Geometries, Electronic Structures, Bonding Properties, and Stability Strategy of Endohedral Metallofullerenes TM@C28 (TM = Sc−, Y−, La−, Ti, Zr, Hf, V+, Nb+, Ta+)
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Fowler, P.W.; Manolopoulos, D.E. An Atlas of Fullerenes; Courier Corporation: North Chelmsford, MA, USA, 2007. [Google Scholar]
- Lu, X.; Akasaka, T.; Slanina, Z. Handbook of Fullerene Science and Technology; Springer Nature: Berlin, Germany, 2022. [Google Scholar]
- Guo, T.; Diener, M.; Chai, Y.; Alford, M.; Haufler, R.; McClure, S.; Ohno, T.; Weaver, J.; Scuseria, G.; Smalley, R. Uranium Stabilization of C28: A Tetravalent Fullerene. Science 1992, 257, 1661–1664. [Google Scholar] [CrossRef] [PubMed]
- Popov, A.A.; Yang, S.; Dunsch, L. Endohedral Fullerenes. Chem. Rev. 2013, 113, 5989–6113. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.-Z.; Xie, S.-Y.; Huang, R.-B.; Zheng, L.-S. The Stabilization of Fused-Pentagon Fullerene Molecules. Nat. Chem. 2009, 1, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.-Y.; Gao, F.; Lu, X.; Huang, R.-B.; Wang, C.-R.; Zhang, X.; Liu, M.-L.; Deng, S.-L.; Zheng, L.-S. Capturing the Labile Fullerene[50] as C50Cl10. Science 2004, 304, 699. [Google Scholar] [CrossRef] [PubMed]
- Akasaka, T.; Nagase, S. Endofullerenes: A New Family of Carbon Clusters; Springer Science & Business Media: Berlin, Germany, 2002; Volume 3. [Google Scholar]
- Akasaka, T.; Wudl, F.; Nagase, S. Chemistry of Nanocarbons; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Kroto, H. The Stability of the Fullerenes C n, with N = 24, 28, 32, 36, 50, 60 and 70. Nature 1987, 329, 529–531. [Google Scholar] [CrossRef]
- Cai, W.; Chen, C.-H.; Chen, N.; Echegoyen, L. Fullerenes as Nanocontainers That Stabilize Unique Actinide Species inside: Structures, Formation, and Reactivity. Acc. Chem. Res. 2019, 52, 1824–1833. [Google Scholar] [CrossRef]
- Shen, W.; Hu, S.; Lu, X. Endohedral Metallofullerenes: New Structures and Unseen Phenomena. Chem. Eur. J. 2020, 26, 5748–5757. [Google Scholar] [CrossRef]
- Dunlap, B.I.; Haeberlen, O.D.; Roesch, N. Asymmetric Localization of Titanium in Carbon Molecule (C28). J. Phys. Chem. 1992, 96, 9095–9097. [Google Scholar] [CrossRef]
- Muñoz-Castro, A.; King, R.B. Formation of Spherical Aromatic Endohedral Metallic Fullerenes. Evaluation of Magnetic Properties of M@ C28 (M = Ti, Zr, and Hf) from DFT Calculations. Inorg. Chem. 2017, 56, 15251–15258. [Google Scholar] [CrossRef]
- Mulet-Gas, M.; Abella, L.; Dunk, P.W.; Rodríguez-Fortea, A.; Kroto, H.W.; Poblet, J.M. Small Endohedral Metallofullerenes: Exploration of the Structure and Growth Mechanism in the Ti@ C 2n (2 N = 26–50) Family. Chem. Sci. 2015, 6, 675–686. [Google Scholar] [CrossRef]
