Copper-Coordinated Thiazoles and Benzothiazoles: A Perfect Alliance in the Search for Compounds with Antibacterial and Antifungal Activity
Abstract
:1. Introduction
1.1. Biological Importance of Thiazoles
1.2. Synthesis and Characterization of Thiazoles
1.3. Biological Importance of Benzothiazoles
1.4. Synthesis and Characterization of Benzothiazoles
2. Antibacterial and Antifungal Thiazole-Copper(II) Complexes
2.1. Copper Complexes with Monodentate Thiazole Ligands
2.2. Copper Complexes with Bidentate Thiazole Ligands
2.3. Copper Complexes with Tridentate Thiazole Ligands
2.4. Copper Complexes with Tetradentate Thiazole Ligands
3. Antibacterial and Antifungal Benzothiazole-Copper(II) Complexes
3.1. Copper Complexes with Monodentate Benzothiazole Ligands
3.2. Copper Complexes with Bidentate Benzothiazole Ligands
3.3. Copper Complexes with Tridentate and Tetradentate Benzothiazole Ligands
4. General Remarks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Meaning |
Bipy | 2,2′-Bipyridine |
CNS | Central nervous system |
MABA | Microplate Alamar blue assay |
MBC | Minimum bactericidal concentration |
MIC | Minimum inhibitory concentration |
MTT | (3-[4,5-Dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) |
NSAIDs | Non-steroidal anti-inflammatory drug |
phen | 1,10-phenanthroline |
STz | Sulfathiazole |
TBZH | Thiabendazole |
Appendix A
Species | Short Name | Long Name |
---|---|---|
Gram-positive | B. cirroflagellosus | Bacillus cirroflagellosus |
B. subtilis | Bacillus subtilis | |
B. cereus | Bacillus cereus | |
B. megaterium | Bacillus megaterium | |
E. faecalis | Enterococcus faecalis | |
Listeria | Listeria | |
M. tuberculosis | Mycobacterium tuberculosis | |
M. luteus | Micrococcus luteus | |
M. roseus | Micrococcus roseus | |
S. aureus | Staphylococcus aureus | |
S. pyogenus | Streptococcus pyogenes | |
S. epidermidis | Staphylococcus epidermidis | |
S. viridans | Streptococcus viridans | |
S. coagulase | Staphylococcus coagulase | |
S. β-hemolytic | Streptococcus β-hemolytic | |
Gram-negative | A. baumannii | Acinetobacter baumannii |
Citrobacter | Citrobacter | |
E. coli | Escherichia coli | |
E. sakazkii | Enterobacter sakazakii | |
Erwinia | Erwinia | |
K. oxytoca | Klebsilla oxytoca | |
K. pneumoniae | Klebsiella pneumoniae | |
P. aeruginosa | Pseudomonas aeruginosa | |
P. mirabilis | Proteus mirabilis | |
P. vulgaris | Proteus vulgaris | |
S. enteriditis | Salmonella enteriditis | |
S. thyphi | Salmonella typhi | |
V. Cholera | Vibrio cholerae | |
Xanthomonas | Xanthomonas | |
Fungi | A. clavatus | Aspergillus clavatus |
A. flavus | Aspergillus flavus | |
A. niger | Aspergillus niger | |
A. terreus | Aspergillus terreus | |
A. fumigates | Aspergillus fumigates | |
C. albicans | Candida albicans | |
C. krusei | Candida krusei | |
C. parapisilosis | Candida parapisilosis | |
Cladosporium | Cladosporium | |
C. albidosimilis | Cryptococcus albidosimilis | |
F. moneliforme | Fusarium moniliforme | |
P. citrinum | Penicillium citrinum | |
P. frondosus | Polyporus frondosus | |
P. chrysogenum | Penicillium chrysogenum | |
P. expansum | Penicillium expansum | |
R. stolonifer | Rhizopus stolonifer | |
R. mucilaginosa | Rhodotorula mucilaginosa |
References
- Sharma, P.C.; Bansal, K.K.; Sharma, A.; Sharma, D.; Deep, A. Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur. J. Med. Chem. 2020, 188, 112016. [Google Scholar] [CrossRef]
- Al-Ghorbani, M.; Alghamdi, H.A.; Khanum, S.A. A review on anticancer potential of thiazole-heterocyclic hybrid compounds. Eur. J. Biomed. Pharm. Sci. 2018, 5, 122–128. [Google Scholar]
- Zhang, Z.; Shu, B.; Zhang, Y.; Deora, G.S.; Li, Q.-S. 2,4,5-Trisubstituted thiazole: A privileged scaffold in drug design and activity improvement. Curr. Top. Med. Chem. 2020, 20, 2535–2577. [Google Scholar] [CrossRef]
- Abdu-Rahem, L.R.; Ahmad, A.K.; Abachi, F.T. Synthesis and medicinal attributes of thiazole derivatives: A review. Syst. Rev. Pharm. 2021, 12, 290–295. [Google Scholar]
- Ayati, A.; Emami, S.; Moghimi, S.; Foroumadi, A. Thiazole in the targeted anticancer drug discovery. Future Med. Chem. 2019, 11, 1929–1952. [Google Scholar] [CrossRef]
- Guemues, M.; Yakan, M.; Koca, I. Recent advances of thiazole hybrids in biological applications. Future Med. Chem. 2019, 11, 1979–1998. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Bansal, K.K.; Sharma, A.; Pathak, M.; Sharma, P.C. A brief literature and review of patents on thiazole related derivatives. Curr. Bioact. Compd. 2019, 15, 304–315. [Google Scholar] [CrossRef]
- Qureshi, A.; Pradhan, A. Short review on thiazole derivative. J. Drug Deliv. Ther. 2019, 9, 842–847. [Google Scholar]
- Verma, R.S.; Gupta, S.K.; Jaiswal, S.; Dwivedi, A.K. A review on thiazole based compounds & it’s pharmacological activities. World J. Pharm. Res. 2020, 9, 577–589. [Google Scholar]
