On the Rehydration of Organic Layered Double Hydroxides to form Low-Ordered Carbon/LDH Nanocomposites
Abstract
:1. Introduction
2. Results
2.1. Sample Preparation and TGA and XRPD Analysis
2.2. Optimization of the Rehydration Protocol
2.2.1. Short-Time Hydration
2.2.2. Long-Time Hydration in a Vial
2.3. Spectroscopic Characterization
3. Discussion
4. Materials and Methods
4.1. Sample Preparation
4.2. Instrumental Methods
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Del Hoyo, C. Layered double hydroxides and human health: An overview. Appl. Clay Sci. 2007, 36, 103–121. [Google Scholar] [CrossRef]
- Duan, X.; Evans, D.G. Layered Double Hydroxides; Duan, X., Evans, D.G., Eds.; Structure and Bonding; Springer: Berlin/Heidelberg, Germany, 2006; Volume 119, ISBN 3-540-28279-3. [Google Scholar]
- Conterosito, E.; Gianotti, V.; Palin, L.; Boccaleri, E.; Viterbo, D.; Milanesio, M. Facile preparation methods of hydrotalcite layered materials and their structural characterization by combined techniques. Inorg. Chim. Acta 2018, 470, 36–50. [Google Scholar] [CrossRef]
- Cantrell, D.G.; Gillie, L.J.; Lee, A.F.; Wilson, K. Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis. Appl. Catal. A Gen. 2005, 287, 183–190. [Google Scholar] [CrossRef]
- Sisani, M.; Costantino, U.; Vivani, R.; Nocchetti, M.; Costantino, F.; Montanari, F.; Cinotti, E. Hydrotalcite-Like Materials as Precursors of Catalysts for the Production of Hydrogen from Methanol. Available online: http://www.circc.uniba.it/conferenze/IV_PhD_ChemDay/Perugia_Sisani_Slides.pdf (accessed on 24 February 2007).
- Othman, M.R.; Helwani, Z.; Fernando, W.J.N. Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: A review. Appl. Organomet. Chem. 2009, 23, 335–346. [Google Scholar] [CrossRef]
- Ordóñez, S.; Díaz, E.; León, M.; Faba, L. Hydrotalcite-derived mixed oxides as catalysts for different C–C bond formation reactions from bioorganic materials. Catal. Today 2011, 167, 71–76. [Google Scholar] [CrossRef]
- Perioli, L.; Ambrogi, V.; Rossi, C.; Latterini, L.; Nocchetti, M.; Costantino, U. Use of anionic clays for photoprotection and sunscreen photostability: Hydrotalcites and phenylbenzimidazole sulfonic acid. J. Phys. Chem. Solids 2006, 67, 1079–1083. [Google Scholar] [CrossRef]
- Ambrogi, V.; Fardella, G.; Grandolini, G.; Perioli, L.; Tiralti, M.C. Intercalation compounds of hydrotalcite-like anionic clays with anti-inflammatory agents, II: Uptake of diclofenac for a controlled release formulation. AAPS PharmSciTech 2002, 3, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ambrogi, V.; Fardella, G.; Grandolini, G.; Nocchetti, M.; Perioli, L. Effect of hydrotalcite-like compounds on the aqueous solubility of some poorly water-soluble drugs. J. Pharm. Sci. 2003, 92, 1407–1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perioli, L.; Ambrogi, V.; Nocchetti, M.; Rossi, C.; di Nauta, L. Effects of hydrotalcite-like nanostructured compounds on biopharmaceutical properties and release of BCS class II drugs: The case of flurbiprofen. Appl. Clay Sci. 2011, 51, 407–413. [Google Scholar] [CrossRef]
