Spectroscopic, Anti-Cancer Activity, and DFT Computational Studies of Pt(II) Complexes with 1-Benzyl-3-phenylthiourea and Phosphine/Diamine Ligands
Abstract
:1. Introduction
2. Results
2.1. Synthesis
2.2. Spectroscopic Investigation
2.2.1. IR Spectra
2.2.2. 1H and 31P-{1H}, 13C-{1H} NMR Spectra
2.2.3. UV–Visible Spectra
2.3. Cytotoxicity of Selective Complexes
- -
- Complex (6) exhibited the highest activity towards MCF-7 cells with an IC50 value of 10.96 ± 1.12 µM, indicating that complex (6) could be used chemotherapeutically.
- -
- Complex (4) revealed moderate activity toward MCF-7 cell lines with an IC50 value of 47.07 ± 1.89 µM.
- -
- The free H2BPT ligand exhibited weak efficacy towards MCF-7 cancer cells with an IC50 value of 78.90 ± 2.87 µM.
- -
- The efficacy of the best-performing complex (6), Pt(BPT)2(Phen) is approaching the common cancer drug Cis-platin.
2.4. Computational Studies
2.4.1. Geometrical and Electronic Properties
2.4.2. NBO Analysis
2.4.3. MEP Analysis
3. Experimental Section
3.1. Synthesis of 1-Benzyl-3-phenylthiourea (H2BPT)
3.2. Synthesis of the Complexes (1–7)
3.3. Molecular Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henderson, W.; Nicholson, B.K.; Dinger, M.B.; Bennett, R.L. Thiourea monoanion and dianion complexes of rhodium (III) and ruthenium (II). Inorg. Chim. Acta 2002, 338, 210–218. [Google Scholar] [CrossRef]
- Elhusseiny, A.F.; Eldissouky, A.; Al-Hamza, A.M.; Hassan, H.H. Metal complexes of the nanosized ligand N-benzoyl-N′-(p-amino phenyl) thiourea: Synthesis, characterization, antimicrobial activity and the metal uptake capacity of its ligating resin. J. Mol. Struct. 2015, 1100, 530–545. [Google Scholar] [CrossRef]
- Beyer, L.; Hoyer, E.; Liebscher, J.; Hartmann, H. Formation of complexes with N-acyl-thioureas. Z. Chem. 1981, 21, 81–91. [Google Scholar] [CrossRef]
- Mühl, P.; Gloe, K.; Dietze, F.; Hoyer, E.; Beyer, L. N-Acyl-thioharnstoffe–effektive Extraktionsmittel für die Flüssig-Flüssig-Extraktion von Metallionen. Z. Chem. 1986, 26, 81–94. [Google Scholar] [CrossRef]
- Koch, K.R. New chemistry with old ligands: N-alkyl-and N, N-dialkyl-N′-acyl (aroyl) thioureas in co-ordination, analytical and process chemistry of the platinum group metals. Coord. Chem. Rev. 2001, 216, 473–488. [Google Scholar] [CrossRef]
- Iliş, M.; Bucos, M.; Dumitraşcu, F.; Cîrcu, V. Mesomorphic behaviour of N-benzoyl-N′-aryl thioureas liquid crystalline compounds. J. Mol. Struct. 2011, 987, 1–6. [Google Scholar] [CrossRef]
- Faihan, A.S.; Al-Jibori, S.A.; Al-Janabi, A.S. Novel base-free dianion complexes of Pt (II) and Pd (II) derived from heterocyclic thiourea and tertiary phosphine ligands. J. Mol. Struct. 2022, 1251, 131966. [Google Scholar] [CrossRef]
