Activity of Platinum-Based Cathode Electrocatalysts in Oxygen Redaction for Proton-Exchange Membrane Fuel Cells: Influence of the Ionomer Content
Abstract
:1. Introduction
2. Results and Discussion
2.1. Study of the Catalysts Structure
2.2. Features of the Formation of a Drop on the RDE Surface
3. Materials and Methods
3.1. Research Objects
3.2. Composition and Structural-Morphological Characteristics of Materials
3.3. Testing the Technique of Applying the Catalytic Ink onto the RDE
4. Conclusions
- LF4-SK can be used as an ionomer when preparing the catalytic ink of the platinum–carbon catalysts instead of Nafion.
- The optimal content of the ionomer for the preparation of the catalytic ink is the I:C ratio − 0.2 of the LF4-SK ionomer.
- The best way to dry a drop on the RDE surface for all compositions and all types of catalysts is drying at a rotation speed of 700 rpm.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mancino, A.N.; Menale, C.; Vellucci, F.; Pasquali, M.; Bubbico, R. PEM Fuel Cell Applications in Road Transport. Energies 2023, 16, 6129. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Yao, Z. Recent Development of Fuel Cell Core Components and Key Materials: A Review. Energies 2023, 16, 2099. [Google Scholar] [CrossRef]
- Duan, Y.; Liu, H.; Zhang, W.; Khotseng, L.; Xu, Q.; Su, H. Materials, components, assembly and performance of flexible polymer electrolyte membrane fuel cell: A review. J. Power Sources 2023, 555, 232369. [Google Scholar] [CrossRef]
- Liu, H.; Ney, L.; Zamel, N.; Li, X. Effect of catalyst ink and formation process on the multiscale structure of catalyst layers in PEM fuel cells. Appl. Sci. 2023, 12, 3776. [Google Scholar] [CrossRef]
- Ngo, T.T.; Yu, T.L.; Lin, H.L. Nafion-based membrane electrode assemblies prepared from catalyst inks containing alcohol/water solvent mixtures. J. Power Sources 2013, 238, 1–10. [Google Scholar] [CrossRef]
- Jinnouchi, R.; Kudo, K.; Kodama, K.; Kitano, N.; Suzuki, T.; Minami, S.; Shinozaki, K.; Hasegawa, N.; Shinohara, A. The role of oxygen-permeable ionomer for polymer electrolyte fuel cells. Nat. Commun. 2023, 12, 4956. [Google Scholar] [CrossRef]
- Welch, C.; Labouriau, A.; Hjelm, R.; Orler, B.; Johnston, C.; Kim, Y.S. Nafion in dilute solvent systems: Dispersion or solution? ACS Macro Lett. 2012, 1, 1403–1407. [Google Scholar] [CrossRef]
- Dixit, M.B.; Harkey, B.A.; Shen, F.; Hatzell, K.B. Catalyst layer ink interactions that affect coatability. J. Electrochem. Soc. 2018, 165, F264–F271. [Google Scholar] [CrossRef]
- Passalacqua, E.; Lufrano, F.; Squadrito, G.; Patti, A.; Giorgi, L. Nafion content in the catalyst layer of polymer electrolyte fuel cells: Effects on structure and performance. Electrochim. Acta 2001, 46, 799–805. [Google Scholar] [CrossRef]
- Ishikawa, H.; Sugawara, Y.; Inoue, G.; Kawase, M. Effects of Pt and ionomer ratios on the structure of catalyst layer: A theoretical model for polymer electrolyte fuel cells. J. Power Sources 2018, 374, 196–204. [Google Scholar] [CrossRef]
- Shinozaki, K.; Zack, J.W.; Pylypenko, S.; Pivovar, B.S.; Kocha, S.S. Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: II. Influence of ink formulation, catalyst layer uniformity and thickness. J. Electrochem. Soc. 2015, 162, F1384. [Google Scholar] [CrossRef]
- Harada, M.; Kajiya, S.; Mitsuoka, T.; Takata, S.I.; Iwase, H.; Aoki, H. Scattering investigations into the structures of polymer-electrolyte-fuel-cell catalyst layers exhibiting robust performance against varying water fractions of catalyst ink solvents. Colloids Surf. A Physicochem. Eng. Asp. 2023, 665, 131183. [Google Scholar] [CrossRef]