- Khatik, G.L.; Datusalia, A.K.; Ahsan, W.; Kaur, P.; Vyas, M.; Mittal, A.; Nayak, S.K. A retrospect study on thiazole derivatives as the potential antidiabetic agents in drug discovery and developments. Curr. Drug Discov. Technol. 2018, 15, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, A.; Adhikari, N.; Das, A.; Shakya, A.; Ghosh, S.K.; Singh, U.P.; Bhat, H.R. Review on synthetic chemistry and antibacterial importance of thiazole derivatives. Curr. Drug Discov. Technol. 2018, 15, 214–228. [Google Scholar] [CrossRef] [PubMed]
- Kumawat, M.K. Thiazole containing heterocycles with antimalarial activity. Curr. Drug Discov. Technol. 2018, 15, 196–200. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, P.; Shravya, H. Thiazole derivatives as potential antidiabetic agents. Rasayan J. Chem. 2021, Special Issue, 175–179. [Google Scholar] [CrossRef]
- Nayak, S.; Gaonkar, S.L. A review on recent synthetic strategies and pharmacological importance of 1,3-thiazole derivatives. Mini-Rev. Med. Chem. 2019, 19, 215–238. [Google Scholar] [CrossRef] [PubMed]
- Mishra, C.B.; Kumari, S.; Tiwari, M. Thiazole: A promising heterocycle for the development of potent CNS active agents. Eur. J. Med. Chem. 2015, 92, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.F.; Alam, A.; Alshammari, A.A.; Alhazza, M.B.; Alzimam, I.M.; Alam, M.A.; Mustafa, G.; Ansari, M.S.; Alotaibi, A.M.; Alotaibi, A.A.; et al. Thiazole: A versatile standalone moiety contributing to the development of various drugs and biologically active agents. Molecules 2022, 27, 3994. [Google Scholar] [CrossRef]
- Fatima, Y.; Dayal, M.S.; Lal, T.S.; Ahmad, I. Thiazole core: A restorative target in the discovery of potent anti-cancer agents. Indian J. Adv. Chem. Sci. 2021, 9, 268–274. [Google Scholar]
- Petrou, A.; Fesatidou, M.; Geronikaki, A. Thiazole ring—A biologically active scaffold. Molecules 2021, 26, 3166. [Google Scholar] [CrossRef]
- Jain, S.; Pattnaik, S.; Pathak, K.; Kumar, S.; Pathak, D.; Jain, S.; Vaidya, A. Anticancer potential of thiazole derivatives: A retrospective review. Mini-Rev. Med. Chem. 2018, 18, 640–655. [Google Scholar] [CrossRef]
- Shelar, U.B. Thiazole an attractive scaffold for development of anticancer agent: A review. Int. J. Pharm. Pharm. Res. 2022, 24, 311–321. [Google Scholar]
- Varghese, N.; Jacob, J.; Mythri, M.; Nija, B.; Sheeba Jasmine, T.S. Synthesis of thiazole derivatives-a review. World J. Pharm. Pharm. Sci. 2016, 5, 624–636. [Google Scholar]
- Sharma, D.; Sharma, V.; Sharma, A.; Goyal, R.; Tonk, R.K.; Thakur, V.K.; Sharma, P.C. Green chemistry approaches for thiazole containing compounds as a potential scaffold for cancer therapy. Sustain. Chem. Pharm. 2021, 23, 100496. [Google Scholar] [CrossRef]
- Farghaly, T.A.; Alsaedi, A.M.R.; Alenazi, N.A.; Harras, M.F. Anti-viral activity of thiazole derivatives: An updated patent review. Expert Opin. Ther. Pat. 2022, 32, 791–815. [Google Scholar] [CrossRef]
- Sharma, D.; Malhotra, A.; Bansal, R. An overview of discovery of thiazole containing heterocycles as potent GSK-3b inhibitors. Curr. Drug Discov. Technol. 2018, 15, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Kalal, P.; Gandhi, D.; Prajapat, P. Thiazole containing heterocycles with CNS activity. Curr. Drug Discov. Technol. 2018, 15, 178–195. [Google Scholar] [CrossRef] [PubMed]
- Chhabria, M.T.; Patel, S.; Modi, P.; Brahmkshatriya, P.S. Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives. Curr. Top. Med. Chem. 2016, 16, 2841–2862. [Google Scholar] [CrossRef]
- Morigi, R.; Locatelli, A.; Leoni, A.; Rambaldi, M. Recent patents on thiazole derivatives endowed with antitumor activity. Recent Pat. Anti-Cancer Drug Discov. 2015, 10, 280–297. [Google Scholar] [CrossRef]
- Chugh, V.; Pandey, G.; Rautela, R.; Mohan, C. Heterocyclic compounds containing thiazole ring as important material in medicinal chemistry. Mater. Today Proc. 2022, 69 (Pt. 2), 478–481. [Google Scholar] [CrossRef]
- Borcea, A.-M.; Ionut, I.; Crisan, O.; Oniga, O. An overview of the synthesis and antimicrobial, antiprotozoal, and antitumor activity of thiazole and bisthiazole derivatives. Molecules 2021, 26, 624. [Google Scholar] [CrossRef]
- Hassan, A.; Hassan, H.A.; Abdelhamid, D.; El-Din, A.; Abuo-Rahma, G. Synthetic approaches toward certain structurally related antimicrobial thiazole derivatives. Heterocycles 2021, 102, 1675–1728. [Google Scholar] [CrossRef]
- Mishra, I.; Mishra, R.; Mujwar, S.; Chandra, P.; Sachan, N. A retrospect on antimicrobial potential of thiazole scaffold. J. Heterocycl. Chem. 2020, 57, 2304–2329. [Google Scholar] [CrossRef]
- Singh, A.; Malhotra, D.; Singh, K.; Chadha, R.; Bedi, P.M.S. Thiazole derivatives in medicinal chemistry: Recent advancements in synthetic strategies, structure activity relationship and pharmacological outcomes. J. Mol. Struct. 2022, 1266, 133479. [Google Scholar] [CrossRef]
- Namitha, T.H.; Nair, S.S.; Kumar, A.; Vinod, B.; Daisy, P.A. A review on synthesis and biological activity of thiazole and its derivatives. Int. J. Pharm. Sci. Rev. Res. 2021, 70, 29. [Google Scholar] [CrossRef]
- Joule, J.A.; Mills, K. Heterocyclic Chemistry, 5th ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2010; pp. 13–17. [Google Scholar]