- Habtu, M.M.; Bourne, S.A.; Koch, K.R.; Luckay, R.C. Competitive bulk liquid membrane transport and solvent extraction of some transition and post-transition metal ions using acylthiourea ligands as ionophores. New J. Chem. 2006, 30, 1155–1162. [Google Scholar] [CrossRef]
- Yuan, Y.F.; Wang, J.T.; Gimeno, M.C.; Laguna, A.; Jones, P.G. Synthesis and characterisation of copper complexes with N-ferrocenoyl-N′-aryl (alkyl) thioureas. Inorg. Chim. Acta 2001, 324, 309–317. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Wei, T.B.; Xian, L.; Gao, L.M. An efficient synthesis of polymethylene-bis-aroyl thiourea derivatives under the condition of phase-transfer catalysis Phosphoru. Phosphorus Sulphur Silicon Relat. Elem. 2004, 179, 2007–2013. [Google Scholar] [CrossRef]
- Eweis, M.; Elkholy, S.S.; Elsabee, M.Z. Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens. Int. J. Biol. Macromol. 2006, 38, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Selvakumaran, N.; Ng, S.W.; Tiekink, E.R.; Karvembu, R. Versatile coordination behavior of N, N-di (alkyl/aryl)-N′-benzoylthiourea ligands: Synthesis, crystal structure and cytotoxicity of palladium (II) complexes. Inorg. Chim. Acta 2011, 376, 278–284. [Google Scholar] [CrossRef]
- Gunasekaran, N.; Ng, S.W.; Tiekink, E.R.T.; Karvembu, R. Hypodentate coordination of N, N-di (alkyl/aryl)-N′-acylthiourea derivatives in Cu (I) complexes. Polyhedron 2012, 34, 41–45. [Google Scholar] [CrossRef]
- Saeed, S.; Rashid, N.; Jones, P.G.; Ali, M.; Hussain, R. Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents. Eur. J. Med. Chem. 2010, 45, 1323–1331. [Google Scholar] [CrossRef]
- Hochreuther, S.; Puchta, R.; van Eldik, R. Thermodynamic and kinetic studies on novel dinuclear platinum (II) complexes containing bidentate N, N-donor ligands. Inorg. Chem. 2011, 50, 8984–8996. [Google Scholar] [CrossRef]
- Jarzynka, P.; Topolski, A.; Uzarska, M.; Czajkowski, R. New dinuclear platinum complexes. Synthesis and kinetics of chloride substitution by thiourea and glutathione in water–DMF solution. Inorg. Chim. Acta 2014, 413, 60–67. [Google Scholar] [CrossRef]
- Al-Janabi, A.M.; Faihan, A.S.; Al-Mutairi, A.M.; Hatshan, M.R.; Al-Jibori, S.A.; Al-Janabi, A.S. Spectroscopic, biological activity studies, and DFT calculations, of Pd (II) and Pt (II) complexes of 4-Methylene-3-phenyl-3, 4-dihydroquinazoline-2 (1H)-thione. J. Indian Chem. Soc. 2022, 99, 100774. [Google Scholar] [CrossRef]
- Mihai, S.; Negoiu, M. Synthesis Characterization and Antitumor Activity of Platinum (II), Palladium (II), Gold (III), Silver (I), Copper (II), Rhodium (III) and Ruthenium (III) Complexes with N-Antipirine-N’-Benzoylthioureea. Rev. Chim. 2012, 63, 697–702. [Google Scholar]
