Process Parameter Optimisation for Endohedral Metallofullerene Synthesis via the Arc-Discharge Method
Abstract
:1. Introduction
2. Structure of Endohedral Fullerenes
2.1. Endohedral Metallofullerenes: EMFs
2.2. Environmental Application
2.3. Synthesis
3. Reaction Parameters and Pathways
3.1. Anode Composition
3.2. Ionization Potential
3.3. Effect of Catalyst
3.4. Effect of Helium Pressure
Year | Anode | Fullerene | He Pressure (mBar) | Current | Extraction Solvent | References |
---|---|---|---|---|---|---|
1992 | Sc2O3 | Sc-EMF | 66.6 | - | Toluene and Pyridine and CS2 1 | [35] |
1992 | Sc2O3 | Sc-EMF | 266.6 | - | Toluene | [32] |
1992 | La2O3 | La-EMF | 266.6 | - | Toluene | [33] |
1993 | Sc2O3 M/C = 2.3/100 atomic ratio | Sc-EMF | 66 | 220 A | CS2 | [81] |
1993 | 8 wt% La2O3 | La@C82 | 133.3 | 2.3 A/mm2 | Toluene | [83] |
1994 | Sc2O3 M/C = 1:10 | 66–133 | 500 A | CS2 | [51] | |
1995 | La2O3 (La/C = 2:100) | La@C2n | 133 | 200 A | Toluene | [82] |
1995 | Gd2O3 (1–2% atomic%) | Gd-EMF | 60 | 250 A | TCB 2 | [99] |
1995 | - | Y@C82 | 66 | 500 A | Toluene | [31] |
1996 | CeO2 | Ce@C82 | 66 | DMF | [100] | |
1996 | Tm/C = 1:50 | Tm@C82 | 200 | 175 A | Toluene | [34] |
1996 | Pr6O11 (Pr/C = 1:100) | Pr@C82, Pr2@C80 | 66 | DMF 3 | [101] | |
1998 | - | Sc@C82 | 66 | 300–400 A | Toluene | [93] |
1999 | Sc2O3 Sc/C = 2.8/100 | Sc3@C82 | 66 | 500 A | CS2 | [11] |
2002 | M/C = 1/100 (M = La,Y) | La@C2n 4, Y@C2n | 160 | 90 A | o-xylene+ DMF/DMA/DMSO | [102] |
2002 | Tm/C composite rod | Tm@C82 | 240 | 600 A | TCB | [103] |
2002 | Gd@C82 | 960 | 50 A | DMF | [104] | |
2003 | Gd2O3 | Gd@C60 | 133 | - | Dichlorobenzene | [105] |
2004 | MNi2 | All EMF | 960 | 50 A | DMF (~6–7%) CS2 (~1.5%) Pyridine (~1.5%) Aniline (~1%) 5 | [106] |
2005 | CeO2 (Ce/C = 2/100) | Ce2@C80 | 66.6 | 70 A | TEA/acetone 6 | [107] |
2006 | Sc2O3 Sc/C = 2/100 | Sc- EMF | 66 | 150 A, 40 V | TCB | [108] |
2010 | Gd2O3 | Gd@C82 | 200 | 90 A | DMF liq./liq. extraction | [109] |
2014 | Gd2O3 | Gd@C82, Gd@C84 | 506 | 110–120 A | o-xylene and DMF | [110] |
2017 | Gd2O3 (M:C = 1:1) mass ratio | Gd@C82 | 1200 | 50–400 A | C5H5N | [98] |
2017 | Sc2O3 (M:C = 1:1) mass ratio | Sc@C82 | 1200 | 50–400 A | C5H5N | [98] |
2017 | Er2O3 (M:C = 1:1) mass ratio | Er@C82 | 1200 | 50–400 A | CS2 | [98] |
2017 | TiO (M:C = 1:1) mass ratio | Ti@C82 | 600 | 50–400 A | CS2 | [98] |
2017 | Y2O3O (M:C = 1:1) mass ratio | Y@C82, Y2@C82 | 600 | 50–400 A | CS2 | [98] |
2017 | Y2O3O (M:C = 1:1) mass ratio | Y@C82 | 1200 | 50–400 A | C5H5N | [98] |
2023 | Tb4O7 (M:C = 1:15) molar ratio | Tb@C82 | 400 mbar | 100 A | of CS2/toluene | [111] |
3.5. Chemically Activated Arc Discharge
3.5.1. In Situ Doping
3.5.2. Effect of Reactive Gases: Methane and Ammonia
4. Solvent Extraction
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kroto, H.W.; Heath, J.R.; O Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Hawkins, J.M.; Meyer, A.; Lewis, T.A.; Loren, S.; Hollander, F.J. Crystal Structure of Osmylated C60: Confirmation of the Soccer Ball Framework. Science 1991, 252, 312–313. [Google Scholar] [CrossRef]
- Wudl, F. The chemical properties of buckminsterfullerene (C60) and the birth and infancy of fulleroids. Accounts Chem. Res. 1992, 25, 157–161. [Google Scholar] [CrossRef]
- Akasaka, T.; Lu, X. Structural and electronic properties of endohedral metallofullerenes. Chem. Rec. 2012, 12, 256–269. [Google Scholar] [CrossRef]
- Kobayashi, K.; Nagase, S. A stable unconventional structure of Sc2@C66 found by density functional calculations. Chem. Phys. Lett. 2002, 362, 373–379. [Google Scholar] [CrossRef]
- Rodríguez-Fortea, A.; Alegret, N.; Balch, A.L.; Poblet, J.M. The maximum pentagon separation rule provides a guideline for the structures of endohedral metallofullerenes. Nat. Chem. 2010, 2, 55–961. [Google Scholar] [CrossRef] [PubMed]
- Schwerdtfeger, P.; Wirz, L.N.; Avery, J. The topology of fullerenes. WIREs Comput. Mol. Sci. 2015, 5, 96–145. [Google Scholar] [CrossRef] [PubMed]
- Sure, R.; Hansen, A.; Schwerdtfeger, P.; Grimme, S. Comprehensive theoretical study of all 1812 C60 isomers. Phys. Chem. Chem. Phys. 2017, 19, 14296–14305. [Google Scholar] [CrossRef] [PubMed]