- Abd El-Meguid, E.A.; Naglah, A.M.; Moustafa, G.O.; Awad, H.M.; El Kerdawy, A.M. Novel benzothiazole-based dual VEGFR-2/EGFR inhibitors targeting breast and liver cancers: Synthesis, cytotoxic activity, QSAR and molecular docking studies. Bioorg. Med. Chem. Lett. 2022, 58, 128529. [Google Scholar] [CrossRef]
- Zhilitskaya, L.V.; Shainyan, B.A.; Yarosh, N.O. Modern approaches to the synthesis and transformations of practically valuable benzothiazole derivatives. Molecules 2021, 26, 2190. [Google Scholar] [CrossRef]
- Qadir, T.; Amin, A.; Salhotra, A.; Sharma, P.K.; Jeelani, I.; Abe, H. Recent advances in the synthesis of benzothiazole and its derivatives. Curr. Org. Chem. 2022, 26, 189–214. [Google Scholar] [CrossRef]
- Keri, R.S.; Patil, M.R.; Patil, S.A.; Budagupi, S. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur. J. Med. Chem. 2015, 89, 207–251. [Google Scholar] [CrossRef]
- Irfan, A.; Batool, F.; Zahra, N.; Syeda, A.; Islam, A.; Osman, S.M.; Nocentini, A.; Alissa, S.A.; Supuran, C.T. Benzothiazole derivatives as anticancer agents. J. Enzyme Inhib. Med. Chem. 2020, 35, 265–279. [Google Scholar] [CrossRef]
- Sharma, P.C.; Bansal, K.K.; Deep, A.; Pathak, M. Benzothiazole derivatives as potential anti-infective agents. Curr. Top. Med. Chem. 2017, 17, 208–237. [Google Scholar] [CrossRef]
- Agarwal, D.K.; Agarwal, S.; Gandhi, D. Benzothiazole: A versatile synthetic auxillary for antiepileptic drugs. Chem. Biol. Interface 2018, 8, 135–137. [Google Scholar]
- Patel, T.; Siva Subramaniam, N.; Eshrath; Divya, C. Benzothiazole: A molecule with broad spectrum of antimicrobial activity. World J. Pharm. Pharm. Sci. 2017, 6, 566–576. [Google Scholar]
- Lihumis, H.S.; Alameri, A.A.; Zaooli, R.H. A review on recent development and biological applications of benzothiazole derivatives. Prog. Chem. Biochem. Res. 2022, 5, 147–164. [Google Scholar] [CrossRef]
- Elamin, M.B.; Elaziz, A.A.E.S.A.; Abdallah, E.M. Benzothiazole moieties and their derivatives as antimicrobial and antiviral agents: A mini-review. Int. J. Res. Pharm. Sci. 2020, 11, 3309–3315. [Google Scholar] [CrossRef]
- Raju, G.N.; Sai, K.B.; Chandana, K.; Rao, N.R. Benzothiazole: Unique and versatile scaffold in the field of cancer. J. Chem. Pharm. Res. 2015, 7, 286–293. [Google Scholar]
- Pathak, A.K.; Saroj, R. Clinical efficacy of benzothiazole in antitumor activity: A recent trends. World J. Pharm. Pharm. Sci. 2020, 9, 796–838. [Google Scholar]
- Nivatya, H.K.; Singh, A.; Verma, R.; Varshney, S. Review on: Synthesis and biological evaluation of different benzothiazole derivatives. World J. Pharm. Pharm. Sci. 2018, 7, 865–881. [Google Scholar]
- Srivastava, A.; Mishra, A.P.; Chandra, S.; Bajpai, A. Benzothiazole derivative: A review on its pharmacological importance towards synthesis of lead. Int. J. Pharm. Sci. Res. 2019, 10, 1553–1566. [Google Scholar] [CrossRef]
- Midhula, C.C.; Marathakam, A.; Baijika, P.; Shadiha, S.K. A short review on synthesis and its medicinal significance of 1,3 benzothiazole derivatives. World J. Pharm. Res. 2018, 7, 1–11. [Google Scholar]
- Asif, M.; Imran, M. A mini-review on pharmacological importance of benzothiazole scaffold. Mini-Rev. Org. Chem. 2021, 18, 1086–1097. [Google Scholar] [CrossRef]
- Kumar, A.; Mishra, A.K. Advancement in pharmacological activities of benzothiazole and its derivatives: An up to date review. Mini-Rev. Med. Chem. 2021, 21, 314–335. [Google Scholar] [CrossRef]
- Tariq, S.; Kamboj, P.; Amir, M. Therapeutic advancement of benzothiazole derivatives in the last decennial period. Arch. Pharm. 2019, 352, 1–17. [Google Scholar] [CrossRef]
- Agarwal, S.; Gandhi, D.; Kalal, P. Benzothiazole: A versatile and multitargeted pharmacophore in the field of medicinal chemistry. Lett. Org. Chem. 2017, 14, 729–742. [Google Scholar] [CrossRef]
- Abrol, S.; Bodla, R.B.; Goswami, C. A comprehensive review on benzothiazole derivatives for their biological activities. Int. J. Pharm. Sci. Res. 2019, 10, 3196–3209. [Google Scholar] [CrossRef]
- Bhat, M.; Belagali, S.L. Structural activity relationship and importance of benzothiazole derivatives in medicinal chemistry: A comprehensive review. Mini-Rev. Org. Chem. 2020, 17, 323–350. [Google Scholar] [CrossRef]
- Banerjee, S.; Payra, S.; Saha, A. A review on synthesis of benzothiazole derivatives. Curr. Organocatalysis 2017, 4, 164–181. [Google Scholar] [CrossRef]
- Popli, J.V.; Kumbhare, M.R.; Suran, A.R.; Bhalerao, M.R.; Agrawal, P.A. Benzothiazole analogues and their biological aspects: A review. Indian J. Chem. Sect. B. 2021, 60B, 1659–1669. [Google Scholar]
- Gao, X.; Liu, J.; Zuo, X.; Feng, X.; Gao, Y. Recent advances in synthesis of benzothiazole compounds related to green chemistry. Molecules 2020, 25, 1675. [Google Scholar] [CrossRef] [PubMed]
- Sulthana, S.; Pandian, P. A review on Indole and Benzothiazole derivatives its importance. J. Drug Deliv. Ther. 2019, 9, 505–509. [Google Scholar] [CrossRef]
- Shaista, A.; Amrita, P. Benzothiazole—A magic molecule. Int. J. Pharm. Sci. Res. 2017, 8, 4909–4929. [Google Scholar] [CrossRef]
- Nangare, A.K.; Chavan, A.N.; Avhad, U.R.; Lodha, G.S.; Kolate, N.S.; Ransing, B.J.; Bura, A. Benzothiazole analogs synthesis by using different types of reaction. Eur. J. Biomed. Pharm. Sci. 2017, 4, 221–225. [Google Scholar]