- Singh, R.K.; Devivaraprasad, R.; Kar, T.; Chakraborty, A.; Neergat, M. Electrochemical impedance spectroscopy of oxygen reduction reaction (ORR) in a rotating disk electrode configuration: Effect of ionomer content and carbon-support. J. Electrochem. Soc. 2015, 162, F489. [Google Scholar] [CrossRef]
- Holdcroft, S. Fuel cell catalyst layers: A polymer science perspective. Chem. Mater. 2014, 26, 381–393. [Google Scholar] [CrossRef]
- Kocha, S.S.; Zack, J.W.; Alia, S.M.; Neyerlin, K.C.; Pivovar, B.S. Influence of ink composition on the electrochemical properties of Pt/C electrocatalysts. ECS Trans. 2013, 50, 1475. [Google Scholar] [CrossRef]
- Singh, S.; Grabowski, J.P.; Pohani, S.; Apuzzo, C.F.; Platt, D.C.; Jones, M.A.; Mitchell, T.A. Synthesis of Polycyclic Ether-Benzopyrans and In Vitro Inhibitory Activity against Leishmania tarentolae. Molecules 2020, 25, 5461. [Google Scholar] [CrossRef]
- Nesselberger, M.; Ashton, S.; Meier, J.C.; Katsounaros, I.; Mayrhofer, K.J.; Arenz, M. The particle size effect on the oxygen reduction reaction activity of Pt catalysts: Influence of electrolyte and relation to single crystal models. J. Am. Chem. Soc. 2011, 133, 17428–17433. [Google Scholar] [CrossRef]
- Ke, K.; Hiroshima, K.; Kamitaka, Y.; Hatanaka, T.; Morimoto, Y. An accurate evaluation for the activity of nano-sized electrocatalysts by a thin-film rotating disk electrode: Oxygen reduction on Pt/C. Electrochim. Acta 2012, 72, 120–128. [Google Scholar] [CrossRef]
- Garsany, Y.; Baturina, O.A.; Swider-Lyons, K.E.; Kocha, S.S. Experimental Methods for Quantifying the Activity of Platinum Electrocatalysts for the Oxygen Reduction Reaction. Anal. Chem. 2010, 82, 6321–6328. [Google Scholar] [CrossRef]
- Mo, S.; Du, L.; Huang, Z.; Chen, J.; Zhou, Y.; Wu, P.; Meng, L.; Wang, N.; Xing, L.; Zhao, M.; et al. Recent Advances on PEM Fuel Cells: From Key Materials to Membrane Electrode Assembly. Electrochem. Energy Rev. 2023, 6, 28. [Google Scholar] [CrossRef]
- Andersen, S.M.; Grahl-Madsen, L. Interface contribution to the electrode performance of proton exchange membrane fuel cells–Impact of the ionomer. Int. J. Hydrogen Energy 2016, 41, 1892–1901. [Google Scholar] [CrossRef]
- Yakovlev, Y.V.; Lobko, Y.V.; Vorokhta, M.; Nováková, J.; Mazur, M.; Matolínová, I.; Matolín, V. Ionomer content effect on charge and gas transport in the cathode catalyst layer of proton-exchange membrane fuel cells. J. Power Sources 2021, 490, 229531. [Google Scholar] [CrossRef]
- Ahn, C.Y.; Cheon, J.Y.; Joo, S.H.; Kim, J. Effects of ionomer content on Pt catalyst/ordered mesoporous carbon support in polymer electrolyte membrane fuel cells. J. Power Sources 2013, 222, 477–482. [Google Scholar] [CrossRef]
- Zhao, J.; Sarkar, A.; Manthiram, A. Synthesis and characterization of Pd-Ni nanoalloy electrocatalysts for oxygen reduction reaction in fuel cells. Electrochim. Acta 2010, 55, 1756–1765. [Google Scholar] [CrossRef]
- Yaroslavtsev, A.B. Perfluorinated ion exchange membranes. High Mol. Weight. Compd. 2013, 55, 1367. [Google Scholar] [CrossRef]
- Rikukawa, M.; Sanui, K. Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Prog. Polym. Sci. 2000, 25, 1463–1502. [Google Scholar] [CrossRef]
- Pure Aqua, Inc. Available online: https://pureaqua.com/dow-filmtec-membranes/ (accessed on 18 October 2023).
