Influence of Nanoscale Surface Arrangements on the Oxygen Transfer Ability of Ceria–Zirconia Mixed Oxide
Abstract
:1. Introduction
2. Results and Discussion
2.1. Textural and Structural Characterization
2.2. Catalytic Activity
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and Catalytic Applications of CeO2-Based Materials. Chem. Rev. 2016, 116, 5987–6041. [Google Scholar] [CrossRef]
- Aneggi, E.; Boaro, M.; Colussi, S.; de Leitenburg, C.; Trovarelli, A. Ceria-Based Materials in Catalysis: Historical Perspective and Future Trends. In Handbook on the Physics and Chemistry of Rare Earths; Elsevier: Amsterdam, The Netherlands, 2016; Volume 50, pp. 209–242. [Google Scholar]
- Gorte, R.J. Ceria in Catalysis: From Automotive Applications to the Water Gas Shift Reaction. AIChE J. 2010, 56, 1126–1135. [Google Scholar] [CrossRef]
- Farrauto, R.J.; Heck, R.M. Catalytic converters: state of the art and perspectives. Catal. Today 1999, 51, 351–360. [Google Scholar] [CrossRef]
- Trovarelli, A. Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. 1996, 38, 439–520. [Google Scholar] [CrossRef]
- Di Monte, R.; Kaspar, J. On the role of oxygen storage in three-way catalysis. Top Catal. 2004, 28, 47–57. [Google Scholar] [CrossRef]
- Garcia, X.; Soler, L.; Divins, N.J.; Vendrell, X.; Serrano, I.; Lucentini, I.; Prat, J.; Solano, E.; Tallarida, M.; Escudero, C.; et al. Ceria-Based Catalysts Studied by Near Ambient Pressure X-ray Photoelectron Spectroscopy: A Review. Catalysts 2020, 10, 286. [Google Scholar] [CrossRef] [Green Version]
- Aneggi, E.; Leitenburg, C.D.; Trovarelli, A. Ceria-based formulations for catalysts for diesel soot combustion. In Catalysis by Ceria and Related Materials, 2nd ed.; Alessandro, T., Paolo, F., Eds.; Imperial College Press: London, UK, 2013. [Google Scholar]
- Bueno-Lopez, A. Diesel soot combustion ceria catalysts. Appl. Catal. B Environ. 2014, 146, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Krishna, K.; Bueno-Lopez, A.; Makkee, M.; Moulijn, J.A. Potential rare earth modified CeO2 catalysts for soot oxidation I. Characterisation and catalytic activity with O2. Appl. Catal. B Environ. 2007, 75, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Konstandopoulos, A.G.; Pagkoura, C.; Lorentzou, S.; Kastrinaki, G. Catalytic Soot Oxidation: Effect of Ceria–Zirconia Catalyst Particle Size. SAE Int. J. Engines 2016, 9, 1709–1719. [Google Scholar] [CrossRef]
- Saab, E.; Abi-Aad, E.; Bokova, M.N.; Zhilinskaya, E.A.; Aboukais, A. EPR characterisation of carbon black in loose and tight contact with Al2O3 and CeO2 catalysts. Carbon 2007, 45, 561–567. [Google Scholar] [CrossRef]
- Aneggi, E.; de Leitenburg, C.; Dolcetti, G.; Trovarelli, A. Promotional effect of rare earths and transition metals in the combustion of diesel soot over CeO2 and CeO2–ZrO2. Catal. Today 2006, 114, 40–47. [Google Scholar] [CrossRef]
- Mukherjee, D.; Reddy, B.M. Noble metal-free CeO2-based mixed oxides for CO and soot oxidation. Catal. Today 2018, 309, 227–235. [Google Scholar] [CrossRef]
- Simonsen, S.B.; Dahl, S.; Johnson, E.; Helveg, S. Ceria-catalyzed soot oxidation studied by environmental transmission electron microscopy. J. Catal. 2008, 255, 1–5. [Google Scholar] [CrossRef]
- Liu, S.; Wu, X.D.; Weng, D.; Ran, R. Ceria-based catalysts for soot oxidation: A review. J. Rare Earth. 2015, 33, 567–590. [Google Scholar] [CrossRef]