- Satyadev, S.A.; Prasad, Y.R.; Avupati, V.R.; Aparna, K.; Rudru, M.J. A review on benzothiazole—A versatile scaffold in the field of pharmaceutical chemistry. Int. J. Pharm. 2016, 6, 150–158. [Google Scholar]
- Cascioferro, S.; Parrino, B.; Carbone, D.; Schillaci, D.; Giovannetti, E.; Cirrincione, G.; Diana, P. Thiazoles, their benzofused systems, and thiazolidinone derivatives: Versatile and promising tools to combat antibiotic resistance. J. Med. Chem. 2020, 63, 7923–7956. [Google Scholar] [CrossRef]
- De, S.; Aamna, B.; Sahu, R.; Parida, S.; Behera, S.K.; Dan, A.K. Seeking heterocyclic scaffolds as antivirals against dengue virus. Eur. J. Med. Chem. 2022, 240, 114576. [Google Scholar] [CrossRef]
- Tratrat, C. Benzothiazole as a promising scaffold for the development of antifungal agents. Curr. Top. Med. Chem. 2023; ahead of print. [Google Scholar] [CrossRef]
- Fatima, A.; Pooja, K.; Savita, S.; Singh, M.; Verma, I.; Siddiqui, N.; Javed, S. Quantum chemical, experimental spectroscopic, Hirshfeld surface and molecular docking studies of the anti-microbial drug sulfathiazole. J. Mol. Struct. 2021, 1245, 131118. [Google Scholar] [CrossRef]
- Öztürk, F.; Bulut, İ.; Bekiroğlu, Y.; Bulut, A. Spectroscopic, structural, electrochemical and antimicrobiological studies of Cu(II)-sulfathiazole complex with diethylenetriamine ligand. Polyhedron 2016, 119, 420–428. [Google Scholar] [CrossRef]
- Öztürk, F.; Aycan, T.; Çon, A.H. Spectroscopic, structural characterization and magnetic studies of Cu(II)-sulfathiazole complex with 1,10-phenanthroline and N-(2-hydroxyethyl)-ethylenediamine ligands. J. Mol. Struct. 2020, 1202, 127220. [Google Scholar] [CrossRef]
- Joshi, S.R.; Pachling, S.P.; Habib, S.I. Metal complexes of salisylaldoxime: Preparation characterization and biological activity. Inorg. Chem. Indian J. 2014, 9, 102–108. [Google Scholar]
- Chaviara, A.T.; Cox, P.J.; Repana, K.H.; Papi, R.M.; Papazisis, K.T.; Zambouli, D.; Kortsaris, A.H.; Kyriakidis, D.A.; Bolos, C.A. Copper(II) Schiff base coordination compounds of dien with heterocyclic aldehydes and 2-amino-5-methyl-thiazole: Synthesis, characterization, antiproliferative and antibacterial studies. Crystal structure of CudienOOCl2. J. Inorg. Biochem. 2004, 98, 1271–1283. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.; Yardily, A. Co(II), Ni(II), Cu(II), and Zn(II) metal complexes of chalcone: Synthesis, characterization, thermal, antimicrobial, photocatalytic degradation of dye and molecular modeling studies. Appl. Organomet. Chem. 2022, 36, e6465. [Google Scholar] [CrossRef]
- Johnson, J.; Yardily, A. Spectral, modeling and biological studies on a novel (E)-3-(3-bromo-4-methoxyphenyl)-1-(thiazol-2-yl)prop-2-en-1-one and some bivalent metal(II) complexes. J. Mol. Struct. 2021, 1244, 130991. [Google Scholar] [CrossRef]
- Sadeek, S.A.; Abd El-Hamid, S.M.; Mohamed, A.A.; Zordok, W.A.; El-Sayed, H.A. Spectroscopic characterization, thermogravimetry, density functional theory and biological studies of some mixed-ligand complexes of meloxicam and 2,2′-bipyridine with some transition metals. Appl. Organomet. Chem. 2019, 33, e4889. [Google Scholar] [CrossRef]
- Franzé, J.A.; Carvalho, T.F.; Gaglieri, C.; Caires, F.J.; Bannach, G.; Castro, R.C.; Treu-Filho, O.; Ionashiro, M.; Mendes, R.A. Synthesis, characterization, thermal and spectroscopic studies and bioactivity of complexes of meloxicam with some bivalent transition metals. J. Therm. Anal. Calorim. 2017, 127, 1393–1405. [Google Scholar] [CrossRef]
- Aziz, N.M.; Abdullah, B.H. Synthesis, cytotoxicity, antibacterial activity and molecular modeling study of new mono, homo and heterobimetallic complexes of palladium(II) with some transition metal ions containing the ligands N-phenyl-N′-(2-thiazolyl)thiourea and diphosphines Ph2P(CH2)nPPh2 (Where n = 1–3). Indian J. Chem. A. 2019, 58, 772–782. [Google Scholar]
- Mohammed, S.R.; Ganganaik, K.; Halehatti, S.B.; Yuvaraj, T.C.M.; Manjunath, B. Synthesis of 3-methyl-1phenyl-4-(thiazol-2-yl)-1H-pyrazol-5(4H)-one via Sandmeyer reaction and their transition metal complexes; spectral, XRD, cytotoxicity, molecular docking and biological evaluation. Der Pharma Chem. 2017, 9, 19–26. [Google Scholar]
- Nunes, J.H.B.; de Paiva, R.E.F.; Cuin, A.; da Costa Ferreira, A.M.; Lustri, W.R.; Corbi, P.P. Synthesis, spectroscopic characterization, crystallographic studies and antibacterial assays of new copper (II) complexes with sulfathiazole and nimesulide. J. Mol. Struct. 2016, 1112, 14–20. [Google Scholar] [CrossRef]
- Mansour, A.M. Thermal, spectral, DFT and biological activity evaluation of Co(II), Ni(II) and Cu(II) complexes of N,S-chelated benzotriazole ligand. J. Therm. Anal. Calorim. 2016, 123, 571–581. [Google Scholar] [CrossRef]
- Li, X.; Li, X.-J.; Li, Y.-T.; Wu, Z.-Y.; Yan, C.-W. Syntheses and structure of tetracopper(II) complexes with an N-benzoate-N′-[3-(2-hydroxylethylammino)propyl]oxamide ligand: Reactivity towards DNA, cytotoxic and antimicrobial activities. New. J. Chem. 2012, 36, 2472–2483. [Google Scholar] [CrossRef]
