Exploration of ZnO-Doped Nitrogen-Carbon Materials Derived from Polyamide-Imide for Propane Dehydrogenation
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Phase Structure and Nanoparticle Size of the Catalyst
2.2. The Surface Composition and State of the Catalyst
2.3. The Acidity and Basicity of the Catalysts
2.4. Catalytic Performance and Stability for PDH
2.5. The Deactivation of the Catalyst
3. Experimental Procedure
3.1. Catalyst Preparation
3.2. Catalytic Evaluation
3.3. Catalyst Characterizations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- van Koppen, P.A.M.; Bowers, M.T.; Haynes, C.L.; Armentrout, P.B. Reactions of ground-state Ti+ and V+ with propane: Factors that govern C-H and C-C bond cleavage product branching ratios. J. Am. Chem. Soc. 1998, 120, 5704–5712. [Google Scholar] [CrossRef]
- Ali, W.; Prakash, G.; Maiti, D. Recent development in transition metal-catalysed C-H olefination. Chem. Sci. 2021, 12, 2735–2759. [Google Scholar] [CrossRef] [PubMed]
- Waku, T.; Biscardi, J.A.; Iglesia, E. Active, selective, and stable Pt/Na-[Fe]ZSM5 catalyst for the dehydrogenation of light alkanes. Chem. Commun. 2003, 14, 1764–1765. [Google Scholar] [CrossRef]
- Zhang, J.S.; Nakaya, Y.; Shimizu, K.; Furukawa, S. Surface engineering of titania boosts electroassisted propane dehydrogenation at low temperature. Angew. Chem. Int. Ed. 2023, 62, e202300744. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.L.; Fu, B.S.; Kung, M.C.; Xiao, G.M.; Elam, J.W.; Kung, H.H.; Stair, P.C. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science 2012, 335, 1205–1208. [Google Scholar] [CrossRef] [PubMed]
- Sattler, J.J.H.B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B.M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 2014, 114, 10613–10653. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.N.; Wu, Y.M.; Tao, L.; Shan, H.H.; Wang, G.W.; Li, C.Y. Effect of pre-reduction on the performance of Fe2O3/Al2O3 catalysts in dehydrogenation of propane. J. Mol. Catal. A Chem. 2015, 397, 120–126. [Google Scholar] [CrossRef]
- Cheng, M.; Zhao, H.H.; Yang, J.; Zhao, J.; Yan, L.; Song, H.L.; Chou, L.J. The catalytic dehydrogenation of isobutane and the stability enhancement over Fe incorporated SBA-15. Microporous Mesoporous Mater. 2018, 266, 117–125. [Google Scholar] [CrossRef]
- Zhao, Z.J.; Wu, T.F.; Xiong, C.Y.; Sun, G.D.; Mu, R.T.; Zeng, L.; Gong, J.L. Hydroxyl-mediated non-oxidative propane dehydrogenation over VOx/γ-Al2O3 catalysts with improved stability. Angew. Chem. Int. Ed. 2018, 57, 6791–6795. [Google Scholar] [CrossRef]
- Cheng, E.; McCullough, L.; Noh, H.; Farha, O.; Hupp, J.; Notestein, J. Isobutane dehydrogenation over bulk and supported molybdenum sulfide catalysts. Ind. Eng. Chem. Res. 2020, 59, 1113–1122. [Google Scholar] [CrossRef]
- Han, S.L.; Zhao, D.; Otroshchenko, T.; Lund, H.; Bentrup, U.; Kondratenko, V.A.; Rockstroh, N.; Bartling, S.; Doronkin, D.E.; Grunwaldt, J.; et al. Elucidating the nature of active sites and fundamentals for their creation in Zn-containing ZrO2-based catalysts for nonoxidative propane dehydrogenation. ACS Catal. 2020, 10, 8933–8949. [Google Scholar] [CrossRef]
