Rare Nuclearities in Ni(II) Cluster Chemistry: An Unprecedented {Ni12} Nanosized Cage from the Use of N-Naphthalidene-2-Amino-5-Chlorobenzoic Acid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthetic Comments
2.2. Description of Structure
2.3. Solid-State Magnetic Susceptibility Studies
2.4. Solid-State Emission Studies
3. Materials and Methods
3.1. Materials, Physical and Spectroscopic Measurements
3.2. Synthesis of [Ni12I2(OH)6(O2CPh)5(nacb)5(H2O)4(MeCN)4]I (1)
3.3. Single-Crystal X-ray Crystallography
4. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Papatriantafyllopoulou, C.; Moushi, E.E.; Christou, G.; Tasiopoulos, A.J. Filling the gap between the quantum and classical worlds of nanoscale magnetism: Giant molecular aggregates based on paramagnetic 3d metal ions. Chem. Soc. Rev. 2016, 45, 1597–1628. [Google Scholar] [CrossRef] [PubMed]
- Maayan, G.; Gluz, N.; Christou, G. A bioinspired soluble manganese cluster as a water oxidation electrocatalyst with low overpotential. Nat. Catal. 2018, 1, 48–54. [Google Scholar] [CrossRef]
- Deng, Y.-K.; Su, H.-F.; Xu, J.-H.; Wang, W.-G.; Kurmoo, M.; Lin, S.-C.; Tan, Y.-Z.; Jia, J.; Sun, D.; Zheng, L.-S. Hierarchical assembly of a {MnII15MnIII4} brucite disc: Step-by-step formation and ferrimagnetism. J. Am. Chem. Soc. 2016, 138, 1328–1334. [Google Scholar] [CrossRef] [PubMed]
- Holynska, M. (Ed.) Single-Molecule Magnets: Molecular Architectures and Building Blocks for Spintronics; Wiley-VCH: Weinheim, Germany, 2018. [Google Scholar]
- Bogani, L.; Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater. 2008, 7, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Bagai, R.; Christou, G. The drosophila of single-molecule magnetism: [Mn12O12(O2CR)16(H2O)4]. Chem. Soc. Rev. 2009, 38, 1011–1026. [Google Scholar] [CrossRef] [PubMed]
- Milios, C.J.; Winpenny, R.E.P. Cluster-based single-molecule magnets. Struct. Bond. 2015, 164, 1–110. [Google Scholar]
- Blake, A.J.; Grant, C.M.; Parsons, S.; Rawson, J.M.; Winpenny, R.E.P. The synthesis, structure and magnetic properties of a cyclic dodecanuclear nickel complex. J. Chem. Soc. Chem. Commun. 1994, 2363–2364. [Google Scholar] [CrossRef]
- Yang, E.-C.; Wernsdorfer, W.; Hill, S.; Edwards, R.S.; Nakano, M.; Maccagnano, S.; Zakharov, L.N.; Rheingold, A.L.; Christou, G.; Hendrickson, D.N. Exchange bias in Ni4 single-molecule magnets. Polyhedron 2003, 22, 1727–1733. [Google Scholar] [CrossRef]
- Alexandropoulos, D.I.; Nguyen, T.N.; Cunha-Silva, L.; Zafiropoulos, T.F.; Escuer, A.; Christou, G.; Stamatatos, T.C. Slow magnetization relaxation in unprecedented MnIII4DyIII3 and MnIII4DyIII5 clusters from the use of N-salicylidene-o-aminophenol. Inorg. Chem. 2013, 52, 1179–1181. [Google Scholar] [CrossRef]