- Geary, W.J. The use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coord. Chem. Rev. 1971, 7, 81–122. [Google Scholar] [CrossRef]
- Faihan, A.S.; Hatshan, M.R.; Alqahtani, A.S.; Nasr, F.A.; Al-Jibori, S.A.; Al-Janabi, A.S. New divalent metal ion complexes with 1, 8-diaminonapthalene-2-thione: Synthesis, Spectroscopic, anti-bacterial and anticancer activity studies. J. Mol. Struct. 2022, 1247, 131291. [Google Scholar] [CrossRef]
- Al-Mouqdady, O.D.; Al-Janabi, A.S.; Hatshan, M.R.; Al-Jibori, S.A.; Fiahan, A.S.; Wagner, C. Synthesis, characterization, anti-bacterial and anticancer activities of Palladium (II) mixed ligand complexes of 2-mercapto-5-methyl-1, 3, 4-thiadiazole (HmtzS) and phosphines. Crystal structure of [Pd (mtzS) 2 (dppf)]. H2O. EtOH. J. Mol. Struct. 2022, 1264, 133219. [Google Scholar] [CrossRef]
- Al-Mouqdady, O.D.; Hatshan, M.R.; Fiahan, A.S.; Alheety, M.A.; Al-Janabi, A.S. Mercury (II)-complex with 5-methyl-1, 3, 4-thiadiazole-2-thiol: Kinetic studies of hydrogen storage. Int. J. Hydrog. Energy 2022, 47, 24852–24860. [Google Scholar] [CrossRef]
- Jensen, K.A.; Nielsen, P.H. Infrared Spectra of Some Organic Compounds of Group VB Elements. Acta Chem. Scand. 1963, 17, 1875. [Google Scholar] [CrossRef]
- Al-Janabi, A.S.; Al-Samrai, O.A.A.; Yousef, T.A. New palladium (II) complexes with 1-phenyl-1H-tetrazole-5-thiol and diphosphine Synthesis, characterization, biological, theoretical calculations and molecular docking studies. Appl. Organomet. Chem. 2020, 34, e5967. [Google Scholar] [CrossRef]
- Al-Janabi, A.S.; Al-Samra, U.A.A.; Othman, E.A.; Yousef, T.A. Optical properties, structural, and DFT studies of Pd (II) complexes with 1-phenyl-1H-tetrazol-5-thiol, X-ray crystal structure of [Pd (κ1-S-ptt) 2 (κ2-dppe)] complex. Appl. Organomet. Chem. 2020, 34, e5996. [Google Scholar] [CrossRef]
- Al-Jibori, S.A.; Al-Janabi, A.S.; Al-Sahan, S.W.; Wagner, C. Pd (II)-pyrrolidine dithiocarbamate complexes: Synthesis, spectroscopic studies and molecular structure of [Pd (PyDT)(ppy)]. J. Mol. Struct. 2021, 1227, 129524. [Google Scholar] [CrossRef]
- Al-Janabi, A.S.; Kadhim, M.M.; Al-Nassiry, A.I.; Yousef, T.A. Antimicrobial, computational, and molecular docking studies of Zn (II) and Pd (II) complexes derived from piperidine dithiocarbamate. Appl. Organomet. Chem. 2021, 35, e6108. [Google Scholar] [CrossRef]
- Faihan, A.S.; Aziz, N.M.; Ashfaq, M.; Hassan, W.M.; Al-Jibori, S.A.; Al-Janabi, A.S.; Al-barwari, A.S. Synthesis, characterization, and x-ray crystallography of unexpected chloro-substitution on 1-(4-chlorophenyl)-3-phenylthiourea platinum (II) complex with tertiary phosphine ligand. J. Mol. Struct. 2022, 1270, 133985. [Google Scholar] [CrossRef]