- Rios, C.; Salcedo, R. Computational Termochemistry Study of the C80 Isomers and Their Endo Lanthanum Complexes by Applying Homodesmotic and Isodesmic Reactions. Molecules 2012, 17, 14588–14601. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Arias, F.; Echegoyen, L.; Chibante, L.P.F.; Flanagan, S.; Robertson, A.; Wilson, L.J. Reversible Fullerene Electrochemistry: Correlation with the HOMO-LUMO Energy Difference for C60, C70, C76, C78, and C84. J. Am. Chem. Soc. 1995, 117, 7801–7804. [Google Scholar] [CrossRef]
- Takata, M.; Nishibori, E.; Sakata, M.; Inakuma, M.; Yamamoto, E.; Shinohara, H. Triangle Scandium Cluster Imprisoned in a Fullerene Cage. Phys. Rev. Lett. 1999, 83, 2214–2217. [Google Scholar] [CrossRef]
- Wang, C.R.; Kai, T.; Tomiyama, T.; Yoshida, T.; Kobayashi, Y.; Nishibori, E.; Shinohara, H. A Scandium Carbide Endohedral Metallofullerene: (Sc2C2)@C84. Angew. Chem. Int. Ed. 2001, 40, 397–399. [Google Scholar] [CrossRef]
- Wang, T.-S.; Chen, N.; Xiang, J.-F.; Li, B.; Wu, J.-Y.; Xu, W.; Jiang, L.; Tan, K.; Shu, C.-Y.; Lu, X.; et al. Russian-Doll-Type Metal Carbide Endofullerene: Synthesis, Isolation, and Characterization of Sc4C2@C80. J. Am. Chem. Soc. 2009, 131, 16646–16647. [Google Scholar] [CrossRef]
- Stevenson, S.; Rice, G.; Glass, T.; Harich, K.; Cromer, F.; Jordan, M.R.; Craft, J.; Hadju, E.; Bible, R.; Olmstead, M.M.; et al. Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 1999, 401, 55–57. [Google Scholar] [CrossRef]
- Krause, M.; Ziegs, F.; Popov, A.A.; Dunsch, L. Entrapped Bonded Hydrogen in a Fullerene: The Five-Atom Cluster Sc 3 CH in C 80. ChemPhysChem 2007, 8, 537–540. [Google Scholar] [CrossRef]
- Stevenson, S.; Mackey, M.A.; Stuart, M.A.; Phillips, J.P.; Easterling, M.L.; Chancellor, C.J.; Olmstead, M.M.; Balch, A.L. A Distorted Tetrahedral Metal Oxide Cluster inside an Icosahedral Carbon Cage. Synthesis, Isolation, and Structural Characterization of Sc4(μ3-O)2@Ih-C80. J. Am. Chem. Soc. 2008, 130, 11844–11845. [Google Scholar] [CrossRef]
- Syamala, M.S.; Cross, R.J.; Saunders, M. 129Xe NMR Spectrum of Xenon Inside C60. J. Am. Chem. Soc. 2002, 124, 6216–6219. [Google Scholar] [CrossRef]
- Saunders, M.; Jiménez-Vázquez, H.A.; Cross, R.J.; Poreda, R.J. Stable Compounds of Helium and Neon: He@C60 and Ne@C60. Science 1993, 259, 1428–1430. [Google Scholar] [CrossRef] [PubMed]
- Saunders, M.; Jimenez-Vazquez, H.A.; Cross, R.J.; Mroczkowski, S.; Gross, M.L.; Giblin, D.E.; Poreda, R.J. Incorporation of helium, neon, argon, krypton, and xenon into fullerenes using high pressure. J. Am. Chem. Soc. 1994, 116, 2193–2194. [Google Scholar] [CrossRef]
- Larsson, J.A.; Greer, J.C.; Harneit, W.; Weidinger, A. Phosphorous trapped within buckminsterfullerene. J. Chem. Phys. 2002, 116, 7849–7854. [Google Scholar] [CrossRef]
- Mauser, H.; Hirsch, A.; van Eikema Hommes, N.J.; Clark, T.; Pietzak, B.; Weidinger, A.; Dunsch, L. Stabilization of Atomic Nitrogen Inside C60. Angew. Chem. Int. Ed. Engl. 1997, 36, 2835–2838. [Google Scholar] [CrossRef]
- Cai, W.; Zhang, M.; Echegoyen, L.; Lu, X. Recent Advances in Endohedral Metallofullerenes. Fundam. Res. 2023; in press. [Google Scholar] [CrossRef]
- Chai, Y.; Guo, T.; Jin, C.; Haufler, R.E.; Chibante, L.P.F.; Fure, J.; Wang, L.; Alford, J.M.; Smalley, R.E. Fullerenes with metals inside. J. Phys. Chem. 1991, 95, 7564–7568. [Google Scholar] [CrossRef]
- Dunsch, L.; Yang, S. Metal Nitride Cluster Fullerenes: Their Current State and Future Prospects. Small 2007, 3, 1298–1320. [Google Scholar] [CrossRef]
- Tsuchiya, T.; Wakahara, T.; Lian, Y.; Maeda, Y.; Akasaka, T.; Kato, T.; Mizorogi, N.; Nagase, S. Selective Extraction and Purification of Endohedral Metallofullerene from Carbon Soot. J. Phys. Chem. B 2006, 110, 22517–22520. [Google Scholar] [CrossRef]
- Sato, S.; Maeda, Y.; Guo, J.D.; Yamada, M.; Mizorogi, N.; Nagase, S.; Akasaka, T. Mechanistic Study of the Diels–Alder Reaction of Paramagnetic Endohedral Metallofullerene: Reaction of La@C82 with 1,2,3,4,5-Pentamethylcyclopentadiene. J. Am. Chem. Soc. 2013, 135, 5582–5587. [Google Scholar] [CrossRef] [PubMed]
- Bickelhaupt, F.M.; Solà, M.; Fernández, I. Understanding the Reactivity of Endohedral Metallofullerenes: C78 versus Sc3N@C78. Chem. A Eur. J. 2015, 21, 5760–5768. [Google Scholar] [CrossRef]
- Yutaka, M.; Akasaka, T.; Nagase, S. Advances in Carbon Nanomaterials; Jenny Stanford Publishing: Sigapore, 2012; Volume 269. [Google Scholar]