- Athanasopoulou, A.A.; Pilkington, M.; Raptopoulou, C.P.; Escuer, A.; Stamatatos, T.C. Structural aesthetics in molecular nanoscience: A unique Ni26 cluster with a ‘rabbit-face’ topology and a discrete Ni18 ‘molecular chain’. Chem. Commun. 2014, 50, 14942–14945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazarakioti, E.C.; Regier, J.; Cunha-Silva, L.; Wernsdorfer, W.; Pilkington, M.; Tang, J.; Stamatatos, T.C. Large energy barrier and magnetization hysteresis at 5 K for a symmetric {Dy2} complex with spherical tricapped trigonal prismatic DyIII ions. Inorg. Chem. 2017, 56, 3568–3578. [Google Scholar] [CrossRef] [PubMed]
- Alexandropoulos, D.I.; Mowson, A.M.; Pilkington, M.; Bekiari, V.; Christou, G.; Stamatatos, T.C. Emissive molecular nanomagnets: Introducing optical properties in triangular oximato {MnIII3} SMMs from the deliberate replacement of simple carboxylate ligands with their fluorescent analogues. Dalton Trans. 2014, 43, 1965–1969. [Google Scholar] [CrossRef] [PubMed]
- Perlepe, P.S.; Cunha-Silva, L.; Bekiari, V.; Gagnon, K.J.; Teat, S.J.; Escuer, A.; Stamatatos, T.C. Structural diversity in NiII cluster chemistry: Ni5, Ni6, and {NiNa2}n complexes bearing the Schiff-base ligand N-naphthalidene-2-amino-5-chlorobenzoic acid. Dalton Trans. 2016, 45, 10256–10270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perlepe, P.S.; Cunha-Silva, L.; Gagnon, K.J.; Teat, S.J.; Lampropoulos, C.; Escuer, A.; Stamatatos, T.C. “Ligands-with-benefits”: Naphthalene-substituted Schiff bases yielding new NiII metal clusters with ferromagnetic and emissive properties and undergoing exciting transformations. Inorg. Chem. 2016, 55, 1270–1277. [Google Scholar] [CrossRef] [Green Version]
- Prema, D.; Oshin, K.; Desper, J.; Levy, C.J. Mono- and dinuclear nickel(II) complexes of resolved Schiff-base ligands with extended quinoline substituents. Dalton Trans. 2012, 41, 4998–5009. [Google Scholar] [CrossRef] [PubMed]
- Szacilowski, K.T.; Puhui, X.; Malkhasian, A.Y.S.; Heeg, M.J.; Udugala-Ganehenege, M.Y.; Wenger, L.E.; Endicott, J.F. Solid-state structures and magnetic properties of halide-bridged, face-to-face bis-nickel(II)-macrocyclic ligand complexes: Ligand-mediated interchanges of electronic configuration. Inorg. Chem. 2005, 44, 6019–6033. [Google Scholar] [CrossRef] [PubMed]