- Miessler, G.L.; Donald, T.A. Coordination Chemistry III: Electronic Spectra. In Inorganic Chemistry, 5th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2004; pp. 417–428. [Google Scholar]
- El-Sayed, M.A.A.; El-Husseiny, W.M.; Abdel-Aziz, N.I.; El-Azab, A.S.; Abuelizz, H.A.; Abdel-Aziz, A.A.M. Synthesis and biological evaluation of 2-styrylquinolines as antitumour agents and EGFR kinase inhibitors: Molecular docking study. J. Enzym. Inhib. Med. Chem. 2018, 33, 199–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faihan, A.S.; Al-Jibori, S.A.; Hatshan, M.R.; Al-Janabi, A.S. Antibacterial, spectroscopic and X-ray crystallography of newly prepared heterocyclic thiourea dianion platinum (II) complexes with tertiary phosphine ligands. Polyhedron 2022, 212, 115602. [Google Scholar] [CrossRef]
- Appleton, T.G.; Clark, H.C.; Manzer, L.E. The trans-influence: Its measurement and significance. Coord. Chem. Rev. 1973, 10, 335–422. [Google Scholar] [CrossRef]
- Faihan, A.S.; Hatshan, M.R.; Kadhim, M.M.; Alqahtani, A.S.; Nasr, F.A.; Saleh, A.M.; Al-Janabi, A.S. Promising bio-active complexes of platinum (II) and palladium (II) derived from heterocyclic thiourea: Synthesis, characterization, DFT, molecular docking, and anti-cancer studies. J. Mol. Struct. 2022, 1252, 132198. [Google Scholar] [CrossRef]
- Al-Jibori, S.A.; Dayaaf, N.A.; Mohammed, M.Y.; Merzweiler, K.; Wagner, C.; Hogarth, G.; Richmond, M.G. cis–trans Isomerism at Square-Planar MN2S2 Centers (M = Pd, Pt): Crystal Structures of N-Phenyl-N-(2-thiazoyl) thiourea Complexes trans-Pd (S2N3C10H8) 2 and cis-Pt (S2N3C10H8) 2 and Density Functional Calculations. J. Chem. Crystallogr. 2013, 43, 365–372. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Fox, Gaussian 09 Rev. E.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Glendening, E.D.; Landis, C.R.; Weinhold, F. NBO 6.0: Natural bond orbital analysis program. J. Comput. Chem. 2013, 34, 1429–1437. [Google Scholar] [CrossRef] [PubMed]
- Dennington, R.; Keith, T.; Millam, J. GaussView, Version 5.0; Semichem Inc.: Shawnee Mission, KS, USA, 2016. [Google Scholar]
- Price, J.H.; Williamson, A.N.; Schramm, R.F.; Wayland, B.B. Palladium(II) and Platinum(II) Alkyl Sulfoxide Complexes. Examples of Sulfur-Bonded, Mixed Sulfur and Oxygen-Bonded, and Totally Oxygen-Bonded Complexes. Inorg. Chem. 1972, 11, 1280–1284. [Google Scholar] [CrossRef]
- Abdullah, B.H.; Abdulla, M.A.; Al-Jibori, S.A.; Al-Allaf, T.A.K. Platinum(II) Linkage Isomeric Complexes Containing Mixed Ligands 4,5-diphenyl-1,2,4-triazole-3-thione and Diphosphines Ph2P(CH2)nPPh2 (n = 1,2 or 3). Asian J. Chem. 2007, 19, 1334. [Google Scholar]