- Alaghaz, A.-N.M.A.; Elbohy, S.A.H. New tetrachlorocyclodiphosph(V)azane complex of Co(II), Ni(II), and Cu(II): Preparation, characterization, solid state electrical conductivity and biological activity studies. Phosphorus Sulfur. 2008, 183, 2000–2019. [Google Scholar] [CrossRef]
- Ashalekshmi, V.S.; Mohanan, K. Synthesis, characterization and antibacterial activity of copper (II) complexes with N-vanillidene-2-amino-4-phenylthiazole. Asian J. Chem. 2008, 20, 623–628. [Google Scholar] [CrossRef]
- Badwaik, V.B.; Mahale, R.G.; Bevhade, J.B.; Aswar, A.S. Synthesis, characterization, thermal, electrical and antibacterial studies of complexes of bivalent metal ions. J. Indian Chem. Soc. 2005, 82, 777–780. [Google Scholar]
- Chohan, Z.H.; Praveen, M. Synthesis, characterization, coordination and antibacterial properties of novel asymmetric 1,1′-disubstituted ferrocene-derived Schiff-base ligands and their Co(II), Cu(II), Ni(II) and Zn(II) complexes. Appl. Organomet. Chem. 2001, 15, 617–625. [Google Scholar] [CrossRef]
- Chohan, Z. Antibacterial copper(II) complexes of 1,1′-symmetric ferrocene-derived Schiff-base ligands: Studies of the effect of anions on their antibacterial properties. Appl. Organomet. Chem. 2002, 16, 17–20. [Google Scholar] [CrossRef]
- Andrejevic, T.P.; Aleksic, I.; Pockaj, M.; Kljun, J.; Milivojevic, D.; Stevanovic, N.L.; Nikodinovic-Runic, J.; Turel, I.; Djuran, M.I.; Glisic, B.D. Tailoring copper(II) complexes with pyridine-4,5-dicarboxylate esters for anti-Candida activity. Dalton Trans. 2021, 50, 2627–2638. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Y.; Ren, X.X.; Mao, Z.W.; Le, X.Y. Synthesis, characterization, and antibacterial activities of two new copper(II) glycinate complexes incorporating 2-(4′-thiazolyl) benzimidazole/2-(2-pyridyl) benzimidazole. J. Coord. Chem. 2012, 65, 2182–2191. [Google Scholar] [CrossRef]
- Qi, Y.Y.; Liu, Y.X.; Gan, Q.; Xiong, Y.H.; Mao, Z.W.; Le, X.Y. Three new mixed-ligand copper(II) complexes containing glycyl-l-valine and N, N-aromatic heterocyclic compounds: Synthesis, characterization, DNA interaction, cytotoxicity and antimicrobial activity. Appl. Organomet. Chem. 2018, 32, e4126. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, Y.; Ou, Z.; Le, X. Synthesis, characterization, antibacterial activities and DNA interaction of ternary copper(II) complex with 2-(4′-thiazolyl) benzimidazole and L-alaninate. J. South China Agric. Univ. 2012, 33, 574–579. [Google Scholar] [CrossRef]
- Lu, Y.-M.; Ou, Z.-B.; Liu, H.-F.; Le, X.-Y. Syntheses, characterization, antibacterial activities of ternary copper (II) complexes with 2-(4′-thiazolyl) benzimidazole/2-(2-pyridyl) benzimidazole and L-methionine and their interaction with DNA. Chin. J. Inorg. Chem. 2011, 27, 704–710. [Google Scholar]
- Ren, X.-X.; Wang, C.-X.; Lu, Y.-M.; Zhuang, C.-X.; Le, X.-Y. Synthesis, antibacterial activities of copper (II) complexes with ciprofloxacin and TBZ or HPB and their DNA interactions. Chin. J. Inorg. Chem. 2010, 26, 891–898. [Google Scholar]
- Ren, X.; Chen, J.; Le, X. Antibacterial activities and nuclease properties of two new ternary copper(II) complexes with 2-(4′-thiazolyl)-benzimidazole and 2,2′-bipyridine/1,10-phenanthroline. Chin. J. Chem. 2011, 29, 1380–1388. [Google Scholar] [CrossRef]
- Devereux, M.; McCann, M.; Shea, D.O.; Kelly, R.; Egan, D.; Deegan, C.; Kavanagh, K.; McKee, V.; Finn, G. Synthesis, antimicrobial activity and chemotherapeutic potential of inorganic derivatives of 2-(4′-thiazolyl)benzimidazole{thiabendazole}: X-ray crystal structures of [Cu(TBZH)2Cl]Cl.H2O.EtOH and TBZH2NO3 (TBZH=thiabendazole). J. Inorg. Biochem. 2004, 98, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Vathanaruba, M.; Johnson, R.S.; Princess, R.; Tharmaraj, P. Pharmacological and molecular docking studies of new copper (II) complexes of N2-phenyl-N4,N6-di(thiazol-2-yl)-1,3,5-triazine-2,4,6-triamine. J. Mol. Struct. 2022, 1253, 132275. [Google Scholar] [CrossRef]
- Noreen, S.; Sumrra, S.H. Aminothiazole-linked metal chelates: Synthesis, density functional theory and antimicrobial studies with antioxidant correlations. ACS Omega 2021, 6, 33085–33099. [Google Scholar] [CrossRef]
- Velluti, F.; Acevedo, A.; Serra, G.; Ellena, J.; Borthagaray, G.; Facchin, G.; Scarone, L.; Alvarez, N.; Torre, M.H. Novel bisthiazole ligand and its copper(II) complex with unusual seven membered ring: Synthesis, characterization, experimental and theoretical study of the effect of ligand flexibility, and antimicrobial activity. Polyhedron 2021, 209, 115490. [Google Scholar] [CrossRef]
- Reiss, A.; Cioateră, N.; Dobrițescu, A.; Rotaru, M.; Carabet, A.C.; Parisi, F.; Rotaru, P.; Gănescu, A.; Dăbuleanu, I.; Spînu, C.I.; et al. Bioactive Co(II), Ni(II), and Cu(II) complexes containing a tridentate sulfathiazole-based (ONN) Schiff base. Molecules 2021, 26, 3062. [Google Scholar] [CrossRef] [PubMed]