- Suzuki, T.; Maruyama, Y.; Kato, T.; Kikuchi, K.; Achiba, Y. Electrochemical properties of La@C82. J. Am. Chem. Soc. 1993, 115, 11006–11007. [Google Scholar] [CrossRef]
- Kikuchi, K.; Suzuki, S.; Nakao, Y.; Nakahara, N.; Wakabayashi, T.; Shiromaru, H.; Saito, K.; Ikemoto, I.; Achiba, Y. Isolation and characterization of the metallofullerene LaC82. Chem. Phys. Lett. 1993, 216, 67–71. [Google Scholar] [CrossRef]
- Takata, M.; Umeda, B.; Nishibori, E.; Sakata, M.; Saitot, Y.; Ohno, M.; Shinohara, H. Confirmation by X-ray diffraction of the endohedral nature of the metallofullerene Y@C82. Nature 1995, 377, 46–49. [Google Scholar] [CrossRef]
- Yannoni, C.S.; Hoinkis, M.; de Vries, M.S.; Bethune, D.S.; Salem, J.R.; Crowder, M.S.; Johnson, R.D. Scandium Clusters in Fullerene Cages. Science 1992, 256, 1191–1192. [Google Scholar] [CrossRef]
- Johnson, R.D.; de Vries, M.S.; Salem, J.; Bethune, D.S.; Yannoni, C.S. Electron paramagnetic resonance studies of lanthanum-containing C82. Nature 1992, 355, 239–240. [Google Scholar] [CrossRef]
- Kirbach, U.; Dunsch, L. The Existence of Stable Tm@C82 Isomers. Angew. Chem. Int. Ed. Engl. 1996, 35, 2380–2383. [Google Scholar] [CrossRef]
- Shinohara, H.; Sato, H.; Ohkohchi, M.; Ando, Y.; Kodama, T.; Shida, T.; Kato, T.; Saito, Y. Encapsulation of a scandium trimer in C82. Nature 1992, 357, 52–54. [Google Scholar] [CrossRef]
- Campbell, E.E.; Fanti, M.; Hertel, I.V.; Mitzner, R.; Zerbetto, F. The hyperpolarisability of an endohedral fullerene: Li@C60. Chem. Phys. Lett. 1998, 288, 131–137. [Google Scholar] [CrossRef]
- Deng, Q.; Junghans, K.; Popov, A.A. Carbide clusterfullerenes with odd number of carbon atoms: Molecular and electronic structures of Sc4C@C80, Sc4C@C82, and Sc4C3@C80. Theor. Chem. Accounts 2015, 134, 10. [Google Scholar] [CrossRef]
- Dunk, P.W.; Mulet-Gas, M.; Nakanishi, Y.; Kaiser, N.K.; Rodríguez-Fortea, A.; Shinohara, H.; Poblet, J.M.; Marshall, A.G.; Kroto, H.W. Bottom-up formation of endohedral mono-metallofullerenes is directed by charge transfer. Nat. Commun. 2014, 5, 5844. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Okazaki, T.; Okubo, S.; Akachi, M.; Ohno, Y.; Mizutani, T.; Shinohara, H. Enhanced 1520 nm Photoluminescence from Er3+ Ions in Di-erbium-carbide Metallofullerenes (Er2C2)@C82 (Isomers I, II, and III). ACS Nano 2007, 1, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, Y.; Lee, P.-H.; Irle, S. Er3+ Photoluminescence in Er2@C82 and Er2C2@C82 Metallofullerenes Elucidated by Density Functional Theory. Inorg. Chem. 2017, 56, 6576–6583. [Google Scholar] [CrossRef] [PubMed]
- Plant, S.R.; Dantelle, G.; Ito, Y.; Ng, T.C.; Ardavan, A.; Shinohara, H.; Porfyrakis, K. Acuminated fluorescence of Er3+ centres in endohedral fullerenes through the incarceration of a carbide cluster. Chem. Phys. Lett. 2009, 476, 41–45. [Google Scholar] [CrossRef]
- Li, M.-Y.; Zhao, Y.-X.; Han, Y.-B.; Yuan, K.; Nagase, S.; Ehara, M.; Zhao, X. Theoretical Investigation of the Key Roles in Fullerene-Formation Mechanisms: Enantiomer and Enthalpy. ACS Appl. Nano Mater. 2020, 3, 547–554. [Google Scholar] [CrossRef]
- Yang, S.; Zalibera, M.; Rapta, P.; Dunsch, L. Charge-Induced Reversible Rearrangement of Endohedral Fullerenes: Electrochemistry of Tridysprosium Nitride Clusterfullerenes Dy3N@C2n (2n =78, 80). Chem. A Eur. J. 2006, 12, 7848–7855. [Google Scholar] [CrossRef]
- Popov, A.A.; Avdoshenko, S.M.; Cuniberti, G.; Dunsch, L. Dimerization of Radical-Anions: Nitride Clusterfullerenes versus Empty Fullerenes. J. Phys. Chem. Lett. 2011, 2, 1592–1600. [Google Scholar] [CrossRef]
- Zhang, J.; Bowles, F.L.; Bearden, D.W.; Ray, W.K.; Fuhrer, T.; Ye, Y.; Dixon, C.; Harich, K.; Helm, R.F.; Olmstead, M.M.; et al. A missing link in the transformation from asymmetric to symmetric metallofullerene cages implies a top-down fullerene formation mechanism. Nat. Chem. 2013, 5, 880–885. [Google Scholar] [CrossRef]
- Crichton, R.; Zhang, J. Handbook of Fullerene Science and Technology; Springer Nature: Singapore, 2022. [Google Scholar]
- Mulet-Gas, M.; Abella, L.; Dunk, P.W.; Rodríguez-Fortea, A.; Kroto, H.W.; Poblet, J.M. Small endohedral metallofullerenes: Exploration of the structure and growth mechanism in the Ti@C2n (2n = 26–50) family. Chem. Sci. 2014, 6, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.R.; Chen, Z.C.; Chen, L.; Zheng, S.Y.; Yang, S.; Deng, S.L.; Zheng, L.S. Two Metastable Endohedral Metallofullerenes Sc2C2@C1(39656)-C82 and Sc2C2@C1(51383)-C84:Direct-C2-Insertion Products from Their Most Stable Precursors. J. Am. Chem. Soc. 2023, 145, 16778–16786. [Google Scholar] [CrossRef]
