Metal Hydride Composite Structures for Improved Heat Transfer and Stability for Hydrogen Storage and Compression Applications
Abstract
:1. Introduction
2. Composite Materials
- High hydrogen permeability.
- High thermal conductivity.
- Certain degree of elasticity to accommodate metal particles expansion/contraction during hydride formation/decomposition.
- Certain degree of mechanical strength to be resistant to mechanical degradation though charging cycles.
- Thermal stability to work within desired temperature interval.
- Absence of chemical interactions with metal/alloy.
2.1. Composites with Expanded Natural Graphite (ENG)
2.2. Composites with Polymers
3. Liquid-State Fabrication Methods to Produce Metal Hydride Composites
3.1. High-Temperature Melt Infiltration to Form Supported Composites
3.2. Low-Temperature Solution Impregnation to Form Supported Composites
3.3. Low-Temperature In-Situ Solution Synthesis to Form Supported Composites
4. Powder-Based Fabrication Methods
4.1. Powder Preparation by Ball Milling
4.2. Polymer Solution Forming (Casting)
4.3. Solid State Compacting
4.4. Solid-State Cold Rolling
4.5. Hot Pressing
4.6. Extrusion
5. Cyclic Stability and Composite Evolution
6. Summary and Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lototkyy, M.V.; Yartys, V.A.; Pollet, B.G.; Bowman, R.C. Metal hydride hydrogen compressors: A review. Int. J. Hydrogen Energy 2014, 39, 5818–5851. [Google Scholar] [CrossRef]
- Züttel, A. Materials for Hydrogen Storage. Mater. Today 2003, 6, 24–33. [Google Scholar] [CrossRef]
- Congdon, J.W. Development of Metal Hydride Composites, DOI Report WSRC-TR-92-594. 1992. Available online: https://www.osti.gov/servlets/purl/144787 (accessed on 5 February 2022).
- Norberg, N.S.; Arthur, T.S.; Fredrick, S.J.; Prieto, A.L. Size-Dependent Hydrogen Storage Properties of Mg Nanocrystals Prepared from Solution. J. Am. Chem. Soc. 2011, 133, 10679–10681. [Google Scholar] [CrossRef]
- Aguey-Zinsou, K.-F.; Ares-Fernández, J.-R. Synthesis of Colloidal Magnesium: A Near Room Temperature Store for Hydrogen. Chem. Mater. 2008, 20, 376–378. [Google Scholar] [CrossRef]
- Li, W.; Li, C.; Ma, H.; Chen, J. Magnesium Nanowires: Enhanced Kinetics for Hydrogen Absorption and Desorption. J. Am. Chem. Soc. 2007, 129, 6710–6711. [Google Scholar] [CrossRef]
- Saita, I.; Toshima, T.; Tanda, S.; Akiyama, T. Hydrogen Storage Property of MgH2 Synthesized by Hydriding Chemical Vapor Deposition. J. Alloys Compd. 2007, 446–447, 80–83. [Google Scholar] [CrossRef]
- Zhu, C.; Hosokai, S.; Matsumoto, I.; Akiyama, T. Shape-Controlled Growth of MgH2/Mg Nano/Microstructures Via Hydriding Chemical Vapor Deposition. Cryst. Growth Des. 2010, 10, 5123–5128. [Google Scholar] [CrossRef]
- Baldi, A.; Dam, B. Thin Film Metal Hydrides for Hydrogen Storage Applications. J. Mater. Chem. 2011, 21, 4021–4026. [Google Scholar] [CrossRef]
- Kim, D.; Kim, J.B.; Lee, J.; Lee, B.J. Measurement of Effective Thermal Conductivity of LaNi5 Powder Packed Bed. Int. J. Heat Mass Transf. 2021, 165, 120735. [Google Scholar] [CrossRef]