- Dunk, P.W.; Kaiser, N.K.; Mulet-Gas, M.; Rodríguez-Fortea, A.; Poblet, J.M.; Shinohara, H.; Hendrickson, C.L.; Marshall, A.G.; Kroto, H.W. The Smallest Stable Fullerene, M@ C28 (M = Ti, Zr, U): Stabilization and Growth from Carbon Vapor. J. Am. Chem. Soc. 2012, 134, 9380–9389. [Google Scholar] [CrossRef]
- Zhao, K.; Pitzer, R.M. Electronic Structure of C28, Pa@ C28, and U@ C28. J. Phys. Chem. 1996, 100, 4798–4802. [Google Scholar] [CrossRef]
- Dognon, J.-P.; Clavaguéra, C.; Pyykkö, P. A Predicted Organometallic Series Following a 32-Electron Principle: An@ C28 (An = Th, Pa+, U2+, Pu4+). J. Am. Chem. Soc. 2009, 131, 238–243. [Google Scholar] [CrossRef]
- Dai, X.; Gao, Y.; Jiang, W.; Lei, Y.; Wang, Z. U@ C 28: The Electronic Structure Induced by the 32-Electron Principle. Phys. Chem. Chem. Phys. 2015, 17, 23308–23311. [Google Scholar] [CrossRef]
- Mojica, M.; Alonso, J.A.; Méndez, F. Synthesis of Fullerenes. J. Phys. Org. Chem. 2013, 26, 526–539. [Google Scholar] [CrossRef]
- Alekseev, N.I.; Filippov, B.M.; Basargin, I.V.; Sedov, A.I. Investigation of Semicommercial Arc Plants for Fullerene-Production. J. Eng. Phys. Thermophys. 2011, 84, 1087–1098. [Google Scholar] [CrossRef]
- Ishigaki, T.; Suzuki, S.; Kataura, H.; Krätschmer, W.; Achiba, Y. Characterization of Fullerenes and Carbon Nanoparticles Generated with a Laser-Furnace Technique. Appl. Phys. A 2000, 70, 121–124. [Google Scholar] [CrossRef]
- Nitze, F.; Abou-Hamad, E.; Wågberg, T. Carbon Nanotubes and Helical Carbon Nanofibers Grown by Chemical Vapour Deposition on C60 Fullerene Supported Pd Nanoparticles. Carbon 2011, 49, 1101–1107. [Google Scholar] [CrossRef]
- Manawi, Y.M.; Ihsanullah; Samara, A.; Al-Ansari, T.; Atieh, M.A. A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD) Method. Materials 2018, 11, 822. [Google Scholar] [CrossRef] [PubMed]
- Murata, M.; Murata, Y.; Komatsu, K. Surgery of Fullerenes. Chem. Commun. 2008, 46, 6083–6094. [Google Scholar] [CrossRef]
- Li, Z.; Yang, T. Modifying the Electron Capture Decay Rate of Be 7 by Using Small Fullerenes. Phys. Rev. C 2023, 108, 054604. [Google Scholar] [CrossRef]
- Wang, E.; Gao, Y. H2+ H2O→ H4O: Synthesizing Hyperhydrogenated Water in Small-Sized Fullerenes? J. Phys. Chem. A 2023, 127, 1190–1195. [Google Scholar] [CrossRef]
- Spano, C.E.; Mo, F.; Ardesi, Y.; Roch, M.R.; Piccinini, G.; Graziano, M. Electronic Transport Study of Bistable Cr@C28 Single Molecule Device for High-Density Data Storage Applications. In Proceedings of the 8th World Congress on New Technologies (NewTech’22), Prague, Czech Republic, 3–5 August 2022. [Google Scholar] [CrossRef]
- Muñoz-Castro, A.; Bruce King, R. Evaluation of Bonding, Electron Affinity, and Optical Properties of M@ C28 (M = Zr, Hf, Th, and U): Role of d-and f-Orbitals in Endohedral Fullerenes from Relativistic DFT Calculations. J. Comput. Chem. 2017, 38, 44–50. [Google Scholar] [CrossRef]
- Lu, T. Molclus Program 1.12. Available online: http://www.keinsci.com/research/molclus.html (accessed on 1 September 2023).