- Yamada, M.; Akasaka, T.; Nagase, S. Endohedral Metal Atoms in Pristine and Functionalized Fullerene Cages. Acc. Chem. Res. 2009, 43, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Takata, M. The MEM/Rietveld method with nano-applications—Accurate charge-density studies of nano-structured materials by synchrotron-radiation powder diffraction. Acta Crystallogr. A 2008, 64, 232–245. [Google Scholar] [CrossRef]
- Shinohara, H.; Inakuma, M.; Hayashi, N.; Sato, H.; Saito, Y.; Kato, T.; Bandow, S. Spectroscopic Properties of Isolated Sc3@C82 Metallofullerene. J. Phys. Chem. 1994, 98, 8597–8599. [Google Scholar] [CrossRef]
- Senapati, L.; Schrier, J.; Whaley, K.B. Reply to Comment on “Electronic Transport, Structure, and Energetics of Endohedral Gd@C82 Metallofullerenes”. Nano Lett. 2005, 5, 2341. [Google Scholar] [CrossRef]
- Kobayashi, K.; Nagase, S. Theoretical study of structures and dynamic properties of Sc3@C82. Chem. Phys. Lett. 1999, 313, 45–51. [Google Scholar] [CrossRef]
- Yamada, M.; Wakahara, T.; Lian, Y.; Tsuchiya, T.; Akasaka, T.; Waelchli, M.; Mizorogi, N.; Nagase, S.; Kadish, K.M. Analysis of Lanthanide-Induced NMR Shifts of the Ce@C82 Anion. J. Am. Chem. Soc. 2006, 128, 1400–1401. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.-J.; Zheng, H.; Yang, T.; Nagase, S.; Zhao, X. Theoretical Insight into the Ambiguous Endohedral Metallofullerene Er3C74: Covalent Interactions among Three Lanthanide Atoms. Inorg. Chem. 2015, 54, 8066–8076. [Google Scholar] [CrossRef]
- Lu, X.; Akasaka, T.; Nagase, S. Carbide Cluster Metallofullerenes: Structure, Properties, and Possible Origin. Accounts Chem. Res. 2013, 46, 1627–1635. [Google Scholar] [CrossRef] [PubMed]
- Popov, A.A.; Zhang, L.; Dunsch, L. A Pseudoatom in a Cage: Trimetallofullerene Y3@C80 Mimics Y3N@C80 with Nitrogen Substituted by a Pseudoatom. ACS Nano 2010, 4, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Zhao, X.; Ehara, M. Theoretical Insight into Sc2C76: Carbide Clusterfullerene Sc2C2@C74 versus Dimetallofullerene Sc2@C76. Inorg. Chem. 2017, 56, 10195–10203. [Google Scholar] [CrossRef]
- Jin, P.; Hao, C.; Li, S.; Mi, W.; Sun, Z.; Zhang, J.; Hou, Q. Theoretical Study on the Motion of a La Atom Inside a C82 Cage. J. Phys. Chem. A 2006, 111, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Velkos, G.; Krylov, D.S.; Spree, L.; Zalibera, M.; Ray, R.; Samoylova, N.A.; Chen, C.-H.; Rosenkranz, M.; Schiemenz, S.; et al. Air-stable redox-active nanomagnets with lanthanide spins radical-bridged by a metal–metal bond. Nat. Commun. 2019, 10, 571. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, Y.; Dubrovin, V.; Avdoshenko, S.M.; Popov, A.A.; Liu, F. Caught in Phase Transition: Snapshot of the Metallofullerene Sc3N@C70 Rotation in the Crystal. J. Am. Chem. Soc. 2021, 143, 612–616. [Google Scholar] [CrossRef]
- Speller, E.M. The significance of fullerene electron acceptors in organic solar cell photo-oxidation. Mater. Sci. Technol. 2017, 33, 924–933. [Google Scholar] [CrossRef]
- Ganesamoorthy, R.; Sathiyan, G.; Sakthivel, P. Review: Fullerene based acceptors for efficient bulk heterojunction organic solar cell applications. Sol. Energy Mater. Sol. Cells 2017, 161, 102–148. [Google Scholar] [CrossRef]
- Ross, R.B.; Cardona, C.M.; Guldi, D.M.; Sankaranarayanan, S.G.; Reese, M.O.; Kopidakis, N.; Peet, J.; Walker, B.; Bazan, G.C.; Van Keuren, E.; et al. Endohedral fullerenes for organic photovoltaic devices. Nat. Mater. 2009, 8, 208–212. [Google Scholar] [CrossRef]
- Li, T.; Xiao, L.; Yang, J.; Ding, M.; Zhou, Z.; LaConte, L.; Jin, L.; Dorn, H.C.; Li, X. Trimetallic Nitride Endohedral Fullerenes Carboxyl-Gd3N@C80: A New Theranostic Agent for Combating Oxidative Stress and Resolving Inflammation. ACS Appl. Mater. Interfaces 2017, 9, 17681–17687. [Google Scholar] [CrossRef]
- Lu, J.; Sabirianov, R.F.; Mei, W.N.; Gao, Y.; Duan, C.G.; Zeng, X. Structural and Magnetic Properties of Gd3N@C80. J. Phys. Chem. B 2006, 110, 23637–23640. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, Y.; Chen, Y.; Pregot, C.; Li, T.; Balasubramaniam, S.; Dorn, H.C. Gd3N@C84(OH)x: A New Egg-Shaped Metallofullerene Magnetic Resonance Imaging Contrast Agent. J. Am. Chem. Soc. 2014, 136, 2630–2636. [Google Scholar] [CrossRef]