- Hahne, E.; Kallweit, J. Thermal Conductivity of Metal Hydride Materials for Storage of Hydrogen: Experimental Investigation. Int. J. Hydrogen Energy 1998, 23, 107–114. [Google Scholar] [CrossRef]
- Abdin, Z.; Webb, C.J.; Gray, E.M. One-Dimensional Metal-Hydride Tank Model and Simulation in Matlab–Simulink. Int. J. Hydrogen Energy 2018, 43, 5048–5067. [Google Scholar] [CrossRef]
- Ron, M.; Gruen, D.; Mendelsohn, M.; Sheet, I. Preparation and Properties of Porous Metal Hydride Compacts. J. Less Common Met. 1980, 74, 445–448. [Google Scholar] [CrossRef]
- Afzal, M.; Mane, R.; Sharma, P. Heat Transfer Techniques in Metal Hydride Hydrogen Storage: A Review. Int. J. Hydrogen Energy 2017, 42, 30661–30682. [Google Scholar] [CrossRef]
- Kim, K.J.; Montoya, B.; Razani, A.; Lee, K.H. Metal Hydride Compacts of Improved Thermal Conductivity. Int. J. Hydrogen Energy 2001, 26, 609–613. [Google Scholar] [CrossRef]
- Park, C.S.; Jung, K.; Jeong, S.U.; Kang, K.S.; Lee, Y.H.; Park, Y.S.; Park, B.H. Development of Hydrogen Storage Reactor Using Composite of Metal Hydride Materials with ENG. Int. J. Hydrogen Energy 2020, 45, 27434–27442. [Google Scholar] [CrossRef]
- Sánchez, A.R.; Klein, H.P.; Groll, M.; Pohlmann, C.; Röntzsch, L.; Kalinichenka, S.; Hutsch, T.; Kieback, B.; Park, C.S.; Jung, K.; et al. Expanded Graphite as Heat Transfer Matrix in Metal Hydride Beds. Int. J. Hydrogen Energy 2003, 28, 515–527. [Google Scholar]
- Pohlmann, C.; Röntzsch, L.; Kalinichenka, S.; Hutsch, T.; Kieback, B. Magnesium Alloy-Graphite Composites with Tailored Heat Conduction Properties for Hydrogen Storage Applications. Int. J. Hydrogen Energy 2010, 35, 12829–12836. [Google Scholar] [CrossRef]
- Wu, C.; Cheng, H.-M. Effects of Carbon on Hydrogen Storage Performances of Hydrides. J. Mater. Chem. 2010, 20, 5390–5400. [Google Scholar] [CrossRef]
- Inoue, S.; Iba, Y.; Matsumura, Y. Drastic Enhancement of Effective Thermal Conductivity of a Metal Hydride Packed Bed by Direct Synthesis of Single-Walled Carbon Nanotubes. Int. J. Hydrogen Energy 2012, 37, 1836–1841. [Google Scholar] [CrossRef]
- Yasuda, N.; Tsuchiya, T.; Okinaka, N.; Akiyama, T. Thermal Conductivity and Cycle Characteristic of Metal Hydride Sheet Formed Using Aramid Pulp and Carbon Fiber. Int. J. Hydrogen Energy 2013, 38, 1657–1661. [Google Scholar] [CrossRef]
- Tokiwa, T.; Iwamoto, T.; Kawaharazaki, Y.; Fujita, Y. Composition Comprising Hydrogen-Absorbing Alloy and Resin. European Patent EP 2110411 A1, 21 December 2016. [Google Scholar]
- Kawaharazaki, Y.; Hayashi, Y. Method for Filling Hydrogen Storage Alloy. U.S. Patent US 2017/0016578 A1, 19 January 2017. [Google Scholar]
- Kim, J.S.; Kim, D.W.; Kim, D.O.; Ahn, G.R.; JeaSung, P.; Jeon, H.J.; Ihm, J.; Cha, M.-H. Scaffold Materials-Transition Metal Hydride Complexes, Intermediates Therefor and Method for Preparing the Same. WO Patent WO2010085108 A2, 29 July 2010. [Google Scholar]