- Panshin, Y.A.; Dreyman, N.A.; Andreeva, A.I.; Manechkina, O.N. Properties of perfluorinated sulfonic cation exchange membranes MF-4SK. Plastics 1977, 8, 7–8. [Google Scholar]
- Branco, C.M.; El-Kharouf, A.; Du, S. Materials for polymer electrolyte membrane fuel cells (PEMFCs): Electrolyte membrane, gas diffusion layers, and bipolar plates. In Reference Module in Materials Science and Materials Engineering; Elsevier: Oxford, UK, 2017; pp. 1–11. [Google Scholar]
- Timashev, S.F. Physico-Chemistry of Membrane Processes; Chemistry: Moscow, Russia, 1988; 240p. [Google Scholar]
- Huy, H.A.; Van Man, T.; Tai, H.T. Preparation and characterization of high-dispersed Pt/C nano-electrocatalysts for fuel cell applications. Vietnam. J. Sci. Technol. 2016, 54, 472–482. [Google Scholar] [CrossRef]
- Paperzh, K.O.; Alekseenko, A.A.; Volochaev, V.A.; Pankov, I.V.; Safronenko, O.A.; Guterman, V.E. Stability and activity of platinum nanoparticles in the oxygen electroreduction reaction: Is size or uniformity of primary importance? Beilstein J. Nanotechnol. 2021, 12, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Moguchikh, E.A.; Paperzh, K.O.; Alekseenko, A.A.; Gribov, E.N.; Tabachkova, N.Y.; Maltseva, N.V.; Tkachev, A.G.; Neskoromnaya, E.A.; Melezhik, A.V.; Butova, V.V.; et al. Platinum nanoparticles supported on nitrogen-doped carbons as electrocatalysts for oxygen reduction reaction. J. Appl. Electrochem. 2022, 52, 231–246. [Google Scholar] [CrossRef]
- Liu, G.; McLaughlin, D.; Thiele, S.; Van Pham, C. Correlating catalyst ink design and catalyst layer fabrication with electrochemical CO2 reduction performance. Chem. Eng. J. 2023, 460, 141757. [Google Scholar] [CrossRef]
- Shinozaki, K.; Zack, J.W.; Pylypenko, S.; Richards, R.M.; Pivovar, B.S.; Kocha, S.S. Benchmarking the oxygen reduction reaction activity of Pt-based catalysts using standardized rotating disk electrode methods. Int. J. Hydrogen Energy 2015, 40, 16820–16830. [Google Scholar] [CrossRef]
- Li, G.F.; Yang, D.; Abel Chuang, P.Y. Defining nafion ionomer roles for enhancing alkaline oxygen evolution electrocatalysis. ACS Catal. 2018, 8, 11688–11698. [Google Scholar] [CrossRef]
- Alekseenko, A.; Pavlets, A.; Moguchikh, E.; Tolstunov, M.; Gribov, E.; Belenov, S.; Guterman, V. Platinum-Containing Nanoparticles on N-Doped Carbon Supports as an Advanced Electrocatalyst for the Oxygen Reduction Reaction. Catalysts 2022, 12, 414. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Han, J. Mesoporous N-doped carbon nanofibers with surface nanocavities for enhanced catalytic activity toward oxygen reduction reaction. J. Mater. Sci. 2020, 55, 11177–11187. [Google Scholar] [CrossRef]
- Zhou, Y.; Neyerlin, K.; Olson, T.S.; Pylypenko, S.; Bult, J.; Dinh, H.N.; Gennett, T.; Shao, Z.; O’Hayre, R. Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ. Sci. 2010, 3, 1437–1446. [Google Scholar] [CrossRef]