No. | Complexes | Color | Yield (%) | m.p. (°C) | ΛM (ohm−1·cm2·mole−1) | Elemental Analysis (%) Found (Calc.) | ||
---|---|---|---|---|---|---|---|---|
C | H | N | ||||||
H2BPT | white | 90 | 167–169 | 69.39(69.20) | 5.82(5.89) | 11.56(11.68) | ||
1. | [Pt(BPT)(dppe)] | off-white | 64 | 290–295 | 1.3 | 57.62(57.92) | 4.35(4.61) | 3.36(3.40) |
2. | [Pt(BPT)(dppp)] | yellow | 72 | 220–223 | 4.5 | 58.08(57.93) | 4.52(4.47) | 3.30(3.42) |
3. | [Pt(BPT)(dppb)] | yellow | 78 | 271–273 | 6.3 | 58.53(58.67) | 4.68(4.59) | 3.25(3.37) |
4. | [Pt(BPT)(dppf)] | yellow | 70 | 245–248 | 11.5 | 58.25(58.35) | 4.07(4.30) | 2.83(3.08) |
5. | [Pt(BPT)(PPh3)2] | Yellow | 72 | 210–212 | 3.4 | 62.56(62.74) | 4.41(4.70) | 2.92(3.11) |
6. | [Pt(BPT)2(Phen)] | Brown | 72 | 208–211 | 2.6 | 56.00(55.86) | 3.99(4.08) | 9.80(9.91) |
7. | [Pt(BPT)2(Bipy)] | Brown-red | 80 | 214–217 | 6.9 | 54.73(54.88) | 4.11(4.22) | 10.08(10.23) |
Compounds | υ (N–H) | υ (C–H) Aromatic | υ (C–H) Aliphatic | υ (S–C=N) | υ (C–S) | Phosphine | ||
---|---|---|---|---|---|---|---|---|
υ (P–C) Bending | υ (P–C) | υ (P–Ph) | ||||||
H2BPT | 3149 3363 | 3060 | 2974 | 1450 | 842 | -------- | -------- | ------- |
1 | ------ | 3053 | 2924 | 1541 | 746 | 534 | 1103 | 1435 |
2 | ------ | 3051 | 2922 | 1546 | 746 | 511 | 1101 | 1433 |
3 | ------ | 3053 | 2928 | 1566 | 742 | 505 | 1099 | 1433 |
4 | ------ | 3053 | 2916 | 1566 | 744 | 563 | 1099 | 1435 |
5 | ------ | 3053 | 2922 | 1541 | 744 | 545 | 1095 | 1433 |
6 | 3147 | 3030 | 2976 | 1539 | 738 | ----- | ----- | ----- |
7 | 3153 | 3049 | 2916 | 1541 | 761 | ----- | ----- | ----- |
Comps. | Chemical Shifts δ (ppm) |
---|---|
H2BPT | 1H NMR: 4.74 (d, 2H, CH2), 7.118 (t, 1H, JHH = 6.78 Hz), 7.258–7.439 (m, 9H, H-Phenyl), 8.16 (s, 1H, NH), 9.63 (s, 1H, NH). |
13C-{1H}NMR: 185.01(C=S), (146.92, 133.68, 132.41, 131.04, 130.08, 129.34, 128.83, 122.36) aromatic carbons, 55.63 (NH-CH2-) | |
1 | 31P-{1H}NMR: PA = 49.88 (d, 2JPA-PX) = 5,7 HZ, JPt-PA = 5386 HZ), δPA = 43.26 (d, 2JPA-PX) = 5.7 HZ, JPt-PA = 2884 HZ) |
1H NMR: 2.48 (s, 4H, 2CH2-dppe), 7.08–7.83 (m, 20H, H-Phenyl), 4.72 (s, 2H, CH2). | |
13C-{1H}NMR: 178.64(C=S), (147.98, 144.14, 139.87, 135.56, 134.45, 133.13, 132.19, 130.90, 129.77, 129.30, 129.20, 128.30) aromatic carbons, 53.98 (NH-CH2-), 31.23 (CH2-dppe) | |
2 | 31P-{1H}NMR: δPA = 1.205 (d, 2J(PA-PX) = 32.4 HZ, JPt-PA = 7244 HZ), δPX = −5.76 [d, 2J(PX-PA) = 32.4 HZ, JPt-PX = 9769 HZ) |
1H NMR: 1.71 (m, 2H, CH2-dppp), 2.82 (m, 4H, CH2-dppp), 4.73 (s, 2H, CH2), 7.07–7.74 (m, 30 H, H-Phenyl). | |