- Gross, A.F.; Vajo, J.J.; Van Atta, S.L.; Olson, G.L. Enhanced Hydrogen Storage Kinetics of LiBH4 in Nanoporous Carbon Scaffolds. J. Phys. Chem. C 2008, 112, 5651–5657. [Google Scholar] [CrossRef]
- Yu, X.; Tang, Z.; Sun, D.; Ouyang, L.; Zhu, M. Recent Advances and Remaining Challenges of Nanostructured Materials for Hydrogen Storage Applications. Prog. Mater. Sci. 2017, 88, 1–48. [Google Scholar] [CrossRef]
- Schneemann, A.; White, J.L.; Kang, S.; Jeong, S.; Wan, L.F.; Cho, E.S.; Heo, T.W.; Prendergast, D.; Urban, J.J.; Wood, B.C.; et al. Nanostructured Metal Hydrides for Hydrogen Storage. Chem. Rev. 2018, 118, 10775–10839. [Google Scholar] [CrossRef]
- Ron, M.; Bershadsky, E.; Josephy, Y. Thermal Conductivity of PMH Compacts, Measurements and Evaluation. Int. J. Hydrogen Energy 1992, 17, 623–630. [Google Scholar] [CrossRef]
- Kane, M. Permeability, Solubility, and Interaction of Hydrogen in Polymers—An Assessment of Materials for Hydrogen Transport; No. WSRC-STI-2008-00009; Washington Savannah River Company: Washington, DC, USA, 2008. [Google Scholar]
- Swapna, V.P.; Abhisha, V.S.; Stephen, R. Polymer/Polyhedral Oligomeric Silsesquioxane Nanocomposite Membranes for Pervaporation. In Polymer Nanocomposite Membranes for Pervaporation; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Sweed, M. Free Volume Properties of Semi-Crystalline Polymers. PhD. Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2011. [Google Scholar]
- Mostafa, N.; Ali, E.H.; Mohsen, M. Dynamic Study of Free Volume Properties in Polyethylene/Styrene Butadiene Rubber Blends by Positron Annihilation Lifetime Method. J. Appl. Polym. Sci. 2009, 113, 3228–3235. [Google Scholar] [CrossRef]
- Petzetakis, N.; Doherty, C.M.; Thornton, A.W.; Chen, X.; Cotanda, P.; Hill, A.J.; Balsara, N.P. Membranes with Artificial Free-Volume for Biofuel Production. Nat. Commun. 2015, 6, 7529. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhou, L.; Wang, X.; He, L.; Yang, X. Effect of Crystallinity of Polyethylene with Different Densities on Breakdown Strength and Conductance Property. Materials 2019, 12, 1746. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, H.; Ono, H.; Ohyama, K.; Kasai, M.; Kaneko, F.; Nishimura, S. Hydrogen Permeation under High Pressure Conditions and the Destruction of Exposed Polyethylene-Property of Polymeric Materials for High-Pressure Hydrogen Devices (2)-. Int. J. Hydrogen Energy 2021, 46, 11832–11848. [Google Scholar] [CrossRef]
- Mascia, L.; Kouparitsas, Y.; Nocita, D.; Bao, X. Antiplasticization of Polymer Materials: Structural Aspects and Effects on Mechanical and Diffusion-Controlled Properties. Polymers 2020, 12, 769. [Google Scholar] [CrossRef]
- Weigelt, F.; Georgopanos, P.; Shishatskiy, S.; Filiz, V.; Brinkmann, T.; Abetz, V. Development and Characterization of Defect-Free Matrimid® Mixed-Matrix Membranes Containing Activated Carbon Particles for Gas Separation. Polymers 2018, 10, 51. [Google Scholar] [CrossRef]