- Paperzh, K.O.; Pavlets, A.S.; Alekseenko, A.A.; Pankov, I.V.; Guterman, V.E. The integrated study of the morphology and the electrochemical behavior of Pt-based ORR electrocatalysts during the stress testing. Int. J. Hydrogen Energy 2023, 48, 22401–22414. [Google Scholar] [CrossRef]
- Paperzh, K.; Alekseenko, A.; Safronenko, O.; Nikulin, A.; Pankov, I.; Guterman, V. UV radiation effect on the microstructure and performance of electrocatalysts based on small Pt nanoparticles synthesized in the liquid phase. Colloid Interface Sci. Commun. 2021, 45, 100517. [Google Scholar] [CrossRef]
Sample | Carbon Support | Pt Loading, % | DAV, nm (XRD) | DNP, nm (TEM) |
---|---|---|---|---|
JM20 | Vulcan XC–72 | 20.0 | 2.5 | 2.7 |
PM20 | Vulcan XC–72 | 20.0 | 2.0 | 2.0 |
Pt/C–N | Ketjenblack EC-300J | 18.0 | - * | 2.3 |
Electrocatalyst | Ink Preparation Technique | ESA, m2/g (Pt) | ORR Activity | |
---|---|---|---|---|
Ik, A/g (Pt) | E1/2, V | |||
JM20 | VN | 74 | 268 | 0.89 |
VM1 | 135 | 384 | 0.92 | |
VM2 | 92 | 350 | 0.91 | |
VM0.05 | 106 | 235 | 0.90 | |
PM20 | VN | 82 | 290 | 0.90 |
VM1 | 96 | 484 | 0.93 | |
VM2 | 95 | 455 | 0.93 | |
Pt/C–N | VN | 63 | 299 | 0.90 |
VM1 | 103 | 581 | 0.93 | |
VM2 | 113 | 326 | 0.91 |
Name of the Experiment | Catalyst | Ionomer | Mass Fraction of Ionomer in the Emulsion, % | I:C Ratio | Note |
---|---|---|---|---|---|
VN | JM20 | Nafion | 1 | 0.2 | Standard technique |
VM1 | JM20 | LF4-SK | 1 | 0.2 | Standard technique with an alternative ionomer |
VM2 | JM20 | LF4-SK | 2 | 0.4 | More concentrated ionomer |
VM0.05 | JM20 | LF4-SK | 0.05 | 0.1 | Diluted ionomer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alekseenko, A.; Belenov, S.; Mauer, D.; Moguchikh, E.; Falina, I.; Bayan, J.; Pankov, I.; Alekseenko, D.; Guterman, V. Activity of Platinum-Based Cathode Electrocatalysts in Oxygen Redaction for Proton-Exchange Membrane Fuel Cells: Influence of the Ionomer Content. Inorganics 2024, 12, 23. https://doi.org/10.3390/inorganics12010023
Alekseenko A, Belenov S, Mauer D, Moguchikh E, Falina I, Bayan J, Pankov I, Alekseenko D, Guterman V. Activity of Platinum-Based Cathode Electrocatalysts in Oxygen Redaction for Proton-Exchange Membrane Fuel Cells: Influence of the Ionomer Content. Inorganics. 2024; 12(1):23. https://doi.org/10.3390/inorganics12010023
Chicago/Turabian StyleAlekseenko, Anastasia, Sergey Belenov, Dmitriy Mauer, Elizaveta Moguchikh, Irina Falina, Julia Bayan, Ilya Pankov, Danil Alekseenko, and Vladimir Guterman. 2024. "Activity of Platinum-Based Cathode Electrocatalysts in Oxygen Redaction for Proton-Exchange Membrane Fuel Cells: Influence of the Ionomer Content" Inorganics 12, no. 1: 23. https://doi.org/10.3390/inorganics12010023
APA StyleAlekseenko, A., Belenov, S., Mauer, D., Moguchikh, E., Falina, I., Bayan, J., Pankov, I., Alekseenko, D., & Guterman, V. (2024). Activity of Platinum-Based Cathode Electrocatalysts in Oxygen Redaction for Proton-Exchange Membrane Fuel Cells: Influence of the Ionomer Content. Inorganics, 12(1), 23. https://doi.org/10.3390/inorganics12010023