- Weaver, J.; Chai, Y.; Kroll, G.; Jin, C.; Ohno, T.; Haufler, R.; Guo, T.; Alford, J.; Conceicao, J.; Chibante, L.; et al. XPS probes of carbon-caged metals. Chem. Phys. Lett. 1992, 190, 460–464. [Google Scholar] [CrossRef]
- Murphy, T.A.; Pawlik, T.; Weidinger, A.; Höhne, M.; Alcala, R.; Spaeth, J.M. Observation of Atomlike Nitrogen in Nitrogen-Implanted Solid C60. Phys. Rev. Lett. 1996, 77, 1075–1078. [Google Scholar] [CrossRef]
- Funasaka, H.; Yamamoto, K.; Sakurai, K.; Ishiguro, T.; Sugiyama, K.; Takahashi, T.; Kishimoto, Y. Preparation of Fullerene Derivatives by Resistive Heating with Graphite Crucible. Full- Sci. Technol. 1993, 1, 437–448. [Google Scholar] [CrossRef]
- Sinitsa, A.S.; Chamberlain, T.W.; Zoberbier, T.; Lebedeva, I.V.; Popov, A.M.; Knizhnik, A.A.; McSweeney, R.L.; Biskupek, J.; Kaiser, U.; Khlobystov, A.N. Formation of Nickel Clusters Wrapped in Carbon Cages: Toward New Endohedral Metallofullerene Synthesis. Nano Lett. 2017, 17, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Popov, A.A. Synthesis and Molecular Structures of Endohedral Fullerenes. In Nanostructure Science and Technology; Lockwood, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–34. [Google Scholar]
- Bloodworth, S.; Whitby, R.J. Synthesis of endohedral fullerenes by molecular surgery. Commun. Chem. 2022, 5, 121. [Google Scholar] [CrossRef] [PubMed]
- Churilov, G.; Popov, A.; Vnukova, N.; Dudnik, A.; Samoylova, N.; Glushenko, G. Controlled synthesis of fullerenes and endohedral metallofullerenes in high frequency arc discharge. Full-Nanotub. Carbon Nanostructures 2016, 24, 675–678. [Google Scholar] [CrossRef]
- Shinohara, H. Endohedral metallofullerenes. Rep. Prog. Phys. 2000, 63, 843–892. [Google Scholar] [CrossRef]
- Chen, N.; Ortiz, A.L.; Echegoyen, L. Fullerenes: Principles and Applications, 2nd ed; The Royal Society of Chemistry: London, UK, 2011; Chapter 2; pp. 12–65. [Google Scholar]
- Yang, S. Synthesis, Separation, and Molecular Structures of Endohedral Fullerenes. Curr. Org. Chem. 2012, 16, 1079–1094. [Google Scholar] [CrossRef]
- Lu, X.; Feng, L.; Akasaka, T.; Nagase, S. Current status and future developments of endohedral metallofullerenes. Chem. Soc. Rev. 2012, 41, 7723–7760. [Google Scholar] [CrossRef]
- Lu, X.; Bao, L.; Akasaka, T.; Nagase, S. Recent progress in the chemistry of endohedral metallofullerenes. Chem. Commun. 2014, 50, 14701–14715. [Google Scholar] [CrossRef]
- Jin, P.; Tang, C.; Chen, Z. Carbon atoms trapped in cages: Metal carbide clusterfullerenes. Coord. Chem. Rev. 2014, 270–271, 89–111. [Google Scholar] [CrossRef]
- Shinohara, H.; Yamaguchi, H.; Hayashi, N.; Sato, H.; Ohkohchi, M.; Ando, Y.; Saito, Y. Isolation and spectroscopic properties of scandium fullerenes (Sc2@C74, Sc2@C82, and Sc2@C84). J. Phys. Chem. 1993, 97, 4259–4261. [Google Scholar] [CrossRef]
- Liu, B.-B.; Xu, W.-G.; Liu, Z.-Y.; Yang, H.-B.; Li, M.-H.; Liu, S.-Y.; Zou, G.-T. High yield synthesis and extraction of La@C2n. Solid State Commun. 1996, 97, 407–410. [Google Scholar] [CrossRef]
- Bandow, S.; Shinohara, H.; Saito, Y.; Ohkohchi, M.; Ando, Y. High yield synthesis of lanthanofullerenes via lanthanum carbide. J. Phys. Chem. 1993, 97, 6101–6103. [Google Scholar] [CrossRef]
- Kitaura, R.; Shinohara, H. Endohedral Metallofullerenes and Nano-Peapods. Jpn. J. Appl. Phys. 2007, 46, 881. [Google Scholar] [CrossRef]
- Lu, W.; Baek, J.B.; Dai, L. (Eds.) Carbon Nanomaterials for Advanced Energy Systems; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Kyesmen, P.I.; Onoja, A.; Amah, A.N. Fullerenes synthesis by combined resistive heating and arc discharge techniques. SpringerPlus 2016, 5, 1323. [Google Scholar] [CrossRef] [PubMed]
- Lian, Y.; Yang, S.; Yang, S. Revisiting the Preparation of La@C82 (I and II) and La2 @C80: Efficient Production of the “Minor” Isomer La@C82(II). J. Phys. Chem. B 2002, 106, 3112–3117. [Google Scholar] [CrossRef]
- Ross, M.M.; Nelson, H.H.; Callahan, J.H.; McElvany, S.W. Production and characterization of metallofullerenes. J. Phys. Chem. 1992, 96, 5231–5234. [Google Scholar] [CrossRef]