- Yang, Z.; Hu, W.; Zhang, N.; Li, Y.; Liao, Y. Facile synthesis of ceria–zirconia solid solutions with cubic–tetragonal interfaces and their enhanced catalytic performance in diesel soot oxidation. J. Catal. 2019, 377, 98–109. [Google Scholar] [CrossRef]
- Andana, T.; Piumetti, M.; Bensaid, S.; Russo, N.; Fino, D. Heterogeneous mechanism of NOx-assisted soot oxidation in the passive regeneration of a bench-scale diesel particulate filter catalyzed with nanostructured equimolar ceria-praseodymia. Appl. Catal. A Gen. 2019, 583, 117136. [Google Scholar] [CrossRef]
- Andana, T.; Piumetti, M.; Bensaid, S.; Veyre, L.; Thieuleux, C.; Russo, N.; Fino, D.; Quadrelli, E.A.; Pirone, R. Nanostructured equimolar ceria-praseodymia for NOx-assisted soot oxidation: Insight into Pr dominance over Pt nanoparticles and metal–support interaction. Appl. Catal. B Environ. 2018, 226, 147–161. [Google Scholar] [CrossRef]
- Matarrese, R.; Morandi, S.; Castoldi, L.; Villa, P.; Lietti, L. Removal of NOx and soot over Ce/Zr/K/Me (Me = Fe, Pt, Ru, Au) oxide catalysts. Appl. Catal. B Environ. 2017, 201, 318–330. [Google Scholar] [CrossRef]
- Aneggi, E.; de Leitenburg, C.; Trovarelli, A. On the role of lattice/surface oxygen in ceria–zirconia catalysts for diesel soot combustion. Catal. Today 2012, 181, 108–115. [Google Scholar] [CrossRef]
- Bueno-Lopez, A.; Krishna, K.; Makkee, M.; Moulijn, J.A. Enhanced soot oxidation by lattice oxygen via La3+-doped CeO2. J. Catal. 2005, 230, 237–248. [Google Scholar] [CrossRef]
- Setiabudi, A.; Chen, J.L.; Mul, G.; Makkee, M.; Moulijn, J.A. CeO2 catalysed soot oxidation—The role of active oxygen to accelerate the oxidation conversion. Appl. Catal. B Environ. 2004, 51, 9–19. [Google Scholar] [CrossRef]
- Bueno - Lopez, A.; Krishna, K.; Makkee, M.; Moulijn, J. Active oxygen from CeO2 and its role in catalysed soot oxidation. Catal. Lett. 2005, 99, 203–205. [Google Scholar] [CrossRef]
- Zhu, L.; Yu, J.J.; Wang, X.Z. Oxidation treatment of diesel soot particulate on CexZr1−xO2. J. Hazard. Mater. 2007, 140, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Sartoretti, E.; Martini, F.; Piumetti, M.; Bensaid, S.; Russo, N.; Fino, D. Nanostructured Equimolar Ceria-Praseodymia for Total Oxidations in Low-O2 Conditions. Catalysts 2020, 10, 165. [Google Scholar] [CrossRef] [Green Version]
- Machida, M.; Murata, Y.; Kishikawa, K.; Zhang, D.J.; Ikeue, K. On the reasons for high activity of CeO2 catalyst for soot oxidation. Chem. Mater. 2008, 20, 4489–4494. [Google Scholar] [CrossRef]
- Aneggi, E.; Rico-Perez, V.; de Leitenburg, C.; Maschio, S.; Soler, L.; Llorca, J.; Trovarelli, A. Ceria-Zirconia Particles Wrapped in a 2D Carbon Envelope: Improved Low-Temperature Oxygen Transfer and Oxidation Activity. Angew. Chem. Int. Edit. 2015, 54, 14040–14043. [Google Scholar] [CrossRef] [Green Version]
- Aneggi, E.; Llorca, J.; Trovarelli, A.; Aouine, M.; Vernoux, P. In situ environmental HRTEM discloses low temperature carbon soot oxidation by ceria-zirconia at the nanoscale. Chem. Commun. 2019, 55, 3876–3878. [Google Scholar] [CrossRef]
- Soler, L.; Casanovas, A.; Escudero, C.; Perez-Dieste, V.; Aneggi, E.; Trovarelli, A.; Llorca, J. Ambient Pressure Photoemission Spectroscopy Reveals the Mechanism of Carbon Soot Oxidation in Ceria-Based Catalysts. Chemcatchem 2016, 8, 2748–2751. [Google Scholar] [CrossRef] [Green Version]