- Checchetto, R.; Carotenuto, G.; Bazzanella, N.; Miotello, A. Synthesis and Characterization of Polymer Embedded LaNi5 Composite Material for Hydrogen Storage. J. Phys. D Appl. Phys. 2007, 40, 4043. [Google Scholar] [CrossRef]
- Gahleitner, M.; Paulik, C. Polypropylene, Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2014; pp. 1–44. [Google Scholar] [CrossRef]
- Cao, R.H.; Wang, T.; Cao, Z.Z.; Cao, J.L.; Cao, J.X. Microenvironment Hydrogen Supplement Breathable Layer and External Application Bag. China Patent CN111481425 A, 4 August 2020. [Google Scholar]
- Zimmermann, J. Composite Hydrogen Storage Material and Methods Related Thereto. Europe Patent EP1874679 A1, 6 June 2013. [Google Scholar]
- Tsaur, G.; Wang, T.H.; Tsaur, F.; Tsaur, N.; Tsaur, E. Microenvironment Hydrogen-Supplying Breathable Layer and Applications Thereof. U.S. Patent US1096959 B2, 30 July 2020. [Google Scholar]
- Checchetto, R.; Bazzanella, N.; Miotello, A.; Carotenuto, G.; Nicolais, L. Hydrogen Sorption in Metal-Polymer Composites: The Role of Interfaces. J. Appl. Phys. 2009, 105, 83513. [Google Scholar] [CrossRef]
- Bennington, S.; McGrady, S.; Royse, D.; Lovell, A.; Mooring, L.; Headen, T. A Hydrogen Storage Pellet. Europe Patent EP2935092 A1, 21 December 2012. [Google Scholar]
- Polymer Database. Available online: https://www.polymerdatabase.com/ (accessed on 10 December 2022).
- Allen, G.; Bevington, J.C. (Eds.) Comprehensive Polymer Science and Supplements; Elsevier: Amsterdam, The Netherlands, 1996; pp. 175–189. ISBN 978-0-08-096701-1. [Google Scholar]
- Merkel, T.C.; Bondar, V.I.; Nagai, K.; Freeman, B.D.; Pinnau, I. Gas Sorption, Diffusion, and Permeation in Poly (Dimethylsiloxane). J. Polym. Sci. Part B Polym. Phys. 2000, 38, 415–434. [Google Scholar] [CrossRef]
- Komatsuka, T.; Nagai, K. Temperature Dependence on Gas Permeability and Permselectivity of Poly (Lactic Acid) Blend Membranes. Polym. J. 2009, 41, 455–458. [Google Scholar] [CrossRef]
- Kanesugi, H.; Ohyama, K.; Fujiwara, H.; Nishimura, S. High-Pressure Hydrogen Permeability Model for Crystalline Polymers. Int. J. Hydrogen Energy 2023, 48, 723–739. [Google Scholar] [CrossRef]
- Sivasubramanian, P.; Pariyadath, N. Medium for the Stabilisation and Utility of Volatile or Liquid Hydrides of Boron. U.S. Patent US 8802769 B2, 12 August 2014. [Google Scholar]
- Cao, H.; Georgopanos, P.; Capurso, G.; Pistidda, C.; Weigelt, F.; Chaudhary, A.-L.; Filiz, V.; Tseng, J.-C.; Wharmby, M.T.; Dornheim, M.; et al. Air-stable metal hydride-polymer composites of Mg(NH2)2—LiH and TPX™. Mater. Today Energy 2018, 10, 98–107. [Google Scholar] [CrossRef]
- Le, T.T.; Pistidda, C.; Abetz, C.; Georgopanos, P.; Garroni, S.; Capurso, G.; Milanese, C.; Puszkiel, J.; Dornheim, M.; Abetz, V. Enhanced Stability of Li-RHC Embedded in an Adaptive TPXTM Polymer Scaffold. Materials 2020, 13, 991. [Google Scholar] [CrossRef]
- Hearley, A.K.; Redmond, S.D. Solid-State Hydrogen Storage Systems. U.S. Patent US20040213998 A1, 28 October 2004. [Google Scholar]