- Fossey, J.S.; Matsubara, R.; Kiyohara, H.; Kobayashi, S. Heterochiral triangulo nickel complex as evidence of a large positive nonlinear effect in catalysis. Inorg. Chem. 2008, 47, 781–783. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, D.A.; Ferrence, G.M.; Washington, J.; Henderson, J.I.; Rosenhein, L.; Heise, J.D.; Fanwick, P.E.; Kubiak, C.P. A class of halide-supported trinuclear nickel clusters [Ni3(μ3-L)(μ3-X)(μ2-dppm)3]n+ (L = I−, Br−, CO, CNR.; X = I−, Br-; n = 0, 1; dppm = Ph2PCH2PPh2): Novel physical properties and the fermi resonance of symmetric μ3-η1 bound isocyanide ligands. J. Am. Chem. Soc. 1996, 118, 2198–2207. [Google Scholar] [CrossRef]
- Liu, W.; Thorp, H.H. Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes. Refined distances and other enzymes. Inorg. Chem. 1993, 32, 4102–4105. [Google Scholar] [CrossRef]
- Efthymiou, C.G.; Cunha-Silva, L.; Perlepes, S.P.; Brechin, E.K.; Inglis, R.; Evangelisti, M.; Papatriantafyllopoulou, C. In search of molecules displaying ferromagnetic exchange: Multiple-decker Ni12 and Ni16 complexes from the use of pyridine-2-amidoxime. Dalton Trans. 2016, 45, 17409–17419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breeze, B.A.; Shanmugam, M.; Tuna, F.; Winpenny, R.E.P. A series of nickel phosphonate-carboxylate cages. Chem. Commun. 2007, 5185–5187. [Google Scholar] [CrossRef] [PubMed]
- Feltham, H.L.C.; Clérac, R.; Brooker, S. Hexa-, hepta- and dodeca-nuclear nickel(II) complexes of three Schiff-base ligands derived from 1,4-diformyl-2,3-dihydroxybenzene. Dalton Trans. 2009, 2965–2973. [Google Scholar] [CrossRef] [PubMed]
- Pons-Balagué, A.; Piligkos, S.; Teat, S.J.; Sánchez Costa, J.; Shiddiq, M.; Hill, S.; Castro, G.R.; Ferrer-Escorihuela, P.; Sañudo, E.C. New nanostructured materials: Synthesis of dodecanuclear NiII complexes and surface deposition studies. Chem. Eur. J. 2013, 19, 9064–9071. [Google Scholar] [CrossRef] [PubMed]
- Athanasopoulou, A.A.; Raptopoulou, C.P.; Escuer, A.; Stamatatos, T.C. Rare nuclearities in Ni(II) cluster chemistry: A Ni11 cage from the first use of N-salicylidene-2-amino-5-chlorobenzoic acid in metal cluster chemistry. RSC Adv. 2014, 4, 12680–12684. [Google Scholar] [CrossRef]
- Papatriantafyllopoulou, C.; Diamantopoulou, E.; Terzis, A.; Tangoulis, V.; Lalioti, N.; Perlepes, S.P. High-nuclearity nickel(II) clusters: Ni13 complexes from the use of 1-hydroxybenzotriazole. Polyhedron 2009, 28, 1903–1911. [Google Scholar] [CrossRef]
- Bünzli, J.-C.G.; Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 2005, 34, 1048–1077. [Google Scholar] [CrossRef]
- Alaimo, A.; Takahashi, D.; Cunha-Silva, L.; Christou, G.; Stamatatos, T.C. Emissive {MnIII4Ca} clusters with square pyramidal topologies: Syntheses and structural, spectroscopic, and physicochemical characterization. Inorg. Chem. 2015, 54, 2137–2151. [Google Scholar] [CrossRef]
- Binnemans, K. Lanthanide-based luminescent hybrid materials. Chem. Rev. 2009, 109, 4283–4374. [Google Scholar] [CrossRef] [Green Version]