- Wang, Y.S.; Suo, Y.J.; Ren, J.T.; Wang, Z.; Yuan, Z.Y. Spatially isolated cobalt oxide sites derived from MOFs for direct propane dehydrogenation. J. Colloid Interface Sci. 2021, 594, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zeng, L.; Zhao, Z.J.; Tian, H.; Wu, T.F.; Gong, J.L. Platinum-modified ZnO/Al2O3 for propane dehydrogenation: Minimized platinum usage and improved catalytic stability. ACS Catal. 2016, 6, 2158–2162. [Google Scholar] [CrossRef]
- Cheng, M.; Zhao, H.H.; Yang, J.; Zhao, J.; Yan, L.; Song, H.L.; Chou, L.J. Facile synthesis of ordered mesoporous zinc alumina catalysts and their dehydrogenation behavior. RSC Adv. 2019, 9, 9828–9837. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, S.G.; Yang, N.; Deng, M.M.; Ibraheem, S.; Deng, J.H.; Li, J.; Li, L.; Wei, Z.D. Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew. Chem. Int. Ed. 2019, 58, 7035–7039. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.X.; Chen, S.; Li, S.; Yang, Y.Q.; Guan, Q.Q.; Ding, J.N.; Liu, X.Y.; Liu, Q.; Xu, W.L.; Lu, J.L. Particle size effect of SiO2-supported ZnO catalysts in propane dehydrogenation. Catal. Sci. Technol. 2023, 13, 1866–1873. [Google Scholar] [CrossRef]
- Yang, F.W.; Zhang, J.; Shi, Z.B.; Chen, J.W.; Wang, G.; Zhao, J.Y.; Zhuo, R.S.; Wang, R.L. Regulation of active ZnO species on Si-based supports with diverse textural properties for efficient propane dehydrogenation. ChemCatChem 2023, 15, e2023004. [Google Scholar] [CrossRef]
- Shan, F.K.; Shin, B.C.; Jang, S.W.; Yu, Y.S. Substrate effects of ZnO thin films prepared by PLD technique. J. Eur. Ceram. Soc. 2004, 24, 1015–1018. [Google Scholar] [CrossRef]
- Sun, Y.N.; Gao, C.C.; Tao, L.; Wang, G.W.; Han, D.M.; Li, C.Y.; Shan, H.H. Zn-Nb-O catalysts for propylene production via catalytic dehydrogenation of propane. Catal. Commun. 2014, 50, 73–77. [Google Scholar] [CrossRef]
- Yuan, Y.; Lobo, R.F. Zinc speciation and propane dehydrogenation in Zn/H-ZSM-5 catalysts. ACS Catal. 2023, 13, 4971–4984. [Google Scholar] [CrossRef]
- Schweitzer, N.M.; Hu, B.; Das, U.; Kim, H.; Greeley, J.; Curtiss, L.A.; Stair, P.C.; Miller, J.T.; Hock, A.S. Propylene hydrogenation and propane dehydrogenation by a single-Site Zn2+ on silica catalyst. ACS Catal. 2014, 4, 1091–1098. [Google Scholar] [CrossRef]
- Almutairi, S.M.T.; Mezari, B.; Magusin, P.C.M.M.; Pidko, E.A.; Hensen, E.J.M. Structure and reactivity of Zn-modified ZSM-5 zeolites: The importance of clustered cationic Zn complexes. ACS Catal. 2012, 2, 71–83. [Google Scholar] [CrossRef]
- Zhao, D.; Li, Y.; Han, S.; Zhang, Y.; Jiang, G.; Wang, Y.; Guo, K.; Zhao, Z.; Xu, C.; Li, R.; et al. ZnO Nanoparticles encapsulated in nitrogen-doped carbon material and silicalite-1 composites for efficient propane dehydrogenation. iScience 2019, 13, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.L.; Dai, X.Y.; Fu, Y.; Qi, W. Coordination polymer-derived non-precious metal catalyst for propane dehydrogenation: Highly dispersed zinc anchored on N-doped carbon. Appl. Surf. Sci. 2023, 607, 155055. [Google Scholar] [CrossRef]
- Feng, Q.P.; Xie, X.M.; Liu, Y.T.; Zhao, W.; Gao, Y.F. Synthesis of hyperbranched aromatic polyamide-imide and its grafting onto multiwalled carbon nanotubes. J. Appl. Polym. Sci. 2007, 106, 2413–2421. [Google Scholar] [CrossRef]
- Duan, G.G.; Liu, S.W.; Jiang, S.H.; Hou, H.Q. High-performance polyamide-imide films and electrospun aligned nanofibers from an amide-containing diamine. J. Mater. Sci. 2019, 54, 6719–6727. [Google Scholar] [CrossRef]
