From Mechanisms in Homogeneous Metal Catalysis to Applications in Chemical Synthesis
Abstract
:References
- Constable, E.C.; Housecroft, C.E. Coordination chemistry: The scientific legacy of Alfred Werner. Chem. Soc. Rev. 2013, 42, 1429–1439. [Google Scholar] [CrossRef] [PubMed]
- Franke, R.; Selent, D.; Börner, A. Applied Hydroformylation. Chem. Rev. 2012, 112, 5675–5732. [Google Scholar] [CrossRef] [PubMed]
- Chikkali, S.H.; van der Vlugt, J.I.; Reek, J.N.H. Hybrid diphosphorus ligands in rhodium catalysed asymmetric hydroformylation. Coord. Chem. Rev. 2014, 262, 1–15. [Google Scholar] [CrossRef]
- Frenking, G. The Dewar–Chatt–Duncanson bonding model of transition metal–olefin complexes examined by modern quantum chemical methods. In Modern Coordination Chemistry: The Legacy of Joseph Chatt; Leigh, G.J., Winterton, N., Eds.; RSC Publishing: Cambridge, UK, 2002; Volume 221, ISBN 978-1-84755-148-1. [Google Scholar]
- Nyholm, R.S. Synthesis, Structure and Reactions of Chelate Metal-Olefin Complexes. Pure Appl. Chem. 1971, 27, 127–144. [Google Scholar] [CrossRef]
- Nyholm, R.S. Electron Configuration and Structure of Transition-Metal Complexes. Proc. Chem. Soc. 1961, 1961, 273–296. [Google Scholar]
- McDonald, R.I.; Liu, G.; Stahl, S.S. Palladium(II)-Catalyzed Alkene Functionalization via Nucleopalladation: Stereochemical Pathways and Enantioselective Catalytic Applications. Chem. Rev. 2011, 111, 2981–3019. [Google Scholar] [CrossRef] [PubMed]
- Keith, J.A.; Henry, P.M. The Mechanism of the Wacker Reaction: A Tale of Two Hydroxypalladations. Angew. Chem. Int. Ed. 2009, 48, 9038–9049. [Google Scholar] [CrossRef] [PubMed]
- Jira, R. Acetaldehyde from ethylene—A Retrospective on the Discovery of the Wacker Process. Angew. Chem. Int. Ed. 2009, 48, 9034–9037. [Google Scholar] [CrossRef] [PubMed]
- Baiju, T.V.; Gravel, E.; Doris, E.; Namboothiri, I.N.N. Recent developments in Tsuji-Wacker oxidation. Tetrahedron Lett. 2016, 57, 3993–4000. [Google Scholar] [CrossRef]
- Burrows, C.J. Holy Grails in Chemistry, Part II—Editorial. Acc. Chem. Res. 2017, 50, 445. [Google Scholar] [CrossRef] [PubMed]
- Behr, A.; Vorholt, A.J. Homogeneous catalysis with renewables. In Catalysis by Metal Complexes; Cole-Hamilton, D.J., van Leeuwen, P.W.N.M., Eds.; Springer: Cham, Switzerland, 2017; Volume 39, ISBN 978-3-319-54161-7. [Google Scholar]
- Echevarren, A.M.; Homs, A. Metal-Catalyzed Cross-Coupling Reactions and More, 1st ed.; de Meijere, A., Bräse, S., Oestreich, M., Eds.; Wiley-VCH: Weinheim, Germany, 2014; ISBN 978-3-52765-560-1. [Google Scholar]
- Johansson Seechurn, C.C.C.; Deangelis, A.; Colacot, T.J. New Trends in Cross-Coupling: Theory and Applications; Colacot, T.J., Ed.; RSC Publishing: Cambridge, UK, 2015; ISBN 978-1-78262-025-9. [Google Scholar]
- Colacot, T.J. The 2010 Nobel Prize in Chemistry: Palladium-Catalysed Cross-Coupling. Plat. Met. Rev. 2011, 55, 84–90. [Google Scholar] [CrossRef]
- Choi, J.; Fu, G.C. Transition metal-catalyzed alky–alkyl bond formation: Another dimension, in cross-coupling chemistry. Science 2017, 356, 152. [Google Scholar]
- Fürstner, A. Iron catalysis in organic synthesis: A critical assessment of what it takes to make this base metal a multitasking champion. ACS Cent. Sci. 2016, 2, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Souillart, L.; Cramer, N. Catalytic C−C Bond Activations via Oxidative Addition to Transition Metals. Chem. Rev. 2015, 115, 9410–9464. [Google Scholar] [CrossRef] [PubMed]