- Grimme, S.; Bannwarth, C.; Shushkov, P. A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All Spd-Block Elements (Z = 1–86). J. Chem. Theory Comput. 2017, 13, 1989–2009. [Google Scholar] [CrossRef] [PubMed]
- Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, B.P.; Altarawy, D.; Didier, B.; Gibson, T.D.; Windus, T.L. New Basis Set Exchange: An Open, up-to-Date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019, 59, 4814–4820. [Google Scholar] [CrossRef] [PubMed]
- Feller, D. The Role of Databases in Support of Computational Chemistry Calculations. J. Comput. Chem. 1996, 17, 1571–1586. [Google Scholar] [CrossRef]
- Schuchardt, K.L.; Didier, B.T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T.L. Basis Set Exchange: A Community Database for Computational Sciences. J. Chem. Inf. Model. 2007, 47, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Dolg, M.; Stoll, H.; Preuss, H. A Combination of Quasirelativistic Pseudopotential and Ligand Field Calculations for Lanthanoid Compounds. Theor. Chim. Acta 1993, 85, 441–450. [Google Scholar] [CrossRef]
- Rappoport, D.; Furche, F. Property-Optimized Gaussian Basis Sets for Molecular Response Calculations. J. Chem. Phys. 2010, 133, 134105. [Google Scholar] [CrossRef] [PubMed]
- Dolg, M.; Stoll, H.; Savin, A.; Preuss, H. Energy-Adjusted Pseudopotentials for the Rare Earth Elements. Theor. Chim. Acta 1989, 75, 173–194. [Google Scholar] [CrossRef]
- Andrae, D.; Haeussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Energy-Adjusted Ab Initio Pseudopotentials for the Second and Third Row Transition Elements. Theor. Chim. Acta 1990, 77, 123–141. [Google Scholar] [CrossRef]
- Glendening, E.; Badenhoop, J.; Reed, A.; Carpenter, J.; Bohmann, J.; Morales, C.; Karafiloglou, P.; Landis, C.; Weinhold, F. NBO7. Theor. Chem. Inst. Univ. Wis. Madison WI USA 2018. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H.; et al. Gaussian 16, Revision A. 03; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Ziegler, T.; Rauk, A. On the Calculation of Bonding Energies by the Hartree Fock Slater Method: I. The Transition State Method. Theor. Chim. Acta 1977, 46, 1–10. [Google Scholar] [CrossRef]
- van Lenthe, E.; Baerends, E.-J.; Snijders, J.G. Relativistic Total Energy Using Regular Approximations. J. Chem. Phys. 1994, 101, 9783–9792. [Google Scholar] [CrossRef]
- Zhao, L.; Hermann, M.; Schwarz, W.E.; Frenking, G. The Lewis Electron-Pair Bonding Model: Modern Energy Decomposition Analysis. Nat. Rev. Chem. 2019, 3, 48–63. [Google Scholar] [CrossRef]
- Zhao, L.; Schwarz, W.E.; Frenking, G. The Lewis Electron-Pair Bonding Model: The Physical Background, One Century Later. Nat. Rev. Chem. 2019, 3, 35–47. [Google Scholar] [CrossRef]
- Te Velde, G.T.; Bickelhaupt, F.M.; Baerends, E.J.; Fonseca Guerra, C.; van Gisbergen, S.J.; Snijders, J.G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967. [Google Scholar] [CrossRef]