- Bain, G.A.; Berry, J.F. Diamagnetic corrections and Pascal’s constants. J. Chem. Educ. 2008, 85, 532–536. [Google Scholar] [CrossRef]
- Kottke, T.; Stalke, D. Crystal handling at low temperatures. J. App. Cryst. 1993, 26, 615–619. [Google Scholar] [CrossRef] [Green Version]
- APEX2. Data Collection Software Version 2012.4; Bruker AXS: Delft, The Netherlands, 2012. [Google Scholar]
- Cryopad. Remote Monitoring and Control, Version 1.451; Oxford Cryosystems: Oxford, UK, 2006. [Google Scholar]
- SAINT+. Data Integration Engine v. 7.23a ©; Bruker AXS: Madison, WI, USA, 1997–2005. [Google Scholar]
- Sheldrick, G.M. SADABS v.2.01. Bruker/Siemens Area Detector Absorption Correction Program; Bruker AXS: Madison, WI, USA, 1998. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. SHELXT, Version 2014/3; Program for Crystal Structure Solution; University of Göttingen: Gottingen, Germany, 2014. [Google Scholar]
- Sheldrick, G.M. SHELXL, Version 2014; Program for Crystal Structure Refinement; University of Göttingen: Gottingen, Germany, 2014. [Google Scholar]
- Spek, A.L. PLATON, An integrated tool for the analysis of the results of a single crystal structure determination. Acta Cryst. A 1990, 46, C34. [Google Scholar]
- Spek, A.L. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Bruno, I.J.; Cole, J.C.; Edgington, P.R.; Kessler, M.K.; Macrae, C.F.; McCabe, P.; Pearson, J.; Taylor, R. New software for searching the Cambridge structural database and visualizing crystal structures. Acta Cryst. 2002, B58, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Bradenburg, K. DIAMOND, Release 3.1f; Crystal Impact GbR: Bonn, Germany, 2008. [Google Scholar]
Bond | Distances | Bond | Distances | Bond | Angles | Bond | Angles |
---|---|---|---|---|---|---|---|
Ni1–O1 | 1.994(5) | Ni7–O8 | 2.017(5) | Ni3–I1–Ni2 | 78.6(4) | Ni2–O8–Ni6 | 116.0(2) |
Ni1–O26 | 2.020(6) | Ni7–O9 | 2.017(5) | Ni3–I1–Ni1 | 81.6(4) | Ni7–O8–Ni6 | 99.2(2) |
Ni1–O15 | 2.087(5) | Ni7–O23 | 2.114(5) | Ni2–I1–Ni1 | 78.4(4) | Ni8–O9–Ni7 | 126.9(3) |
Ni1–O3 | 2.151(6) | Ni7–O17 | 2.128(5) | Ni1–O1–Ni10 | 96.6(2) | Ni8–O9–Ni11 | 112.0(3) |
Ni1–I2 | 2.484(2) | Ni7–O12 | 2.137(5) | Ni1–O1–Ni2 | 112.8(2) | Ni7–O9–Ni11 | 102.8(2) |
Ni1–I1 | 2.643(1) | Ni7–O14 | 2.176(5) | Ni10–O1–Ni2 | 104.7(2) | Ni9–O10–Ni8 | 98.8(2) |
Ni2–O1 | 2.005(5) | Ni8–O21 | 2.005(6) | Ni3–O2–Ni5 | 113.3(2) | Ni9–O11–Ni8 | 99.2(2) |
Ni2–O8 | 2.007(5) | Ni8–O9 | 2.006(5) | Ni3–O2–Ni2 | 107.2(2) | Ni9–O12–Ni7 | 113.7(2) |
Ni2–O27 | 2.014(5) | Ni8–O19 | 2.031(6) | Ni5–O2–Ni2 | 120.9(2) | Ni10–O14–Ni7 | 118.6(2) |
Ni2–O2 | 2.057(5) | Ni8–O11 | 2.113(6) | Ni3–O3–Ni1 | 103.8(2) | Ni10–O15–Ni1 | 92.9(2) |