- Muthal, B.N.; Raut, B.N.; Tekale, A.S. Synthesis and characterization of transition metal ion (CoII, NiII, CuII & ZnII) complexes of Schiff bases derived from aminothiazole and their biological activity. Int. J. Chem. Stud. 2016, 4, 78–82. [Google Scholar]
- Muthal, B.N. Synthesis of new schiff bases and their transition metal complexes (CoII, NiII, CuII & ZnII) and their characterization stability constant and microbial activities. Pharm. Innov. J. 2017, 6, 72–76. [Google Scholar]
- Muthal, B.N. Transition metal ion CoII, NiII, CuII & ZnII complexes of tridentate ligands (NNO) their synthesis, characterization and biological activities. Pharm. Innov. J. 2017, 6, 90–95. [Google Scholar]
- Kumaran, J.S.; Muthukumaran, J.; Jayachandramani, N.; Mahalakshmi, S. Synthesis, characterization, in silico DNA studies and antibacterial evaluation of transition metal complexes of thiazole based pyrazolone Schiff base. J. Chem. Pharm. Res. 2015, 7, 1397–1409. [Google Scholar]
- Kumaran, J.S.; Priya, S.; Gowsika, J.; Jayachandramani, N.; Mahalakshmi. Synthesis, spectroscopic characterization, in silico DNA studies and antibacterial activities of copper(II) and zinc(II) complexes derived from thiazole based pyrazolone derivatives. Res. J. Pharm. Biol. Chem. Sci. 2013, 4, 279–287. [Google Scholar]
- Al-Adilee, K.J.; Fanfon, D.Y. Preparation, spectral identification and analytical studies of some transition metal complexes with new thiazolylazo ligand and their biological activity study. J. Chem. Chem. Eng. 2012, 6, 1016–1028. [Google Scholar]
- Kalanithi, M.; Kodimunthiri, D.; Rajarajan, M.; Tharmaraj, P. Synthesis, characterization and biological activity of some new VO(IV), Co(II), Ni(II), Cu(II) and Zn(II) complexes of chromone based NNO Schiff base derived from 2-aminothiazole. Spectrochim. Acta A 2011, 82, 290–298. [Google Scholar] [CrossRef]
- Anacona, J.R.; Silva, G.D. Synthesis and antibacterial activity of cefotaxime metal complexes. J. Chil. Chem. Soc. 2005, 50, 447–450. [Google Scholar] [CrossRef]
- Zhuravlev, E.V.; Alekseev, V.G.; Feofanova, M.A.; Ryasenskii, S.S. Complexation of Cu(II) with cefotaxime in NaCl solution. Russ. J. Inorg. Chem. 2016, 61, 877–879. [Google Scholar] [CrossRef]
- More, P.G.; Bhalvankar, R.B. Synthetic, spectral, thermal and antibacterial studies on copper(II) and zinc(II) complexes using NNO donor Schiff bases. J. Indian. Chem. Soc. 2004, 81, 13–17. [Google Scholar] [CrossRef]
- Fayed, T.A.; Gaber, M.; Abu El-Reash, G.M.; El-Gamil, M.M. Structural, DFT/B3LYP and molecular docking studies of binuclear thiosemicarbazide copper(II) complexes and their biological investigations. Appl. Organomet. Chem. 2020, 34, e5800. [Google Scholar] [CrossRef]
- Saad, F.A.; El-Ghamry, H.A.; Kassem, M.A. Synthesis, structural characterization and DNA binding affinity of new bioactive nano-sized transition metal complexes with sulfathiazole azo dye for therapeutic applications. Appl. Organomet. Chem. 2019, 33, e4965. [Google Scholar] [CrossRef]
- Al-Fahemi, J.H.; Khedr, A.M.; Althagafi, I.; El-Metwaly, N.M.; Saad, F.A.; Katouah, H.A. Green synthesis approach for novel benzenesulfonamide nanometer complexes with elaborated spectral, theoretical and biological treatments. Appl. Organomet. Chem. 2018, 32, e4460. [Google Scholar] [CrossRef]
- Priya, S.; Kumaran, J.S.; Jayachandramani, N.; Mahalakshmi, S. Antibacterial studies of transition metal complexes of tetradentate thiazole based Schiff base. Am. J. Pharm. Tech. Res. 2013, 3, 607–616. [Google Scholar]
- Kumaran, J.S.; Priya, S.; Muthukumaran, J.; Jayachandramani, N.; Mahalakshmi, S. Synthesis, characterization and biological studies of Cu(II), Co(II), Ni(II) and Zn(II) complexes of tetradentate Schiff base ligand. J. Chem. Pharm. Res. 2013, 5, 56–69. [Google Scholar]
- Ílkimen, H.; Yenikaya, C.; Gülbandilar, A.; Sari, M. Synthesis and characterization of a novel proton salt of 2-amino-6-nitrobenzothiazole with 2,6-pyridinedicarboxylic acid and its metal complexes and their antimicrobial and antifungal activity studies. J. Mol. Struct. 2016, 1129, 25–33. [Google Scholar] [CrossRef]
- Gul, Z.; Din, N.U.; Khan, E.; Ullah, F.; Tahir, M.N. Synthesis, molecular structure, anti-microbial, anti-oxidant and enzyme inhibition activities of 2-amino-6-methylbenzothiazole and its Cu(II) and Ag(I) complexes. J. Mol. Struct. 2020, 1199, 126956. [Google Scholar] [CrossRef]
- Gu, H.B.; Wang, Z.Y.; Chen, W.Y. Copper(II) complexes bearing 2-amino benzothiazole and phenoxyacetic acid derivatives: Coordination modes and antimicrobial activity. Chin. J. Inorg. Chem. 2012, 28, 591–600. [Google Scholar]
- Maru, M.; Shah, M.K. Synthesis, physico-chemical studies and antimicrobial evaluation of novel 2-(substituted aryl)-1H-benzo[d]thiazoles and their metal(II) chloride complexes. Int. J. Pharm. Pharm. Sci. 2012, 4, 388–391. [Google Scholar]
- Omaka, O.; Ekennia, A.C.; Njoku, N.N.; Onwudiwe, D.C. Nickel(II) and copper(II) complexes of 2,2′-bibenzo[d]thiazole: Synthesis, characterization and biological studies. Appl. Organomet. Chem. 2018, 32, e4241. [Google Scholar] [CrossRef]