- Singh, K.; Nancy; Kaur, H.; Sharma, P.K.; Singh, G.; Singh, J. ZnO and cobalt decorated ZnO NPs: Synthesis, photocatalysis and antimicrobial applications. Chemosphere 2023, 313, 137322. [Google Scholar] [CrossRef]
- Han, J.H.; Johnson, I.; Lu, Z.; Kudo, A.; Chen, M.W. Effect of local atomic structure on sodium ion storage in hard amorphous carbon. Nano Lett. 2021, 21, 6504–6510. [Google Scholar] [CrossRef]
- Liu, Z.; Du, Z.Y.; Xing, W.; Yan, Z.F. Facial synthesis of N-doped microporous carbon derived from urea furfural resin with high CO2 capture capacity. Mater. Lett. 2014, 117, 273–275. [Google Scholar] [CrossRef]
- Cao, P.K.; Liu, Y.M.; Quan, X.; Zhao, J.J.; Chen, S.; Yu, H.T. Nitrogen-doped hierarchically porous carbon nanopolyhedras derived from core-shell ZIF-8@ZIF-8 single crystals for enhanced oxygen reduction reaction. Catal. Today 2019, 327, 366–373. [Google Scholar] [CrossRef]
- Wang, L.H.; Han, X.D.; Zhang, Y.F.; Zheng, K.; Liu, P.; Zhang, Z. Asymmetrical quantum dot growth on tensile and compressive-strained ZnO nanowire surfaces. Acta Mater. 2011, 59, 651–657. [Google Scholar] [CrossRef]
- Wong, T.I.; Tan, H.R.; Sentosa, D.; Wong, L.M.; Wang, S.J.; Feng, Y.P. Epitaxial growth of ZnO film on Si(111) with CeO2(111) as buffer layer. J. Phys. D Appl. Phys. 2012, 45, 415306. [Google Scholar] [CrossRef]
- Yu, J.G.; Xing, H.Z.; Zhao, Q.Q.; Mao, H.B.; Shen, Y.; Wang, J.Q.; Lai, Z.S.; Zhu, Z.Q. The origin of additional modes in Raman spectra of N+-implanted ZnO. Solid State Commun. 2006, 138, 502–504. [Google Scholar] [CrossRef]
- Zhao, H.H.; Song, H.L.; Zhao, J.; Yang, J.; Yan, L.; Chou, L.J. The Reactivity and deactivation mechanism of Ru@C catalyst over hydrogenation of aromatics to cyclohexane derivatives. ChemistrySelect 2020, 5, 4316–4327. [Google Scholar] [CrossRef]
- Liang, M.F.; Liu, Y.; Zhang, J.; Wang, F.Y.; Miao, Z.C.; Diao, L.C.; Mu, J.L.; Zhou, J.; Zhuo, S.P. Understanding the role of metal and N species in M@NC catalysts for electrochemical CO2 reduction reaction. Appl. Catal. B Environ. 2022, 306, 121115. [Google Scholar] [CrossRef]
- Gunawan, E.R.; Suhendra, D.; Hidayat, I.; Kurniawati, L. Optimization of alkyldiethanolamides synthesis from terminalia catappa L. kernel oil through enzymatic reaction. J. Oleo Sci. 2018, 67, 949–955. [Google Scholar] [CrossRef]
- Przepiórski, J.; Skrodzewicz, M.; Morawski, A.W. High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Appl. Surf. Sci. 2004, 225, 235–242. [Google Scholar] [CrossRef]
- Qi, W.; Liu, W.; Zhang, B.S.; Gu, X.M.; Guo, X.L.; Su, D.S. Oxidative dehydrogenation on nanocarbon: Identification and quantification of active sites by chemical titration. Angew. Chem. Int. Ed. 2013, 52, 14224–14228. [Google Scholar] [CrossRef]
- Sun, X.Y.; Li, B.; Su, D.S. Revealing the nature of the active site on the carbon catalyst for C-H bond activation. Chem. Commun. 2014, 50, 11016–11019. [Google Scholar] [CrossRef]
- Zheng, F.C.; Yang, Y.; Chen, Q.W. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 2014, 5, 5261. [Google Scholar] [CrossRef]
- Guo, Q.Q.; Jing, W.; Hou, Y.Q.; Huang, Z.G.; Ma, G.; Han, X.J.; Sun, D.K. On the nature of oxygen groups for NH3-SCR of NO over carbon at low temperatures. Chem. Eng. J. 2015, 270, 41–49. [Google Scholar] [CrossRef]