- Kim, K.C.; Dai, B.; Johnson, J.K.; Sholl, D.S. Assessing Nanoparticle Size Effects on Metal Hydride Thermodynamics Using the Wulff Construction. Nanotechnology 2009, 20, 204001. [Google Scholar] [CrossRef]
- Rafatnejad, M.; Raygan, S.; Sefidmooy Azar, M. Investigation of Dehydrogenation Performance and Air Stability of MgH2–PMMA Nanostructured Composite Prepared by Direct High-Energy Ball-Milling. Mater. Renew. Sustain. Energy 2020, 9, 14. [Google Scholar] [CrossRef]
- Wilkes, C.E.; James, J.W.; Daniel, C.A.; Berard, M.T. (Eds.) PVC Handbook; Hanser Verlag: Munich, Germany, 2005; ISBN 978-1-56990-379-7. [Google Scholar]
- Matsuda, T.; Shimomura, T.; Hirami, M. Crystallization and Melting of Binary Mixtures of Nylon 6 and Nylon 66. A Study by DSC. Polym. J. 1999, 31, 795–800. [Google Scholar] [CrossRef]
- Klein, H.-P.; Groll, M. Heat Transfer Characteristics of Expanded Graphite Matrices in Metal Hydride Beds. Int. J. Hydrogen Energy 2004, 29, 1503–1511. [Google Scholar] [CrossRef]
- Pohlmann, C.; Röntzsch, L.; Heubner, F.; Weißgärber, T.; Kieback, B. Solid-State Hydrogen Storage in Hydralloy-Graphite Composites. J. Power Sources 2013, 231, 97–105. [Google Scholar] [CrossRef]
- Yan, M.Y.; Sun, F.; Liu, X.P.; Ye, J.H. Effects of Compaction Pressure and Graphite Content on Hydrogen Storage Properties of Mg(NH2)2-2LiH Hydride. Int. J. Hydrogen Energy 2014, 39, 19656–19661. [Google Scholar] [CrossRef]
- Kubo, K.; Kawaharazaki, Y.; Itoh, H. Development of Large MH Tank System for Renewable Energy Storage. Int. J. Hydrogen Energy 2017, 42, 22475–22479. [Google Scholar] [CrossRef]
- Watanabe, F.; Ikai, C.; Hasatanti, M.; Marumo, C. Hydration Characteristics of Metal Hydride Fixed in Resin Form. J. Chem. Eng. Japan 1992, 25, 1–5. [Google Scholar] [CrossRef]
- Sitthiwet, C.; Thiangviriya, S.; Thaweelap, N.; Meethom, S.; Kaewsuwan, D.; Chanlek, N.; Utke, R. Hydrogen Sorption and Permeability of Compacted LiBH4 Nanoconfined into Activated Carbon Nanofibers Impregnated with TiO2. J. Phys. Chem. Solids 2017, 110, 344–353. [Google Scholar] [CrossRef]
- De Jongh, P.E.; Eggenhuisen, T.M. Melt Infiltration: An Emerging Technique for the Preparation of Novel Functional Nanostructured Materials. Adv. Mater. 2013, 25, 6672–6690. [Google Scholar] [CrossRef]
- Adelhelm, P.; De Jongh, P.E. The Impact of Carbon Materials on the Hydrogen Storage Properties of Light Metal Hydrides. J. Mater. Chem. 2011, 21, 2417–2427. [Google Scholar] [CrossRef]
- De Jongh, P.E.; Wagemans, R.W.P.; Eggenhuisen, T.M.; Dauvillier, B.S.; Radstake, P.B.; Meeldijk, J.D.; Geus, J.W.; de Jong, K.P. The Preparation of Carbon-Supported Magnesium Nanoparticles Using Melt Infiltration. Chem. Mater. 2007, 19, 6052–6057. [Google Scholar] [CrossRef]
- Cahen, S.; Eymery, J.-B.; Janot, R.; Tarascon, J.-M. Improvement of the LiBH4 Hydrogen Desorption by Inclusion into Mesoporous Carbons. J. Power Sources 2009, 189, 902–908. [Google Scholar] [CrossRef]