- Perioli, L.; Ambrogi, V.; Bertini, B.; Ricci, M.; Nocchetti, M.; Latterini, L.; Rossi, C. Anionic clays for sunscreen agent safe use: Photoprotection, photostability and prevention of their skin penetration. Eur. J. Pharm. Biopharm. 2006, 62, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Costantino, U.; Ambrogi, V.; Nocchetti, M.; Perioli, L. Hydrotalcite-like compounds: Versatile layered hosts of molecular anions with biological activity. Microporous Mesoporous Mater. 2008, 107, 149–160. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Q. Effect of hydrotalcite on the thermal stability, mechanical properties, rehology and fame retardance of poly(vinyl chloride). Polym. Int. 2004, 53, 698–707. [Google Scholar]
- Liu, J.; Chen, G.; Yang, J. Preparation and characterization of poly(vinyl chloride)/layered double hydroxide nanocomposites with enhanced thermal stability. Polymer 2008, 49, 3923–3927. [Google Scholar] [CrossRef]
- Van der Ven, L.; van Gemert, M.L.; Batenburg, L.; Keern, J.; Gielgens, L.; Koster, T.P.; Fischer, H. On the action of hydrotalcite-like clay materials as stabilizers in polyvinylchloride. Appl. Clay Sci. 2000, 17, 25–34. [Google Scholar] [CrossRef]
- Tong, M.; Chen, H.; Yang, Z.; Wen, R. The Effect of Zn-Al-Hydrotalcites Composited with Calcium Stearate and β-Diketone on the Thermal Stability of PVC. Int. J. Mol. Sci. 2011, 12, 1756–1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohan, D.; Pittman, C.U. Arsenic removal from water/wastewater using adsorbents—A critical review. J. Hazard. Mater. 2007, 142, 1–53. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.J.; Frost, R.L.; Nguyen, T. Hydrotalcites and their role in coordination of anions in Bayer liquors: Anion binding in layered double hydroxides. Coord. Chem. Rev. 2009, 253, 250–267. [Google Scholar] [CrossRef] [Green Version]
- Kuzawa, K.; Jung, Y.J.; Kiso, Y.; Yamada, T.; Nagai, M.; Lee, T.G. Phosphate removal and recovery with a synthetic hydrotalcite as an adsorbent. Chemosphere 2006, 62, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Pavan, P.C.; Crepaldi, E.L.; Valim, J.B. Sorption of Anionic Surfactants on Layered Double Hydroxides. J. Colloid Interface Sci. 2000, 229, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, Q.; O’Hare, D.; Sun, L. Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem. Soc. Rev. 2017, 46, 5950–5974. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, M.; Rouster, P.; Oncsik, T.; Szilagyi, I. Tuning Colloidal Stability of Layered Double Hydroxides: From Monovalent Ions to Polyelectrolytes. Chempluschem 2017, 82, 121–131. [Google Scholar] [CrossRef]
- Theiss, F.L.; Ayoko, G.A.; Frost, R.L. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods—A review. Appl. Surf. Sci. 2016, 383, 200–213. [Google Scholar] [CrossRef]
- Cavani, F.; Trifirò, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 1991, 11, 173–301. [Google Scholar] [CrossRef]
- Sato, T.; Wakabayashi, T.; Shimada, M. Adsorption of various anions by magnesium aluminum oxide of (Mg0.7Al0.3O1.15). Ind. Eng. Chem. Prod. Res. Dev. 1986, 25, 89–92. [Google Scholar] [CrossRef]
- Roelofs, J.C.A.A.; van Bokhoven, J.A.; van Dillen, a.J.; Geus, J.W.; de Jong, K.P. The thermal decomposition of Mg-Al hydrotalcites: Effects of interlayer anions and characteristics of the final structure. Chem. Eur. J. 2002, 8, 5571–5579. [Google Scholar] [CrossRef]
- Erickson, K.L.; Bostrom, T.E.; Frost, R.L. A study of structural memory effects in synthetic hydrotalcites using Environmental SEM. Mater. Lett. 2004, 59, 226–229. [Google Scholar] [CrossRef] [Green Version]