13C-{1H}NMR: 172.63(C=S), (147.24, 142.07, 135.16, 134.63, 133.71, 132.44, 131.07, 131.03, 131.00, 129.80, 129.42, 129.33, 128.65, 125.61, 123.38) aromatic carbons, 49.78 (NH-CH2-), 31.23 (PCH2-dppp), 19.09 (CH2-dppp) | |
3 | 31P-{1H}NMR: δPA = 15.15 (d, 2J(PA-PX) = 24.8 HZ, JPt-PA = 6383 HZ), δPX = 11.22 [d,2J(PX-PA) = 24.8 HZ, JPt-PX = 6488 HZ) |
1H NMR: 2.59 (s, 4H, 2CH2–dppb), 3.04 (s, 4H, 2CH2–dppb), 4.70 (s, 2H, CH2), 7.29–7.67 (m, 30H, H-Phenyl). | |
4 | 31P-{1H}NMR: δPA = 18.035 (d, 2J(PA-PX) = 21.01 HZ, JPt-PA = 7764 HZ), δPX = 13.505 [d, 2J(PX-PA) = 21.01 HZ, JPt-PX = 3191 HZ) |
1H NMR: 4.08 (s, 4H, Cp), 4.28 (s, 4H, CP), 4.73 (s, 2H, CH2), 6.60–7.32 (m, 30H, H-Phenyl) | |
5 | 31P-{1H}NMR: δPA = 29.99 (d, 2J(PA-PX) = 22.9 HZ, JPt-PA = 2314 HZ), δPX = 19.63 [d, 2J(PX-PA) = 22.9 HZ, JPt-PX = 2460 HZ) |
1H NMR: 4.72 (s, 2H, CH2), 6.91–7.72 (m, 40H, H-Phenyl). | |
6 | 1H NMR: 4.70 (s, 2H, CH2), 7.00–7.55 (m, 20H, H-Phenyl), 7.86 (d, 2H, JHH = 6.23 Hz, H-Phen), 8.34 (s, 2H, H-Phen), 8.72 (dd, 2H, JHH = 6.48 Hz, H-Phen), 9.42 (s, 2H, NH), 9.80 (d, 1H, JHH = 7.80 Hz, H-Phen). |
13C-{1H}NMR: 173.36(C=S), 156.81(C=N), (152.07, 144.92, 142.04, 135.85, 133.84, 132.65, 129.96, 128.61, 125.89, 125.06) aromatic carbons, 49.06 (NH-CH2-). | |
7 | 1H NMR: 4.70 (s, 2H, CH2), 7.09–7.45 (m, 20H, H-Phenyl), 7.76 (d, 2H, JHH = 7.80 Hz, H-Bipy), 7.97 (d, 2H, JHH = 7.60 Hz, H-Bipy), 8.19 (t, 2H, JHH = 7.90 Hz, H-Bipy), 8.48 (d, 1H, JHH = 8.00 Hz, H-Bipy), 9.09 (s, 2H, NH). |
13C-{1H}NMR: 174.05(C=S), 155.75(C=N), (146.92, 140.92, 132.41, 131.08, 131.00, 130.08, 129.48, 129.34, 129.30, 128.83, 122.36, 120.21) aromatic carbons, 52.54 (NH-CH2-). |
Complexes | λmax (nm) |
---|---|
1 | 420 |
2 | 446 |
3 | 452 |
4 | 480 |
5 | 475 |
6 | 464 |
7 | 460 |
Pt(II) Complex | IC50 (µM) * |
---|---|
[Pt(BPT)(dppe)] | 78.90 ± 2.87 |
[Pt(BPT)(dppb)] | 47.07 ± 1.89 |
[Pt(BPT)2(Phen)] | 10.96 ± 1.12 |
Cis-platin | 7.96 ± 0.69 |
Complex | N | N | P | P | S | Pt |
---|---|---|---|---|---|---|
(1) | −0.68 1 | −0.55 | +1.02 2 | +0.98 | −0.33 | +0.31 |
(5) | −0.70 1 | −0.55 | +1.01 2 | +0.97 | −0.30 | +0.31 |
(7) | −0.42 1 | −0.63 4 | −0.42 3 | −0.25 5 | −0.26 | +0.53 |
Donor | Type | Acceptor | Type | E(2) | |
---|---|---|---|---|---|
Donation | (LP1)P30 | 57%(s) + 43%(p) | Pt27–S28 | σ* | 159.1 |
(LP2)S28 | 100%(p) | C32–N39 | π* | 17.4 | |
(LP1)P30 | 57%(s) + 43%(p) | Pt27–P25 | σ* | 30.8 | |
(LP1)N39 | 33%(s) + 67%(p) | C32–S28 | σ* | 24.6 | |
(LP1)N40 | 4%(s) + 96%(p) | Pt27–P25 | σ* | 12.9 | |
(LP1)N40 | 4%(s) + 96%(p) | C32–N39 | π* | 52.1 | |
(LP2)N40 | 29%(s) + 71%(p) | Pt27–P25 | σ* | 111.6 | |
Back-Donation | (LP1)Pt27 | 97%(d) | Pt27–P25 | σ* | 23.2 |
(LP1)Pt27 | 97%(d) | Pt27–S28 | σ* | 26.5 |