- Baerends, E.J.; Ziegler, T.; Autschbach, J.; Bashford, D.; Bérces, A.; Bickelhaupt, F.; Bo, C.; Boerrigter, P.; Cavallo, L.; Chong, D. ADF 2019; SCM, Theoretical Chemistry, Vrije Universiteit: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Perdew, J.P. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. Phys. Rev. B 1986, 33, 8822. [Google Scholar] [CrossRef]
- Becke, A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098. [Google Scholar] [CrossRef]
- Van Lenthe, E.; Baerends, E.J. Optimized Slater-Type Basis Sets for the Elements 1–118. J. Comput. Chem. 2003, 24, 1142–1156. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Chattaraj, P.K.; Lee, H.; Parr, R.G. HSAB Principle. J. Am. Chem. Soc. 1991, 113, 1855–1856. [Google Scholar] [CrossRef]
- Chi, C.; Pan, S.; Meng, L.; Luo, M.; Zhao, L.; Zhou, M.; Frenking, G. Alkali Metal Covalent Bonding in Nickel Carbonyl Complexes ENi (CO)3−. Angew. Chem. 2019, 131, 1746–1752. [Google Scholar] [CrossRef]
- Shui, Y.; Pei, G.; Zhao, P.; Xiong, M.; Li, S.; Ehara, M.; Yang, T. Understanding Electronic Structures, Chemical Bonding, and Fluxional Behavior of Lu2@ C2n (2n = 76–88) by a Theoretical Study. J. Chem. Phys. 2022, 157, 184306. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Xu, S.; Pei, G.; Xu, J.; Zhao, X.; Kong, C.; Yang, Z.; Yang, T. Geometries, Electronic Structures, and Bonding Properties of Endohedral Group-14 Zintl Clusters TM@ E10 (TM = Fe, Co, Ni; E = Ge, Sn, Pb). J. Comput. Chem. 2022, 43, 828–838. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Pei, G.; Xu, S.; Kong, C.; Yang, Z.; Yang, T. Endohedral Group-14-Element Clusters TM@ E 9 (TM = Co, Ni, Cu; E = Ge, Sn, Pb) and Their Low-Dimensional Nanostructures: A First-Principles Study. Phys. Chem. Chem. Phys. 2021, 23, 20654–20665. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Tománek, D. Can CF3-Functionalized La@ C60 Be Isolated Experimentally and Become Superconducting? Nano Lett. 2017, 17, 3402–3408. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, A.; Nishino, M.; Niwa, H.; Ishino, K.; Wang, Z.; Omachi, H.; Furukawa, K.; Yamaguchi, T.; Kato, T.; Bandow, S.; et al. Crystalline Functionalized Endohedral C60 Metallofullerides. Nat. Commun. 2018, 9, 3073. [Google Scholar] [CrossRef] [PubMed]
EMFs | Sym. | ΔES-T (eV) | dTM−C (Å) |
---|---|---|---|
[Sc@C28]− | ca. C3v | 1.87 | 2.26 |
[Y@C28]− | ca. Td | 1.98 | 2.45 |
[La@C28]− | ca. Td | 1.93 | 2.48 |
[Ti@C28] | ca. C3v | 1.56 | 2.06 |
[Zr@C28] | ca. C2v | 2.01 | 2.38 |
[Hf@C28] | ca. Td | 2.03 | 2.44 |
[V@C28]+ | ca. C3v | 1.04 | 1.96 |
[Nb@C28]+ | ca. C2v | 1.86 | 2.11 |
[Ta@C28]+ | ca. C3v | 1.64 | 2.17 |
EMFs (Singlet) | Fragment | Natural Charge (TM) | Formation Energy (eV) | Excitation Energies (eV) | Oscillator Strengths (nm) |