- Ren, Y.J.; Zhang, F.; Hua, W.M.; Yue, Y.H.; Gao, Z. ZnO supported on high silica HZSM-5 as new catalysts for dehydrogenation of propane to propene in the presence of CO2. Catal. Today 2009, 148, 316–322. [Google Scholar] [CrossRef]
- Zhao, H.H.; Song, H.L.; Chou, L.J.; Zhao, J.; Yang, J.; Yan, L. Insight into the structure and molybdenum species in mesoporous molybdena-alumina catalysts for isobutane dehydrogenation. Catal. Sci. Technol. 2017, 7, 3258–3267. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Blume, R.; Zhang, A.H.; Schloegl, R.; Su, D.S. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane. Science 2008, 322, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Otroshchenko, T.; Jiang, G.; Kondratenko, V.A.; Rodemerck, U.; Kondratenko, E.V. Current status and perspectives in oxidative, non-oxidative and CO2-mediated dehydrogenation of propane and isobutane over metal oxide catalysts. Chem. Soc. Rev. 2021, 50, 473–527. [Google Scholar] [CrossRef]
Catalyst | Atomic Content (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Zn | N | O | C | ||||||
Pyridinic-N | Zn-Nx | Pyrrole-N | Graphitic-N | Zn-O | C=O | O-H | |||
N-C | 0 | 1.62 | 0 | 1.72 | 0.34 | 0 | 6.96 | 2.02 | 87.36 |
5ZnO-N-C | 1.46 | 3.44 | 1.95 | 1.39 | 0.48 | 1.29 | 6.02 | 1.25 | 82.73 |
10ZnO-N-C | 6.52 | 2.77 | 1.04 | 0.93 | 0.29 | 5.37 | 3.78 | 1.09 | 78.20 |
20ZnO-N-C | 5.26 | 3.16 | 1.14 | 1.02 | 0.40 | 4.32 | 4.20 | 1.02 | 79.49 |
30ZnO-N-C | 8.48 | 3.30 | 1.19 | 1.25 | 0.30 | 6.63 | 4.86 | 1.22 | 72.76 |
40ZnO-N-C | 10.73 | 3.04 | 1.34 | 1.26 | 0.43 | 8.20 | 4.66 | 1.33 | 69.02 |
20ZnO-N-C-air | 6.27 | 2.45 | 0.88 | 0.99 | 0.25 | 5.53 | 5.39 | 1.58 | 76.68 |
Catalyst | Gas Composition | GHSVC3H8 (h−1) | T (°C) | C3H8 Conversion (%) | C3H6 Selectivity (%) | kd (h−1) | Reference |
---|---|---|---|---|---|---|---|
Zn/H-ZSM-5(15, 1.3) | C3H8/N2 = 5/95 | 20,000 | 550 | ~13 | ~80 | - | [20] |
5ZnO/SiO2 | H2/C3H8/Ar = 1/1/5 | 1000 | 600 | 27 | 95 | 0.030 | [16] |
ZnO@NC/S-1(1.0) | H2/C3H8/N2 = 1/1/ 5 | 450 | 600 | 44.4 | 90 | 0.092 | [23] |
NS-ZIF8-900 | C3H8/He = 1/4 | 1860 | 550 | ~5 | ~88 | - | [24] |
930 | 600 | ~15 | ~80 | 0.082 | |||
20ZnO-N-C | C3H8 (100%) | 840 | 580 | 18.1 | 83 | 0.071 | This work |
840 | 600 | 30.7 | 78.2 | - | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Ji, T.; Wu, Y.; Song, H.; Wu, J.; Chou, L. Exploration of ZnO-Doped Nitrogen-Carbon Materials Derived from Polyamide-Imide for Propane Dehydrogenation. Inorganics 2024, 12, 22. https://doi.org/10.3390/inorganics12010022
Zhao H, Ji T, Wu Y, Song H, Wu J, Chou L. Exploration of ZnO-Doped Nitrogen-Carbon Materials Derived from Polyamide-Imide for Propane Dehydrogenation. Inorganics. 2024; 12(1):22. https://doi.org/10.3390/inorganics12010022
Chicago/Turabian StyleZhao, Huahua, Tingyu Ji, Yanping Wu, Huanling Song, Jianfeng Wu, and Lingjun Chou. 2024. "Exploration of ZnO-Doped Nitrogen-Carbon Materials Derived from Polyamide-Imide for Propane Dehydrogenation" Inorganics 12, no. 1: 22. https://doi.org/10.3390/inorganics12010022
APA StyleZhao, H., Ji, T., Wu, Y., Song, H., Wu, J., & Chou, L. (2024). Exploration of ZnO-Doped Nitrogen-Carbon Materials Derived from Polyamide-Imide for Propane Dehydrogenation. Inorganics, 12(1), 22. https://doi.org/10.3390/inorganics12010022