- Balaz, P.; Achimovicova, M.; Balaz, M.; Billik, P.; Cherkezova-Zheleva, Z.; Criado, J.M.; Delogu, F.; Dutkova, E.; Gaffet, E.; Gotor, F.J.; et al. Hallmarks of mechanochemistry: From nanoparticles to technology. Chem. Soc. Rev. 2013, 42, 7571–7637. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, R.; Snyder, R.L. Introduction to X-ray Powder Diffractometry; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Giménez-Mañogil, J.; García-García, A. Opportunities for ceria-based mixed oxides versus commercial platinum-based catalysts in the soot combustion reaction. Mechanistic implications. Fuel Process. Technol. 2015, 129, 227–235. [Google Scholar] [CrossRef] [Green Version]
- Guillén-Hurtado, N.; López-Suárez, F.E.; Bueno-López, A.; García-García, A. Behavior of different soot combustion catalysts under NOx/O2. Importance of the catalyst–soot contact. React. Kinet. Mech. Catal. 2013, 111, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Niu, X.Y.; Chen, L.Q.; Yuan, F.L.; Zhu, Y.J. Soot Combustion over Nanostructured Ceria with Different Morphologies. Sci. Rep. Uk 2016, 6, 29062. [Google Scholar] [CrossRef] [PubMed]
- Larson, A.C.; Von Dreele, R.B. General Structure Analysis System (GSAS); Los Alamos National Laboratory Report LAUR 86-748: Los Almos, NM, USA, 2000. [Google Scholar]
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef] [Green Version]
- Young, R.A. The Rietveld Method; IUCr Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
Sample | Name | SA (m2/g) | Apparent Density (g/mL) | Crystallite Size (nm) a | Cell Parameter b (nm) | Molar Composition b | Free ZrO2 c (%) |
---|---|---|---|---|---|---|---|
Ce0.8Zr0.2O2 | CZ | 79 | 1.45 | 6 | 5.3590(4) | Ce0.82Zr0.18O2 | / |
Ce0.8Zr0.2O2/C loose | CZ(l) | 79 | 1.44 | 6 | 5.3586(4) | Ce0.82Zr0.18O2 | / |
Ce0.8Zr0.2O2/C tight | CZ(t) | 78 | 1.45 | 6 | 5.3588(4) | Ce0.82Zr0.18O2 | / |
Ce0.8Zr0.2O2/C milled | CZ(m) | 29 | 1.65 | 14 | 5.3487(2) | Ce0.78Zr0.22O2 | 10 |
Sample | Total Weight Loss a (%) | Selectivity from TP Experiment b CO/CO2 | Calculated Weight Loss % (Carbon) c | Calculated Weight Loss % (Oxygen) c |
---|---|---|---|---|
CZ(l) | 2.4 | 5/95 | 0.67 | 1.73 |
CZ(t) | 4.6 | 10/90 | 1.32 | 3.28 |
CZ(m) | 5.6 | 14/86 | 1.65 | 3.95 |
O2/N2 a | NO/O2/N2 | NO2/O2/N2 | |||||
---|---|---|---|---|---|---|---|
Sample | T50 (°C) | Tp (°C) | SCO2 (%) | Tp (°C) | SCO2 (%) | Tp (°C) | SCO2 (%) |
CZ(l) | 534 | 554 | 97 | 515 | 91 | 516 | 92 |
CZ(t) | 364 | 383 | 99 | 378 | 95 | 377 | 96 |
CZ(m) | 268 | 285 | 97 | 294 | 95 | 293 | 94 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aneggi, E.; de Leitenburg, C.; Trovarelli, A. Influence of Nanoscale Surface Arrangements on the Oxygen Transfer Ability of Ceria–Zirconia Mixed Oxide. Inorganics 2020, 8, 34. https://doi.org/10.3390/inorganics8050034
Aneggi E, de Leitenburg C, Trovarelli A. Influence of Nanoscale Surface Arrangements on the Oxygen Transfer Ability of Ceria–Zirconia Mixed Oxide. Inorganics. 2020; 8(5):34. https://doi.org/10.3390/inorganics8050034
Chicago/Turabian StyleAneggi, Eleonora, Carla de Leitenburg, and Alessandro Trovarelli. 2020. "Influence of Nanoscale Surface Arrangements on the Oxygen Transfer Ability of Ceria–Zirconia Mixed Oxide" Inorganics 8, no. 5: 34. https://doi.org/10.3390/inorganics8050034
APA StyleAneggi, E., de Leitenburg, C., & Trovarelli, A. (2020). Influence of Nanoscale Surface Arrangements on the Oxygen Transfer Ability of Ceria–Zirconia Mixed Oxide. Inorganics, 8(5), 34. https://doi.org/10.3390/inorganics8050034