- Rocha, J.; del Arco, M.; Rives, V.; Ulibarri, M.A. Reconstruction of layered double hydroxides from calcined precursors: A powder XRD and 27Al MAS NMR study. J. Mater. Chem. 1999, 3, 2499–2503. [Google Scholar] [CrossRef]
- Kloprogge, J.T.; Frost, R.L. Infrared emission spectroscopic study of the thermal transformation of Mg−, Ni− and Co-hydrotalcite catalysts. Appl. Catal. Gen. 1999, 184, 61–71. [Google Scholar] [CrossRef]
- Kloprogge, J.T.; Wharton, D.; Hickey, L.; Frost, R.L. Infrared and Raman study of interlayer anions CO32−, NO3−, SO42− and ClO4− in Mg/Al-hydrotalcite. Am. Mineral. 2002, 87, 623–629. [Google Scholar] [CrossRef]
- Kloprogge, J.T.; Kristof, J.; Frost, R.L. Thermogravimetric analysis–mass spectrometry (TGA–MS) of hydrotalcites containing CO32−, NO3–, Cl–, SO42– or ClO4–. In Proceedings of the 12th International Clay Conference, A Clay Odyssey, Bahia-Blanca, Argentina, 22–28 July 2001; pp. 507–508. [Google Scholar]
- Kloprogge, T.J.; Hickey, L.; Frost, R.L.; Kloprogge, J.T.; Hickey, L.; Frost, R.L. Heating stage Raman and infrared emission spectroscopic study of the dehydroxylation of synthetic Mg-hydrotalcite. Appl. Clay Sci. 2001, 18, 37–49. [Google Scholar] [CrossRef]
- Wong, F.; Buchheit, R.G. Utilizing the structural memory effect of layered double hydroxides for sensing water uptake in organic coatings. Prog. Org. Coat. 2004, 51, 91–102. [Google Scholar] [CrossRef]
- Conterosito, E.; Palin, L.; Antonioli, D.; Viterbo, D.; Mugnaioli, E.; Kolb, U.; Perioli, L.; Milanesio, M.; Gianotti, V. Structural Characterisation of Complex Layered Double Hydroxides and TGA-GC-MS Study on Thermal Response and Carbonate Contamination in Nitrate- and Organic-Exchanged Hydrotalcites. Chem. A Eur. J. 2015, 21, 14975–14986. [Google Scholar] [CrossRef] [PubMed]
- Conterosito, E.; Croce, G.; Palin, L.; Pagano, C.; Perioli, L.; Viterbo, D.; Boccaleri, E.; Paul, G.; Milanesio, M. Structural characterization and thermal and chemical stability of bioactive molecule/hydrotalcite (LDH) nanocomposites. Phys. Chem. Chem. Phys. 2013, 15, 13418–13433. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Pan, G.; Gu, Q.; Li, X.; Sun, G.; Ma, S.; Yang, X. Structural transformation and photoluminescence behavior during calcination of the layered europium-doped yttrium hydroxide intercalate with organic-sensitizer. Mater. Res. Bull. 2013, 48, 4460–4468. [Google Scholar] [CrossRef]
- Shiraga, M.; Kawabata, T.; Li, D.; Shishido, T.; Komaguchi, K.; Sano, T.; Takehira, K. Memory effect-enhanced catalytic ozonation of aqueous phenol and oxalic acid over supported Cu catalysts derived from hydrotalcite. Appl. Clay Sci. 2006, 33, 247–259. [Google Scholar] [CrossRef]
- Miyata, S. Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Miner. 1983, 31, 305–311. [Google Scholar] [CrossRef]
- Valente, J.S.; Figueras, F.; Gravelle, M.; Kumbhar, P.; Lopez, J.; Besse, J.-P. Basic Properties of the Mixed Oxides Obtained by Thermal Decomposition of Hydrotalcites Containing Different Metallic Compositions. J. Catal. 2000, 189, 370–381. [Google Scholar] [CrossRef]
- Zhu, H.; Tang, P.; Feng, Y.; Wang, L.; Li, D. Intercalation of IR absorber into layered double hydroxides: Preparation, thermal stability and selective IR absorption. Mater. Res. Bull. 2012, 47, 532–536. [Google Scholar] [CrossRef]