- Ghosh, M.; Layek, M.; Fleck, M.; Saha, R.; Bandyopadhyay, D. Synthesis, crystal structure and antibacterial activities of mixed ligand copper(II) and cobalt(II) complexes of NNS Schiff base. Polyhedron 2015, 85, 312–319. [Google Scholar] [CrossRef]
- Meghdadi, S.; Amirnasr, M.; Mirhashemi, A.; Amiri, A. Synthesis, characterization and X-ray crystal structure of copper(I) complexes of the 2-(2-quinolyl)benzothiazole ligand. Electrochemical and antibacterial studies. Polyhedron 2015, 97, 234–239. [Google Scholar] [CrossRef]
- El-Zweay, R.S.; El-Ajaily, M.M.; Ben-Gweirif, S.F.; Maihub, A. Preparation, characterization and antibacterial activity of some mixed ligand chelates. J. Chem. Soc. Pak. 2013, 35, 67–71. [Google Scholar]
- Yanmei, L.; Yongheng, C.; Zhibin, O.; Shi, C.; Chuxiong, Z.; Xueyi, L. Synthesis, antibacterial activities and nuclease properties of ternary copper(II) complex containing 2-(2′-pyridyl)benzothiazole and glycinate. Chin. J. Chem. 2012, 30, 303–310. [Google Scholar] [CrossRef]
- Battin, E.E.; Brumaghim, J.L. Antioxidant activity of sulfur and selenium: A review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem. Biophys. 2009, 55, 1–23. [Google Scholar] [CrossRef]
- Zhao, C.; Rakesh, K.P.; Ravidar, L.; Fang, W.Y.; Qin, H.L. Pharmaceutical and medicinal significance of sulfur (SVI)-Containing motifs for drug discovery: A critical review. Eur. J. Med. Chem. 2019, 162, 679–734. [Google Scholar] [CrossRef]
- Ammar, R.A.; Alturiqi, A.S.; Alaghaz, A.-N.M.A.; Zayed, M.E. Synthesis, spectral characterization, quantum chemical calculations, in vitro antimicrobial and DNA activity studies of 2-(2′-mercaptophenyl) benzothiazole complexes. J. Mol. Struct. 2018, 1168, 250–263. [Google Scholar] [CrossRef]
- Jambi, M.S. Quantum, characterization and spectroscopic studies on Cu(II), Pd(II) and Pt(II) complexes of 1-(benzo[d]thiazol-2-yl)-3-phenylthiourea and its biological application as antimicrobial and antioxidant. J. Mol. Struct. 2017, 1143, 217–228. [Google Scholar] [CrossRef]
- Obasi, N.L.; Benedict, O.C.O.; Ukoha, P.O.; Anaga, A.O. Synthesis, characterization, and antimicrobial screening of N-(benzothiazole-2 yl)benzenesulphonamide and its Cu(I), Ni(II), Mn(II), Co(II), and Zn(II) complexes. E-J. Chem. 2012, 9, 2354–2370. [Google Scholar] [CrossRef]
- Obasi, L.N.; Okoye, C.O.B.; Ukoha, P.O.; Chah, K.F. Synthesis, characterization and antimicrobial screening of N-(benzothiazol-2-yl)-4-methylbenzenesulphonamide and its Cu(I), Ni(II), Mn(II), Co(II) and Zn(II) complexes. Asian J. Chem. 2013, 25, 2369–2376. [Google Scholar] [CrossRef]
- Obasi, L.N.; Okoye, C.O.B.; Ukoha, P.O.; Chah, K.F. Synthesis, characterization, and antimicrobial screening of N-(benzothiazol-2-yl)-2,5-dichlorobenzenesulphonamide and its Cu(I), Ni(II), Mn(II), Co(III) and Zn(II) complexes. Asian J. Chem. 2013, 25, 2199–2207. [Google Scholar] [CrossRef]
- Awad, I.M.A.; Osman, A.H.; Aly, A.A.M. Heterocyclo-substituted sulfa drugs: Part XII. Mercapto-S-azo-benzothiazol dyes and their metal complexes. Phosphorus Sulfur. 2003, 178, 1339–1352. [Google Scholar] [CrossRef]
- Ramoutar, R.R.; Brumaghim, J.L. Investigating the antioxidant properties of oxo-sulfur compounds on metal-mediated DNA damage. Main Group Chem. 2007, 6, 143–153. [Google Scholar] [CrossRef]
- Atmaca, G. Antioxidant effects of sulfur-containing amino acids. Yonsei Med. J. 2004, 45, 776–788. [Google Scholar] [CrossRef] [PubMed]
- Mukwevho, E.; Ferreira, Z.; Ayeleso, A. Potential role of sulfur-containing antioxidant systems in highly oxidative environments. Molecules 2014, 19, 19376–19389. [Google Scholar] [CrossRef] [PubMed]
- Battin, E.E.; Brumaghim, J.L. Metal specificity in DNA damage prevention by sulfur antioxidants. J. Inorg. Biochem. 2008, 102, 2036–2042. [Google Scholar] [CrossRef]
- Alfonso-Herrera, L.A.; Rosete-Luna, S.; Hernández-Romero, D.; Rivera-Villanueva, J.M.; Olivares-Romero, J.L.; Cruz-Navarro, J.A.; Soto-Contreras, A.; Arenaza-Corona, A.; Morales-Morales, D.; Colorado-Peralta, R. Transition metal complexes with tridentate Schiff bases (O N O and O N N) derived from salicylaldehyde: An analysis of their potential anticancer activity. ChemMedChem 2022, 17, e202200367. [Google Scholar] [CrossRef]
- de Fátima, Â.; de Paula Pereira, C.; Olímpio, C.R.S.D.G.; de Freitas Oliveira, B.G.; Franco, L.L.; da Silva, P.H.C. Schiff bases and their metal complexes as urease inhibitors–a brief review. J. Adv. Res. 2018, 13, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.N.; Ahmed, S.S.; Alam, S.R. Biomedical applications of Schiff base metal complexes. J. Coord. Chem. 2020, 73, 3109–3149. [Google Scholar] [CrossRef]
- Ashraf, T.; Ali, B.; Qayyum, H.; Haroone, M.S.; Shabbir, G. Pharmacological aspects of Schiff base metal complexes: A critical review. Inorg. Chem. Commun. 2023, 150, 110449. [Google Scholar] [CrossRef]
- Malik, M.A.; Dar, O.A.; Gull, P.; Wani, M.Y.; Hashmi, A.A. Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. MedChemComm 2018, 9, 409–436. [Google Scholar] [CrossRef]
- Cálinescu, M.; Ion, E.; Georgescu, R.; Negreanu-Pîrjol, T. Synthesis and spectroscopic, antibacterial and antifungal studies on copper (II) complexes with 2-benzothiazolyl hydrazones. Rev. Roum Chim. 2008, 53, 911–919. [Google Scholar]