- Zhao-Karger, Z.; Hu, J.; Roth, A.; Wang, D.; Kübel, C.; Lohstroh, W.; Fichtner, M. Altered Thermodynamic and Kinetic Properties of MgH2 Infiltrated in Microporous Scaffold. Chem. Commun. 2010, 46, 8353–8355. [Google Scholar] [CrossRef] [PubMed]
- Xia, G.; Tan, Y.; Chen, X.; Sun, D.; Guo, Z.; Liu, H.; Ouyang, L.; Zhu, M.; Yu, X. Monodisperse Magnesium Hydride Nanoparticles Uniformly Self-Assembled on Graphene. Adv. Mater. 2015, 27, 5981–5988. [Google Scholar] [CrossRef] [PubMed]
- Chong, L.; Zeng, X.; Ding, W.; Liu, D.J.; Zou, J. NaBH4 in “Graphene Wrapper:” Significantly Enhanced Hydrogen Storage Capacity and Regenerability through Nanoencapsulation. Adv. Mater. 2015, 27, 5070–5074. [Google Scholar] [CrossRef]
- Borzenko, V.I.; Romanov, I.A.; Dunikov, D.O.; Kazakov, A.N. Hydrogen Sorption Properties of Metal Hydride Beds: Effect of Internal Stresses Caused by Reactor Geometry. Int. J. Hydrogen Energy 2019, 44, 6086–6092. [Google Scholar] [CrossRef]
- Sakintuna, B.; Lamari-Darkrim, F.; Hirscher, M. Metal Hydride Materials for Solid Hydrogen Storage: A Review. Int. J. Hydrogen Energy 2007, 32, 1121–1140. [Google Scholar] [CrossRef]
- Guo, F.; Namba, K.; Miyaoka, H.; Jain, A.; Ichikawa, T. Hydrogen Storage Behavior of TiFe Alloy Activated by Different Methods. Mater. Lett. X 2021, 9, 100061. [Google Scholar] [CrossRef]
- Alsabawi, K.; Webb, T.A.; Gray, E.M.; Webb, C.J. The Effect of C60 Additive on Magnesium Hydride for Hydrogen Storage. Int. J. Hydrogen Energy 2015, 40, 10508–10515. [Google Scholar] [CrossRef]
- Rud, A.D.; Lakhnik, A.M. Effect of Carbon Allotropes on the Structure and Hydrogen Sorption during Reactive Ball-Milling of Mg-C Powder Mixtures. Int. J. Hydrogen Energy 2011, 37, 4179–4187. [Google Scholar] [CrossRef]
- Jia, Y.; Guo, Y.; Zou, J.; Yao, X. Hydrogenation/Dehydrogenation in MgH2-Activated Carbon Composites Prepared by Ball Milling. Int. J. Hydrogen Energy 2012, 37, 7579–7585. [Google Scholar] [CrossRef]
- Jung, K.S.; Lee, E.Y.; Lee, K.S. Catalytic Effects of Metal Oxide on Hydrogen Absorption of Magnesium Metal Hydride. J. Alloys Compd. 2006, 421, 179–184. [Google Scholar] [CrossRef]
- Meng, Q.; Huang, Y.; Ye, J.; Xia, G.; Wang, G.; Dong, L.; Yang, Z.; Yu, X. Electrospun Carbon Nanofibers with In-Situ Encapsulated Ni Nanoparticles as Catalyst for Enhanced Hydrogen Storage of MgH2. J. Alloys Compd. 2021, 851, 156874. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, Y.; Bao, Z.; Yan, D.; Zhu, Z. Methods for Measuring the Effective Thermal Conductivity of Metal Hydride Beds: A Review. Int. J. Hydrogen Energy 2020, 45, 6680–6700. [Google Scholar] [CrossRef]
- Yan, M.; Sun, F.; Liu, X.; Ye, J.; Wang, S.; Jiang, L. Effects of Graphite Content and Compaction Pressure on Hydrogen Desorption Properties of Mg(NH2)2–2LiH Based Tank. J. Alloys Compd. 2015, 628, 63–67. [Google Scholar] [CrossRef]
- Simanullang, M.; Prost, L. Nanomaterials for on-board solid-state hydrogen storage applications. Int. J. Hydrogen Energy 2022, 47, 29808–29846. [Google Scholar] [CrossRef]