- Milanesio, M.; Conterosito, E.; Viterbo, D.; Perioli, L.; Croce, G. New Efficient Intercalation of Bioactive Molecules into Layered Double Hydroxide Materials by Solid-State Exchange: An in Situ XRPD Study. Cryst. Growth Des. 2010, 10, 4710–4712. [Google Scholar] [CrossRef]
- Conterosito, E.; Van Beek, W.; Palin, L.; Croce, G.; Perioli, L.; Viterbo, D.; Gatti, G.; Milanesio, M. Development of a Fast and Clean Intercalation Method for Organic Molecules into Layered Double Hydroxides. Cryst. Growth Des. 2013, 13, 1162–1169. [Google Scholar] [CrossRef]
- Flippen, J.L.; Gilardi, R.D. (+)-2-(2-Fluoro-4-biphenyl)propionic acid (flurbiprofen). Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1975, 31, 926–928. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yu, P.; Qi, Y.; Chen, F.; Li, Y.; Zhang, Y. Oleylamine/graphene-modified hydrotalcite-based film on titanium alloys and its lubricating Properties Oleylamine/graphene-modified hydrotalcite-based film on titanium alloys and its lubricating properties. Mater. Lett. 2017, 193, 93–96. [Google Scholar] [CrossRef]
- Boccaleri, E.; Arrais, A.; Frache, A.; Gianelli, W.; Fino, P.; Camino, G. Comprehensive spectral and instrumental approaches for the easy monitoring of features and purity of different carbon nanostructures for nanocomposite applications. Mater. Sci. Eng. B 2006, 131, 72–82. [Google Scholar] [CrossRef]
- Kloprogge, J.T.; Hickey, L.; Frost, R.L. FT-Raman and FT-IR spectroscopic study of synthetic Mg/Zn/Al-hydrotalcites. J. Raman Spectrosc. 2004, 35, 967–974. [Google Scholar] [CrossRef] [Green Version]
- Plank, J.; Zou, N.; Zhao, Z.; Dekany, I. Preparation and Properties of a Graphene Oxide Intercalation Compound Utilizing Hydrocalumite Layered Double Hydroxide as Host Structure. Z. Anorg. Allg. Chem. 2014, 640, 1413–1419. [Google Scholar] [CrossRef]
- Lonkar, S.P.; Raquez, J.M.; Dubois, P. One-Pot Microwave-Assisted Synthesis of Graphene/Layered Double Hydroxide (LDH) Nanohybrids. Nano-Micro Lett. 2015, 7, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhu, J.E.; Zhang, L.; Chen, X.; Zhang, H.; Zhang, F.; Xu, S.; Evans, D.G. Facile synthesis of NiAl-layered double hydroxide/graphene hybrid with enhanced electrochemical properties for detection of dopamine. Nanoscale 2011, 3, 4240–4246. [Google Scholar] [CrossRef] [PubMed]
- Costantino, U.; Nocchetti, M.; Vivani, R.; Marmottini, F. New synthetic routes to hydrotalcite-like compounds—Characterisation and properties of the obtained materials. Eur. J. Inorg. Chem. 1998, 1439–1446. [Google Scholar] [CrossRef]
- Toson, V.; Conterosito, E.; Palin, L.; Boccaleri, E.; Milanesio, M.; Gianotti, V. Facile Intercalation of Organic Molecules into Hydrotalcites by Liquid-Assisted Grinding: Yield Optimization by a Chemometric Approach. Cryst. Growth Des. 2015, 15, 5368–5374. [Google Scholar] [CrossRef]
- Conterosito, E.; Milanesio, M.; Palin, L.; Gianotti, V. Rationalization of liquid assisted grinding intercalation yields of organic molecules into layered double hydroxides by multivariate analysis. RSC Adv. 2016, 6, 108431–108439. [Google Scholar] [CrossRef]
- Bruker Optik GmbH. OPUS, Version 5.5; Software Reference Manual; Bruker Optik GmbH: Ettligen, Germany, 2003.