- Cálinescu, M.; Ion, E.; Emandi, A.; Georgescu, R.; Negreanu-Pîrjol, T. Magnetic, optical and biological studies on copper (II) complexes with 2-benzothiazolyl hydrazones. II. Rev. Chim. 2008, 59, 1322–1326. [Google Scholar] [CrossRef]
- Ion, E.; Cálinescu, M.; Emandi, A.; Badea, V.; Negoiu, D. Copper (II) complex compounds with mixed hydrazone ligands. Rev. Chim. 2008, 59, 12–16. [Google Scholar] [CrossRef]
- Bhagat, S.M.; Deshpande, M.N. Synthesis and antimicrobial activity of some transition metal ion chelates of 2-(cinnamyl)-4-bromo-6-methyl benzothiazolyl hydrazones. J. Chem. Pharm. Res. 2012, 4, 1454–1456. [Google Scholar]
- Kurdekar, G.S.; Mudigoudar, P.S.; Kulkarni, N.V.; Budagumpi, S.; Revankar, V.K. Synthesis, characterization, antibiogram and DNA binding studies of novel Co(II), Ni(II), Cu(II), and Zn(II) complexes of Schiff base ligands with quinoline core. Med. Chem. Res. 2011, 20, 421–429. [Google Scholar] [CrossRef]
- Swamy, D.K.; Pachling, S.P.; Bhagat, T.M. Synthesis, characterization, antibacterial and antifungal studies on metal complexes with benzothiazolyl hydrazone. Rasāyan J. Chem. 2012, 5, 208–213. [Google Scholar]
- Hosseini-Yazdi, S.A.; Mirzaahmadi, A.; Khandar, A.A.; Eigner, V.; Dušek, M.; Mahdavi, M.; Soltani, S.; Lotfipour, F.; White, J. Reactions of copper(II), nickel(II), and zinc(II) acetates with a new water-soluble 4-phenylthiosemicarbazone Schiff base ligand: Synthesis, characterization, unexpected cyclization, antimicrobial, antioxidant, and anticancer activities. Polyhedron 2017, 124, 156–165. [Google Scholar] [CrossRef]
- Jawoor, S.S.; Patil, S.A.; Toragalmath, S.S. Synthesis and characterization of heteroleptic Schiff base transition metal complexes: A study of anticancer, antimicrobial, DNA cleavage and anti-TB activity. J. Coord. Chem. 2018, 78, 271–283. [Google Scholar] [CrossRef]
- Dahi, M.A.; Jarad, A.J. Synthesis, characterization and biological evaluation of thiazolyl azo ligand complexes with some metal ions. J. Phys. 2020, 1664, 012090. [Google Scholar] [CrossRef]
- Chakraborty, I.; Pinto, M.; Stenger-Smith, J.; Martinez-Gonzalez, J.; Mascharak, P.K. Synthesis, structures, and antibacterial properties of Cu(II) and Ag(I) complexes derived from 2,6-bis(benzothiazole)-pyridine. Polyhedron 2019, 172, 1–7. [Google Scholar] [CrossRef]
- Al-khafagy, A.H. Synthesis, characterization, and biological study of some new metal-azo chelate complexes. J. Chem. Pharm. Res. 2016, 8, 296–302. [Google Scholar]
- Netalkar, P.P.; Kamath, A.; Netalkar, S.P.; Revankar, V.K. Desing, synthesis and DNA binding activities of late first-row transition metal(II) complexes of bi-functional tri—And tetratopic imines. Spectrochim. Acta A. 2012, 97, 762–770. [Google Scholar] [CrossRef]
- Kamath, A.; Kulkarni, N.V.; Netalkar, P.P.; Revankar, V.K. Phenoxide bridged tetranuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes: Electrochemical, magnetic and antimicrobial studies. Spectrochim. Acta A. 2011, 79, 1418–1424. [Google Scholar] [CrossRef]
- Annigeri, S.M.; Naik, A.D.; Gangadharmath, U.B.; Revankar, V.K.; Mahale, V.B. Symmetric binuclear complexes with an ‘end-off’compartmental Schiff base ligand. Transit. Metal Chem. 2002, 27, 316–320. [Google Scholar] [CrossRef]
- Panchal, P.K.; Parekh, H.M.; Pansuriya, P.B.; Patel, M.N. Bactericidal activity of different oxovanadium(IV) complexes with Schiff bases and application of chelation theory. J. Enzym Inhib. Med. Chem. 2006, 21, 203–209. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colorado-Peralta, R.; Olivares-Romero, J.L.; Rosete-Luna, S.; García-Barradas, O.; Reyes-Márquez, V.; Hernández-Romero, D.; Morales-Morales, D. Copper-Coordinated Thiazoles and Benzothiazoles: A Perfect Alliance in the Search for Compounds with Antibacterial and Antifungal Activity. Inorganics 2023, 11, 185. https://doi.org/10.3390/inorganics11050185
Colorado-Peralta R, Olivares-Romero JL, Rosete-Luna S, García-Barradas O, Reyes-Márquez V, Hernández-Romero D, Morales-Morales D. Copper-Coordinated Thiazoles and Benzothiazoles: A Perfect Alliance in the Search for Compounds with Antibacterial and Antifungal Activity. Inorganics. 2023; 11(5):185. https://doi.org/10.3390/inorganics11050185
Chicago/Turabian StyleColorado-Peralta, Raúl, José Luis Olivares-Romero, Sharon Rosete-Luna, Oscar García-Barradas, Viviana Reyes-Márquez, Delia Hernández-Romero, and David Morales-Morales. 2023. "Copper-Coordinated Thiazoles and Benzothiazoles: A Perfect Alliance in the Search for Compounds with Antibacterial and Antifungal Activity" Inorganics 11, no. 5: 185. https://doi.org/10.3390/inorganics11050185
APA StyleColorado-Peralta, R., Olivares-Romero, J. L., Rosete-Luna, S., García-Barradas, O., Reyes-Márquez, V., Hernández-Romero, D., & Morales-Morales, D. (2023). Copper-Coordinated Thiazoles and Benzothiazoles: A Perfect Alliance in the Search for Compounds with Antibacterial and Antifungal Activity. Inorganics, 11(5), 185. https://doi.org/10.3390/inorganics11050185