- Fedorov, A.; Novikov, P.; Churilov, G. Influence of electron concentration and temperature on endohedral metallofullerene Me@C84 formation in a carbon plasma. Chem. Phys. 2003, 293, 253–261. [Google Scholar] [CrossRef]
- Balch, A.L.; Olmstead, M.M. Reactions of Transition Metal Complexes with Fullerenes (C60, C70, etc.) and Related Materials. Chem. Rev. 1998, 98, 2123–2166. [Google Scholar] [CrossRef] [PubMed]
- Mu, L.; Yang, S.; Feng, R.; Kong, X. Encapsulation of Platinum in Fullerenes: Is That Possible? Inorg. Chem. 2017, 56, 6035–6038. [Google Scholar] [CrossRef]
- Pradeep, T.; Kulkarni, G.U.; Kannan, K.R.; Row, T.N.G.; Rao, C.N.R. A novel iron fullerene (FeC60) adduct in the solid state. J. Am. Chem. Soc. 1992, 114, 2272–2273. [Google Scholar] [CrossRef]
- Nishibori, E.; Takata, M.; Sakata, M.; Inakuma, M.; Shinohara, H. Determination of the cage structure of Sc@C82 by synchrotron powder diffraction. Chem. Phys. Lett. 1998, 298, 79–84. [Google Scholar] [CrossRef]
- Kiang, C.-H.; VAN Loosdrecht, P.; Beyers, R.; Salem, J.; Bethune, D.; Iii, W.G.; Dorn, H.; Burbank, P.; Stevenson, S. novel structures from arc-vaporized carbon and metals: Single-layer carbon nanotubes and metallofullerenes. Surf. Rev. Lett. 1996, 3, 765–769. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Vekselman, V.; Feurer, M.; Huang, T.; Stratton, B.; Raitses, Y. Complex structure of the carbon arc discharge for synthesis of nanotubes. Plasma Sources Sci. Technol. 2017, 26, 065019. [Google Scholar] [CrossRef]
- Qian, H.-J.; Wang, Y.; Morokuma, K. Quantum mechanical simulation reveals the role of cold helium atoms and the coexistence of bottom-up and top-down formation mechanisms of buckminsterfullerene from carbon vapor. Carbon 2017, 114, 635–641. [Google Scholar] [CrossRef]
- Chervyakova, D.I.; Churilov, G.N.; Dudnik, A.I.; Glushenko, G.A.; Kovaleva, E.A.; Kuzubov, A.A.; Vnukova, N.G. The Technology and Setup for High-Throughput Synthesis of Endohedral Metal Fullerenes. In Proceedings of the Scientific-Practical Conference ‘Research and Development—2016; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 481–489. [Google Scholar] [CrossRef]
- Funasaka, H.; Sakurai, K.; Oda, Y.; Yamamoto, K.; Takahashi, T. Magnetic properties of Gd@C82 metallofullerene. Chem. Phys. Lett. 1995, 232, 273–277. [Google Scholar] [CrossRef]
- Ding, J.; Yang, S. Efficient N, N -Dimethylformamide Extraction of Endohedral Metallofullerenes for HPLC Purification. Chem. Mater. 1996, 8, 2824–2827. [Google Scholar] [CrossRef]
- Ding, J.; Yang, S. Isolation and Characterization of Pr@C82 and Pr2@C80. J. Am. Chem. Soc. 1996, 118, 11254–11257. [Google Scholar] [CrossRef]
- Bubnov, V.P.; Laukhina, E.E.; Kareev, I.E.; Koltover, V.K.; Prokhorova, T.G.; Yagubskii, E.B.; Kozmin, Y.P. Endohedral Metallofullerenes: A Convenient Gram-Scale Preparation. Chem. Mater. 2002, 14, 1004–1008. [Google Scholar] [CrossRef]
- Kodama, T.; Ozawa, N.; Miyake, Y.; Sakaguchi, K.; Nishikawa, H.; Ikemoto, I.; Achiba, Y. Structural Study of Three Isomers of Tm@C82 by 13C NMR Spectroscopy. J. Am. Chem. Soc. 2002, 124, 1452–1455. [Google Scholar] [CrossRef]
- Sun, B.; Feng, L.; Shi, Z.; Gu, Z. Improved extraction of metallofullerenes with DMF at high temperature. Carbon 2002, 40, 1591–1595. [Google Scholar] [CrossRef]
- Bolskar, R.D.; Benedetto, A.F.; Husebo, L.O.; Price, R.E.; Jackson, E.F.; Wallace, S.; Alford, J.M. First Soluble M@C60 Derivatives Provide Enhanced Access to Metallofullerenes and Permit in Vivo Evaluation of Gd@C60[C(COOH)2]10 as a MRI Contrast Agent. J. Am. Chem. Soc. 2003, 125, 5471–5478. [Google Scholar] [CrossRef] [PubMed]
- Lian, Y.; Shi, Z.; Zhou, X.; Gu, Z. Different Extraction Behaviors between Divalent and Trivalent Endohedral Metallofullerenes. Chem. Mater. 2004, 16, 1704–1714. [Google Scholar] [CrossRef]
- Kodama, T.; Higashi, K.; Ichikawa, T.; Suzuki, S.; Nishikawa, H.; Ikemoto, I.; Kikuchi, K.; Achiba, Y. Selective Extraction of Endohedral Metallofullerenes Using a Mixed Solvent of Triethylamine and Acetone. Chem. Lett. 2005, 34, 464–465. [Google Scholar] [CrossRef]
- Iiduka, Y.; Wakahara, T.; Nakajima, K.; Tsuchiya, T.; Nakahodo, T.; Maeda, Y.; Akasaka, T.; Mizorogi, N.; Nagase, S. 13C NMR spectroscopic study of scandium dimetallofullerene, Sc2@C84 vs. Sc2C2@C82. Chem. Commun. 2006, 19, 2057–2059. [Google Scholar] [CrossRef]