- Coelho Software. TOPAS-Academic, Version 5; General Profile and Structure Analysis Software for Powder Diffraction Data; Coelho Software: Brisbane, Australia, 2012.
Starting Sample | Temp. Treatment (°C) | ||
---|---|---|---|
400 | 600 | 1100 | |
LDH_NO3 | LDH_NO3@400 | LDH_NO3@600 | LDH_NO3@1100 |
LDH_Flur | LDH_Flur@400 | LDH_Flur@600 | LDH_Flur@1100 |
Starting Sample | Treatment Temperature (°C) | |
---|---|---|
14 Days Hydration | 28 Days Hydration | |
LDH_NO3@400 | LDH_NO3@400_14d | LDH_NO3@400_28d |
LDH_Flur@400 | LDH_Flur@400_14d | LDH_Flur@400_28d |
LDH_NO3@600 | LDH_NO3@600_14d | LDH_NO3@600_28d |
LDH_Flur@600 | LDH_Flur@600_14d | LDH_Flur@600_28d |
Samples | % LDH_1 | % ZnO | c LDH_1 (Å) | CS_L LDH_1 1 |
---|---|---|---|---|
LDH_NO3@400_14d | 19 | 67 | 23.4(1) | 5 |
LDH_NO3@400_28d | 60 | 40 | 23.6(7) | 8 |
LDH_NO3@600_14d | 26 | 74 | 22.69(4) | 77 |
LDH_NO3@600_28d | 31 | 69 | 22.69(4) | 78 |
LDH_Flur@400_14d | 79 | 21 | 22.67(6) | 42 |
LDH_Flur@400_28d | 85 | 15 | 22.67(6) | 42 |
LDH_Flur@600_14d | 65 | 35 | 22.68(8) | 66 |
LDH_Flur@600_28d | 73 | 27 | 22.67(6) | 80 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conterosito, E.; Palin, L.; Antonioli, D.; Riccardi, M.P.; Boccaleri, E.; Aceto, M.; Milanesio, M.; Gianotti, V. On the Rehydration of Organic Layered Double Hydroxides to form Low-Ordered Carbon/LDH Nanocomposites. Inorganics 2018, 6, 79. https://doi.org/10.3390/inorganics6030079
Conterosito E, Palin L, Antonioli D, Riccardi MP, Boccaleri E, Aceto M, Milanesio M, Gianotti V. On the Rehydration of Organic Layered Double Hydroxides to form Low-Ordered Carbon/LDH Nanocomposites. Inorganics. 2018; 6(3):79. https://doi.org/10.3390/inorganics6030079
Chicago/Turabian StyleConterosito, Eleonora, Luca Palin, Diego Antonioli, Maria Pia Riccardi, Enrico Boccaleri, Maurizio Aceto, Marco Milanesio, and Valentina Gianotti. 2018. "On the Rehydration of Organic Layered Double Hydroxides to form Low-Ordered Carbon/LDH Nanocomposites" Inorganics 6, no. 3: 79. https://doi.org/10.3390/inorganics6030079
APA StyleConterosito, E., Palin, L., Antonioli, D., Riccardi, M. P., Boccaleri, E., Aceto, M., Milanesio, M., & Gianotti, V. (2018). On the Rehydration of Organic Layered Double Hydroxides to form Low-Ordered Carbon/LDH Nanocomposites. Inorganics, 6(3), 79. https://doi.org/10.3390/inorganics6030079