- De Lima Andreani, G.F.; Triques, M.R.M.; Kiminami, C.S.; Botta, W.J.; Roche, V.; Jorge, A.M. Characterization of Hydrogen Storage Properties of Mg-Fe-CNT Composites Prepared by Ball Milling, Hot-Extrusion and Severe Plastic Deformation Methods. Int. J. Hydrogen Energy 2016, 41, 23092–23098. [Google Scholar] [CrossRef]
- Huot, J.; Tousignant, M. Effect of Cold Rolling on Metal Hydrides. Mater. Trans. 2019, 60, 1571–1576. [Google Scholar] [CrossRef]
- Lang, J.; Huot, J. A New Approach to the Processing of Metal Hydrides. J. Alloys Compd. 2011, 509, 18–22. [Google Scholar] [CrossRef]
- Gupta, A.; Shervani, S.; Faisal, M.; Balani, K.; Subramaniam, A. Hydrogen Storage in Mg-Mg2Ni-Carbon Hybrids. J. Alloys Compd. 2015, 645, S397–S399. [Google Scholar] [CrossRef]
- Pentimalli, M.; Padella, F.; La Barbera, A.; Pilloni, L.; Imperi, E. A Metal Hydride–Polymer Composite for Hydrogen Storage Applications. Energy Convers. Manag. 2009, 50, 3140–3146. [Google Scholar] [CrossRef]
- Pentimalli, M.; Imperi, E.; Zaccagnini, A.; Padella, F. Nanostructured Metal Hydride–Polymer Composite as Fixed Bed for Sorption Technologies. Advantages of an Innovative Combined Approach by High-Energy Ball Milling and Extrusion Techniques. Renew. Energy 2017, 110, 69–78. [Google Scholar] [CrossRef]
- Dieterich, M.; Pohlmann, C.; Bürger, I.; Linder, M.; Röntzsch, L. Long-Term Cycle Stability of Metal Hydride-Graphite Composites. Int. J. Hydrogen Energy 2015, 40, 16375–16382. [Google Scholar] [CrossRef]
- Matsushita, M.; Tajima, I.; Abe, M.; Tokuyama, H. Experimental Study of Porosity and Effective Thermal Conductivity in Packed Bed of Nano-Structured FeTi for Usage in Hydrogen Storage Tanks. Int. J. Hydrogen Energy 2019, 44, 23239–23248. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Ilyushechkin, A.; Liang, D.; Cousins, A.; Tian, W.; Chen, C.; Yin, J.; Schoeman, L. Metal Hydride Composite Structures for Improved Heat Transfer and Stability for Hydrogen Storage and Compression Applications. Inorganics 2023, 11, 181. https://doi.org/10.3390/inorganics11050181
Liu L, Ilyushechkin A, Liang D, Cousins A, Tian W, Chen C, Yin J, Schoeman L. Metal Hydride Composite Structures for Improved Heat Transfer and Stability for Hydrogen Storage and Compression Applications. Inorganics. 2023; 11(5):181. https://doi.org/10.3390/inorganics11050181
Chicago/Turabian StyleLiu, Liang, Alexander Ilyushechkin, Daniel Liang, Ashleigh Cousins, Wendy Tian, Cherry Chen, Jon Yin, and Liezl Schoeman. 2023. "Metal Hydride Composite Structures for Improved Heat Transfer and Stability for Hydrogen Storage and Compression Applications" Inorganics 11, no. 5: 181. https://doi.org/10.3390/inorganics11050181
APA StyleLiu, L., Ilyushechkin, A., Liang, D., Cousins, A., Tian, W., Chen, C., Yin, J., & Schoeman, L. (2023). Metal Hydride Composite Structures for Improved Heat Transfer and Stability for Hydrogen Storage and Compression Applications. Inorganics, 11(5), 181. https://doi.org/10.3390/inorganics11050181