---|---|---|---|---|---|
[Sc@C28]− | Sc−(T) + C28(Q) | −0.18 | −10.63 | 2.31 | 537.7 |
[Y@C28]− | Y−(T) + C28(Q) | 1.34 | −10.13 | 2.30 | 539.5 |
[La@C28]− | La−(T) + C28(Q) | 0.19 | −5.91 | 2.22 | 559.0 |
[Ti@C28] | Ti(Q) + C28(Q) | 0.53 | −8.18 | 2.05 | 605.8 |
[Zr@C28] | Zr(Q) + C28(Q) | 1.68 | −9.02 | 2.37 | 523.7 |
[Hf@C28] | Hf(T) + C28(Q) | 1.64 | −8.66 | 2.37 | 523.9 |
[V@C28]+ | V+(Q) + C28(Q) | 1.38 | −6.66 | 1.48 | 837.6 |
[Nb@C28]+ | Nb+(Q) + C28(Q) | 1.33 | −8.00 | 2.38 | 521.5 |
[Ta@C28]+ | Ta+(Q) + C28 (Q) | 1.81 | −8.47 | 2.13 | 582.9 |
EMFs | [Sc@C28]− | [Y@C28]− | [La@C28]− |
---|---|---|---|
Fragments | Sc+ (4s03d2) + [C28]2− | Y+ (5s04d2) + [C28]2− | La+ (6s05d2) + [C28]2− |
ΔEint | −552.3 | −361.4 | −308.7 |
ΔEPauli | +472.3 | +752.4 | +1160.2 |
ΔEelstata | −363.7 (35.6%) | −522.8 (47.1%) | −703.7 (48.1%) |
ΔEorba | −658.1 (64.4%) | −588.3 (52.9%) | −760.8 (51.9%) |
ΔEdisp | −2.8 | −2.8 | −4.3 |
EMFs | [Ti@C28] | [Zr@C28] | [Hf@C28] |
Fragments | Ti+ (4s13d2) + [C28]− | Zr+ (5s14d2) + [C28]− | Hf+ (6s15d2) + [C28]− |
ΔEint | −423.0 | −331.9 | −559.6 |
ΔEPauli | +908.5 | +848.4 | +1053.6 |
ΔEelstat a | −464.5 (35.0%) | −485.7 (41.3%) | −585.9 (36.4%) |
ΔEorb a | −861.3 (65.0%) | −689.4 (58.7%) | −1024.4 (63.6%) |
ΔEdisp | −5.7 | −5.2 | −2.8 |
EMFs | [V@C28]+ | [Nb@C28]+ | [Ta@C28]+ |
Fragments | V2+ (4s03d3) + [C28]− | Nb2+ (5s04d3) + [C28]− | Ta2+ (6s05d3) + [C28]− |
ΔEint | −851.5 | −508.0 | −622.1 |
ΔEPauli | +831.1 | +1003.9 | +690.4 |
ΔEelstat a | −463.1 (27.6%) | −348.2 (23.1%) | −388.8 (29.7%) |
ΔEorb a | −1214.1 (72.4%) | −1156.9 (76.9%) | −918.8 (70.3%) |
ΔEdisp | −5.4 | −6.9 | −4.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Shui, Y.; Yang, T. Geometries, Electronic Structures, Bonding Properties, and Stability Strategy of Endohedral Metallofullerenes TM@C28 (TM = Sc−, Y−, La−, Ti, Zr, Hf, V+, Nb+, Ta+). Inorganics 2024, 12, 40. https://doi.org/10.3390/inorganics12020040
Liu D, Shui Y, Yang T. Geometries, Electronic Structures, Bonding Properties, and Stability Strategy of Endohedral Metallofullerenes TM@C28 (TM = Sc−, Y−, La−, Ti, Zr, Hf, V+, Nb+, Ta+). Inorganics. 2024; 12(2):40. https://doi.org/10.3390/inorganics12020040
Chicago/Turabian StyleLiu, Dong, Yuan Shui, and Tao Yang. 2024. "Geometries, Electronic Structures, Bonding Properties, and Stability Strategy of Endohedral Metallofullerenes TM@C28 (TM = Sc−, Y−, La−, Ti, Zr, Hf, V+, Nb+, Ta+)" Inorganics 12, no. 2: 40. https://doi.org/10.3390/inorganics12020040
APA StyleLiu, D., Shui, Y., & Yang, T. (2024). Geometries, Electronic Structures, Bonding Properties, and Stability Strategy of Endohedral Metallofullerenes TM@C28 (TM = Sc−, Y−, La−, Ti, Zr, Hf, V+, Nb+, Ta+). Inorganics, 12(2), 40. https://doi.org/10.3390/inorganics12020040