cao, Y.; Li, H. Fabrication of La2O3/g-C3N4 Heterojunction with Enhanced Photocatalytic Performance of Tetracycline Hydrochloride. Crystals 2021, 11, 1349. [Google Scholar] [CrossRef]
- Tian, Q.; Zhuang, J.; Wang, J.; Xie, L.; Liu, P. Novel Photocatalyst, Bi2Sn2O7, for Photooxidation of As(III) under Visible-Light Irradiation. Appl. Catal. A Gen. 2012, 425–426, 74–78. [Google Scholar] [CrossRef]
- Yaghoot-Nezhad, A.; Moradi, M.; Rostami, M.; Danaee, I.; Khosravi-Nikou, M.R. Dual Z-Scheme CuO-ZnO@Graphitic Carbon Nitride Ternary Nanocomposite with Improved Visible Light-Induced Catalytic Activity for Ultrasound-Assisted Photocatalytic Desulfurization. Energy Fuels 2020, 34, 13588–13605. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Xia, H.; Li, H.; Han, S. Facile Construction of Bi2Sn2O7/g-C3N4 Heterojunction with Enhanced Photocatalytic Degradation of Norfloxacin. Inorganics 2022, 10, 131. https://doi.org/10.3390/inorganics10090131
Zhu Z, Xia H, Li H, Han S. Facile Construction of Bi2Sn2O7/g-C3N4 Heterojunction with Enhanced Photocatalytic Degradation of Norfloxacin. Inorganics. 2022; 10(9):131. https://doi.org/10.3390/inorganics10090131
Chicago/Turabian StyleZhu, Zhengru, Haiwen Xia, Hong Li, and Songlin Han. 2022. "Facile Construction of Bi2Sn2O7/g-C3N4 Heterojunction with Enhanced Photocatalytic Degradation of Norfloxacin" Inorganics 10, no. 9: 131. https://doi.org/10.3390/inorganics10090131
APA StyleZhu, Z., Xia, H., Li, H., & Han, S. (2022). Facile Construction of Bi2Sn2O7/g-C3N4 Heterojunction with Enhanced Photocatalytic Degradation of Norfloxacin. Inorganics, 10(9), 131. https://doi.org/10.3390/inorganics10090131