- Grushko, Y.S.; Kozlov, V.S.; Sedov, V.P.; Kolesnik, S.G.; Lebedev, V.T.; Shilin, V.A.; Khodorkovsky, M.A.; Artamonova, T.O.; Shakhmin, A.L.; Shamanin, V.V.; et al. MRI-Contrasting System Based on Water-Soluble Fullerene/Gd-Metallofullerene Mixture. Full-Nanotub. Carbon Nanostructures 2010, 18, 417–421. [Google Scholar] [CrossRef]
- Kozlov, V.S.; Suyasova, M.V.; Lebedev, V.T. Synthesis, extraction, and chromatographic purification of higher empty fullerenes and endohedral gadolinium metallofullerenes. Russ. J. Appl. Chem. 2014, 87, 121–127. [Google Scholar] [CrossRef]
- Dong, W.; Zhou, Q.; Shen, W.; Yang, L.; Jin, P.; Lu, X.; Lian, Y. The Various Packing Structures of Tb@C82 (I, II) Isomers in Their Cocrystals with Ni(OEP). Nanomaterials 2023, 13, 994. [Google Scholar] [CrossRef]
- Olmstead, M.M.; de Bettencourt-Dias, A.; Duchamp, J.C.; Stevenson, S.; Marciu, D.; Dorn, H.C.; Balch, A.L. Isolation and Structural Characterization of the Endohedral Fullerene Sc3N@C78. Angew. Chem. Int. Ed. 2001, 40, 1223–1225. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, L.; Zhang, W.; Dunsch, L. A Facile Route to Metal Nitride Clusterfullerenes by Using Guanidinium Salts: A Selective Organic Solid as the Nitrogen Source. Chem. A Eur. J. 2010, 16, 12398–12405. [Google Scholar] [CrossRef]
- Stevenson, S.; Thompson, M.C.; Coumbe, H.L.; Mackey, M.A.; Coumbe, C.E.; Phillips, J.P. Chemically Adjusting Plasma Temperature, Energy, and Reactivity (CAPTEAR) Method Using NO x and Combustion for Selective Synthesis of Sc3N@C80 Metallic Nitride Fullerenes. J. Am. Chem. Soc. 2007, 129, 16257–16262. [Google Scholar] [CrossRef]
- Stevenson, S.; Mackey, M.A.; Thompson, M.C.; Coumbe, H.L.; Madasu, P.K.; Coumbe, C.E.; Phillips, J.P. Effect of copper metal on the yield of Sc3N@C80 metallofullerenes. Chem. Commun. 2007, 41, 4263–4265. [Google Scholar] [CrossRef] [PubMed]
- Dallas, P.; Meysami, S.S.; Grobert, N.; Porfyrakis, K. Classification of carbon nanostructure families occurring in a chemically activated arc discharge reaction. RSC Adv. 2016, 6, 24912–24920. [Google Scholar] [CrossRef]
- Hagelberg, F. Magnetism in Carbon Nanostructures; Cambridge University Press: Cambridge, UK, 2017; ISBN 9781107069848. [Google Scholar]
- Beckhaus, H.D.; Verevkin, S.; Rüchardt, C.; Diederich, F.; Thilgen, C.; ter Meer, H.U.; Müller, W. C70 Is More Stable than C60: Experimental Determination of the Heat of Formation of C70. Angew. Chem. Int. Ed. Engl. 1994, 33, 996–998. [Google Scholar] [CrossRef]
- Slanina, Z.; FranÇlois, J.P.; Kolb, M.; Bakowies, D.; Thiel, W. Calculated Relative Stabilities of C84. Fuller. Sci. Technol. 1993, 1, 221–230. [Google Scholar] [CrossRef]
- Chen, Y.; Willis, M.C. Cu(I)—Catalyzed sulfonylative Suzuki–Miyaura cross-coupling. Chem. Sci. 2017, 8, 3249–3253. [Google Scholar] [CrossRef]
- Morton, J.J.; Tiwari, A.; Dantelle, G.; Porfyrakis, K.; Ardavan, A.; Briggs GA, D. Switchable ErSc2N Rotor within a C80 Fullerene Cage: An Electron Paramagnetic Resonance and Photoluminescence Excitation Study. Phys. Rev. Lett. 2008, 101, 013002. [Google Scholar] [CrossRef]
- Junghans, K.; Schlesier, C.; Kostanyan, A.; Samoylova, N.A.; Deng, Q.; Rosenkranz, M.; Popov, A.A. Methane as a Selectivity Booster in the Arc-Discharge Synthesis of Endohedral Fullerenes: Selective Synthesis of the Single-Molecule Magnet Dy2 TiC@C80 and Its Congener Dy2TiC2@C80. Angew. Chem. Int. Ed. 2015, 54, 13411–13415. [Google Scholar] [CrossRef]
- Junghans, K.; Rosenkranz, M.; Popov, A.A. Sc3CH@C80: Selective 13C enrichment of the central carbon atom. Chem. Commun. 2016, 52, 6561–6564. [Google Scholar] [CrossRef]
- Zhang, J.; Shibata, A.; Ito, M.; Shuto, S.; Ito, Y.; Mannervik, B.; Abe, H.; Morgenstern, R. Synthesis and Characterization of a Series of Highly Fluorogenic Substrates for Glutathione Transferases, a General Strategy. J. Am. Chem. Soc. 2011, 133, 14109–14119. [Google Scholar] [CrossRef]
- Wang, Z.; Nakanishi, Y.; Noda, S.; Niwa, H.; Zhang, J.; Kitaura, R.; Shinohara, H. Missing Small-Bandgap Metallofullerenes: Their Isolation and Electronic Properties. Angew. Chem. Int. Ed. 2013, 52, 11770–11774. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Guan, J.; Wei, T.; Wang, S.; Jiao, M.; Yang, S. A Series of Inorganic Solid Nitrogen Sources for the Synthesis of Metal Nitride Clusterfullerenes: The Dependence of Production Yield on the Oxidation State of Nitrogen and Counter Ion. Inorg. Chem. 2013, 52, 3814–3822. [Google Scholar] [CrossRef] [PubMed]