- Labinger, J.A. Tutorial on Oxidative Addition. Organometallics 2015, 34, 4784–4795. [Google Scholar] [CrossRef]
- Shang, R.; Ilies, L.; Nakamura, E. Iron-Catalyzed C–H Bond Activation. Chem. Rev. 2017, 117, 9086–9139. [Google Scholar] [CrossRef] [PubMed]
- Holland, P.L. Distinctive Reaction Pathways at Base Metals in High-Spin, Organometallic Catalysts. Acc. Chem. Res. 2015, 48, 1696–1702. [Google Scholar] [CrossRef] [PubMed]
- Sperger, T.; Sanhueza, I.A.; Kalvet, I.; Schoenebeck, F. Computational Studies of Synthetically Relevant Homogeneous Organometallic Catalysis Involving Ni, Pd, Ir, and Rh: An Overview of Commonly Employed DFT Methods and Mechanistic Insights. Chem. Rev. 2015, 115, 9532–9586. [Google Scholar] [CrossRef] [PubMed]
- Budnikova, Y.H.; Dudkina, Y.B.; Khrizanforov, M.N. Redox-Induced Aromatic C–H Bond Functionalization in Metal Complex Catalysis from the Electrochemical Point of View. Inorganics 2017, 5, 70. [Google Scholar] [CrossRef]
- Budnikova, Y.H.; Vicic, D.A.; Klein, A. Exploring Mechanisms in Ni Terpyridine Catalyzed C‒C Cross-Coupling Reactions—A Review. Inorganics 2018, 6, 18. [Google Scholar] [CrossRef]
- Iffland, L.; Petuker, A.; van Gastel, M.; Apfel, U.-P. Mechanistic Implications for the Ni(I)-Catalyzed Kumada Cross-Coupling Reaction. Inorganics 2017, 5, 78. [Google Scholar] [CrossRef]
- Metz, A.; Heck, J.; Gohlke, C.M.; Kröckert, K.; Louven, Y.; McKeown, P.; Hoffmann, A.; Jones, M.D.; Herres-Pawlis, S. Reactivity of Zinc Halide Complexes Containing Camphor-Derived Guanidine Ligands with Technical rac-Lactide. Inorganics 2017, 5, 85. [Google Scholar] [CrossRef]
- Van de Watering, F.F.; Heijtbrink, N.; van der Vlugt, J.I.; Dzik, W.I.; de Bruin, B.; Reek, J.N.H. Methylindole-Based Tripodal Tetraphosphine Ruthenium Complexes in N2 Coordination and Reduction and Formic Acid Dehydrogenation. Inorganics 2017, 5, 73. [Google Scholar] [CrossRef]
- Nguyen, H.N.; Tashima, N.; Ikariya, T.; Kuwata, S. Ruthenium-Catalyzed Dimerization of 1,1-Diphenylpropargyl Alcohol to a Hydroxybenzocyclobutene and Related Reactions. Inorganics 2017, 5, 80. [Google Scholar] [CrossRef]
- Hopen Eliasson, S.H.; Chatterjee, A.; Occhipinti, G.; Jensen, V.R. The Mechanism of Rh-Catalyzed Transformation of Fatty Acids to Linear Alpha olefins. Inorganics 2017, 5, 87. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klein, A.; Goldfuss, B.; Van der Vlugt, J.-I. From Mechanisms in Homogeneous Metal Catalysis to Applications in Chemical Synthesis. Inorganics 2018, 6, 19. https://doi.org/10.3390/inorganics6010019
Klein A, Goldfuss B, Van der Vlugt J-I. From Mechanisms in Homogeneous Metal Catalysis to Applications in Chemical Synthesis. Inorganics. 2018; 6(1):19. https://doi.org/10.3390/inorganics6010019
Chicago/Turabian StyleKlein, Axel, Bernd Goldfuss, and Jarl-Ivar Van der Vlugt. 2018. "From Mechanisms in Homogeneous Metal Catalysis to Applications in Chemical Synthesis" Inorganics 6, no. 1: 19. https://doi.org/10.3390/inorganics6010019
APA StyleKlein, A., Goldfuss, B., & Van der Vlugt, J. -I. (2018). From Mechanisms in Homogeneous Metal Catalysis to Applications in Chemical Synthesis. Inorganics, 6(1), 19. https://doi.org/10.3390/inorganics6010019