Donor | Type | Acceptor | Type | E(2) | |
---|---|---|---|---|---|
Donation | (LP2)S65 | 100%(p) | C67–N79 | π* | 18.0 |
(LP1)N66 | 4%(s) + 96%(p) | C67–N79 | π* | 54.8 | |
(LP2)N66 | 31%(s) + 69%(p) | Pt64–P1 | σ* | 112.2 | |
(LP1)N79 | 33%(s) + 67%(p) | C67–S65 | σ* | 24.3 | |
(LP1)P30 | 55%(s) + 45%(p) | Pt64–S65 | σ* | 152.0 | |
Pt64–P1 | Σ | Pt64–S65 | σ* | 22.1 | |
Pt64–S65 | Σ | Pt64–P1 | σ* | 46.8 | |
Back-Donation | (LP1)Pt64 | 4%(s) + 96%(d) | Pt64–P1 | σ* | 26.8 |
(LP1)Pt64 | 4%(s) + 96%(d) | Pt64–S65 | σ* | 28.7 |
Donor | Type | Acceptor | Type | E(2) | |
---|---|---|---|---|---|
Donation | (LP1)N4 | 30%(s) + 70%(p) | Pt21–S22 | σ* | 105.8 |
(LP1)N12 | 30%(s) + 70%(p) | Pt21–S23 | σ* | 108.0 | |
(LP1)N68 | 26%(s) + 74%(p) | C25–N53 | σ* | 20.9 | |
(LP1)N26 | 1%(s) + 99%(p) | C24–N41 | π* | 54.2 | |
(LP1)N41 | 27%(s) + 73%(p) | C24–N26 | σ* | 19.0 | |
(LP1)N53 | 5%(s) + 95%(p) | C25–N68 | π* | 42.2 | |
Back-Donation | (LP1)Pt21 | 6%(s) + 94%(d) | Pt21–S23 | σ* | 10.5 |
(LP1)Pt21 | 6%(s) + 94%(d) | Pt21–S22 | σ* | 10.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, D.S.; Al-Jibori, S.A.; Behjatmanesh-Ardakani, R.; Faihan, A.S.; Yousef, T.A.; Alhamzani, A.G.; Abou-Krisha, M.M.; Al-Janabi, A.S.M.; Hsiao, B.S. Spectroscopic, Anti-Cancer Activity, and DFT Computational Studies of Pt(II) Complexes with 1-Benzyl-3-phenylthiourea and Phosphine/Diamine Ligands. Inorganics 2023, 11, 125. https://doi.org/10.3390/inorganics11030125
Mohamed DS, Al-Jibori SA, Behjatmanesh-Ardakani R, Faihan AS, Yousef TA, Alhamzani AG, Abou-Krisha MM, Al-Janabi ASM, Hsiao BS. Spectroscopic, Anti-Cancer Activity, and DFT Computational Studies of Pt(II) Complexes with 1-Benzyl-3-phenylthiourea and Phosphine/Diamine Ligands. Inorganics. 2023; 11(3):125. https://doi.org/10.3390/inorganics11030125
Chicago/Turabian StyleMohamed, Dina Saadi, Subhi A. Al-Jibori, Reza Behjatmanesh-Ardakani, Ahmed S. Faihan, Tarek A. Yousef, Abdulrahman G. Alhamzani, Mortaga M. Abou-Krisha, Ahmed S. M. Al-Janabi, and Benjamin S. Hsiao. 2023. "Spectroscopic, Anti-Cancer Activity, and DFT Computational Studies of Pt(II) Complexes with 1-Benzyl-3-phenylthiourea and Phosphine/Diamine Ligands" Inorganics 11, no. 3: 125. https://doi.org/10.3390/inorganics11030125
APA StyleMohamed, D. S., Al-Jibori, S. A., Behjatmanesh-Ardakani, R., Faihan, A. S., Yousef, T. A., Alhamzani, A. G., Abou-Krisha, M. M., Al-Janabi, A. S. M., & Hsiao, B. S. (2023). Spectroscopic, Anti-Cancer Activity, and DFT Computational Studies of Pt(II) Complexes with 1-Benzyl-3-phenylthiourea and Phosphine/Diamine Ligands. Inorganics, 11(3), 125. https://doi.org/10.3390/inorganics11030125