- Jensen, W.B. The Origin of the Soxhlet Extractor. J. Chem. Educ. 2007, 84, 1913. [Google Scholar] [CrossRef]
- Bezmel’nitsyn, V.N.; Eletskii, A.V.; Okun’, M. Fullerenes in solutions. Phys. Uspekhi 1998, 41, 1091–1114. [Google Scholar] [CrossRef]
- Raebiger, J.W.; Alford, J.M.; Bolskar, R.D.; Diener, M.D. Chemical redox recovery of giant, small-gap and other fullerenes. Carbon 2011, 49, 37–46. [Google Scholar] [CrossRef]
- Churilov, G.N.; Elesina, V.I.; Dudnik, A.I.; Vnukova, N.G. Ultrafast method of fullerenes extraction from carbon condensate. Full-Nanotub. Carbon Nanostructures 2019, 27, 225–232. [Google Scholar] [CrossRef]
- Elesina, V.I.; Churilov, G.N.; Vnukova, N.G.; Dudnik, A.I.; Osipova, I.V. Filtration process combined with mechanical action, as a method for efficient extraction of endohedral metallofullerenes from carbon soot. Full-Nanotub. Carbon Nanostructures 2019, 27, 803–807. [Google Scholar] [CrossRef]
- Rincón-García, L.; Ismael, A.K.; Evangeli, C.; Grace, I.; Rubio-Bollinger, G.; Porfyrakis, K.; Agraït, N.; Lambert, C.J. Molecular design and control of fullerene-based bi-thermoelectric materials. Nat. Mater. 2015, 15, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Harding, R.T.; Zhou, S.; Zhou, J.; Lindvall, T.; Myers, W.K.; Ardavan, A.; Laird, E.A. Spin Resonance Clock Transition of the Endohedral Fullerene 15N@C60. Phys. Rev. Lett. 2017, 119, 140801. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Adutwum, L.A.; Oliynyk, A.O.; Luber, E.J.; Olsen, B.C.; Mar, A.; Buriak, J.M. How To Optimize Materials and Devices via Design of Experiments and Machine Learning: Demonstration Using Organic Photovoltaics. ACS Nano 2018, 12, 7434–7444. [Google Scholar] [CrossRef]
- Hao, J.; Li, F.; Li, H.; Chen, X.; Zhang, Y.; Chen, Z.; Hao, C. Dynamic motion of an Lu pair inside a C76(Td) cage. RSC Adv. 2015, 5, 34383–34389. [Google Scholar] [CrossRef]
- Roukala, J.; Straka, M.; Taubert, S.; Vaara, J.; Lantto, P. Ratcheting rotation or speedy spinning: EPR and dynamics of Sc3C2@C80. Chem. Commun. 2017, 53, 8992–8995. [Google Scholar] [CrossRef]
- Krisilov, A.; Nechaev, I.; Kotova, A.; Shikhaliev, K.; Chernov, V.; Zon, B. The role of the encapsulated atom in the vibrational spectra of La@C60–Lu@C60 lanthanide endofullerenes. Comput. Theor. Chem. 2015, 1054, 100–108. [Google Scholar] [CrossRef]
- Sinha, S.; Sheng, Y.; Griffiths, I.; Young, N.P.; Zhou, S.; Kirkland, A.I.; Porfyrakis, K.; Warner, J.H. In Situ Atomic-Level Studies of Gd Atom Release and Migration on Graphene from a Metallofullerene Precursor. ACS Nano 2018, 12, 10439–10451. [Google Scholar] [CrossRef]
- Yu, H.; Wang, Y.; Zou, X.; Yin, J.; Shi, X.; Li, Y.; Zhao, H.; Wang, L.; Ng, H.M.; Zou, B.; et al. Improved photovoltaic performance and robustness of all-polymer solar cells enabled by a polyfullerene guest acceptor. Nat. Commun. 2023, 14, 2323. [Google Scholar] [CrossRef] [PubMed]
EMF Synthesis Method | Advantages | Disadvantages |
---|---|---|
Arc discharge [72] |
|
|
Laser ablation [72] |
|
|
Molecular surgery [72,73] |
|
|
Ion implantation [72] |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinha, S.; Sanfo, K.; Dallas, P.; Kumar, S.; Porfyrakis, K. Process Parameter Optimisation for Endohedral Metallofullerene Synthesis via the Arc-Discharge Method. Inorganics 2024, 12, 38. https://doi.org/10.3390/inorganics12020038
Sinha S, Sanfo K, Dallas P, Kumar S, Porfyrakis K. Process Parameter Optimisation for Endohedral Metallofullerene Synthesis via the Arc-Discharge Method. Inorganics. 2024; 12(2):38. https://doi.org/10.3390/inorganics12020038
Chicago/Turabian StyleSinha, Sapna, Karifa Sanfo, Panagiotis Dallas, Sujay Kumar, and Kyriakos Porfyrakis. 2024. "Process Parameter Optimisation for Endohedral Metallofullerene Synthesis via the Arc-Discharge Method" Inorganics 12, no. 2: 38. https://doi.org/10.3390/inorganics12020038
APA StyleSinha, S., Sanfo, K., Dallas, P., Kumar, S., & Porfyrakis, K. (2024). Process Parameter Optimisation for Endohedral Metallofullerene Synthesis via the Arc-Discharge Method. Inorganics, 12(2), 38. https://doi.org/10.3390/inorganics12020038