Ni2–O16 | 2.134(5) | Ni8–O10 | 2.138(6) | Ni3–O4–Ni12 | 101.5(2) | Ni2–O16–Ni10 | 95.3(2) |
Ni2–I1 | 2.628(1) | Ni8–I4 | 2.479(5) | Ni3–O4–Ni4 | 97.5(2) | Ni7–O17–Ni11 | 91.2(2) |
Ni3–O2 | 2.001(5) | Ni9–N1 | 1.988(7) | Ni12–O4–Ni4 | 99.4(2) | Ni6–O23–Ni7 | 97.4(2) |
Ni3–O4 | 2.040(6) | Ni9–O10 | 2.025(6) | Ni3–O5–Ni4 | 94.9(2) | Ni6–O24–Ni5 | 100.7(2) |
Ni3–O5 | 2.061(5) | Ni9–O11 | 2.039(6) | Ni6–O7–Ni5 | 94.9(2) | Ni3–O29–Ni12 | 99.6(2) |
Ni3–O29 | 2.063(5) | Ni9–N2 | 2.092(8) | Ni2–O8–Ni7 | 119.0(2) | Ni12–O30–Ni4 | 99.2(2) |
Ni3–O3 | 2.150(5) | Ni9–O12 | 2.117(5) | ||||
Ni3–I1 | 2.532(1) | Ni9–I5 | 2.367(9) | ||||
Ni4–O31 | 1.996(6) | Ni10–N3 | 1.994(6) | ||||
Ni4–N9 | 2.016(7) | Ni10–O1 | 2.000(5) | ||||
Ni4–O4 | 2.049(5) | Ni10–O15 | 2.026(5) | ||||
Ni4–O30 | 2.069(6) | Ni10–O25 | 2.039(6) | ||||
Ni4–O5 | 2.113(5) | Ni10–O14 | 2.126(5) | ||||
Ni4–I3 | 2.498(5) | Ni10–O16 | 2.158(5) | ||||
Ni5–O2 | 2.011(5) | Ni11–O20 | 2.015(6) | ||||
Ni5–O24 | 2.063(5) | Ni11–O18 | 2.016(6) | ||||
Ni5–O28 | 2.064(6) | Ni11–O9 | 2.019(6) | ||||
Ni5–O6 | 2.066(5) | Ni11–O22 | 2.050(6) | ||||
Ni5–N8 | 2.093(7) | Ni11–N5 | 2.115(9) | ||||
Ni5–O7 | 2.126(5) | Ni11–O17 | 2.283(5) | ||||
Ni6–O24 | 1.997(5) | Ni12–N6 | 2.024(7) | ||||
Ni6–O23 | 2.002(5) | Ni12–O30 | 2.030(6) | ||||
Ni6–N4 | 2.013(6) | Ni12–O4 | 2.045(6) | ||||
Ni6–O8 | 2.044(5) | Ni12–N7 | 2.076(8) | ||||
Ni6–O13 | 2.052(5) | Ni12–O29 | 2.081(5) | ||||
Ni6–O7 | 2.120(5) | Ni12–I6 | 2.482(4) |
Parameter | 1 |
---|---|
Empirical formula | C133H101N9O35Ni12Cl5I3 |
FW/g mol−1 | 3647.69 |
Temperature/K | 150(2) |
Crystal type | Green plate |
Crystal size/mm3 | 0.22 × 0.10 × 0.04 |
Crystal system | Triclinic |
Space group | P-1 |
a/Å | 19.422(2) |
b/Å | 22.654(3) |
c/Å | 25.321(3) |
α/° | 115.783(4) |
β/° | 92.992(5) |
γ/° | 109.118(5) |
Volume/Å3 | 9443(2) |
Z | 2 |
ρcalc/g cm−3 | 1.283 |
μ/mm−1 | 1.786 |
F(000) | 3644 |
θ range/° | 3.65 to 25.03 |
Radiation | Mo Kα (λ = 0.71073) |
Index ranges | −23 ≤ h ≤ 22 −22 ≤ k ≤ 26 −30 ≤ l ≤ 30 |
Reflections collected | 134,933 |
Independent reflections | 32,481 (Rint = 0.0476) |
Goodness-of-fit on F2 | 1.040 |
Final R indexes [I ≥ 2σ(I)] a,b | R1 = 0.0872 wR2 = 0.2099 |
Final R indexes [all data] | R1 = 0.1221 wR2 = 0.2361 |
(Δρ)max,min/e Å−3 | 1.613 and −1.594 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perlepe, P.S.; Pantelis, K.N.; Cunha-Silva, L.; Bekiari, V.; Escuer, A.; Stamatatos, T.C. Rare Nuclearities in Ni(II) Cluster Chemistry: An Unprecedented {Ni12} Nanosized Cage from the Use of N-Naphthalidene-2-Amino-5-Chlorobenzoic Acid. Inorganics 2020, 8, 32. https://doi.org/10.3390/inorganics8050032
Perlepe PS, Pantelis KN, Cunha-Silva L, Bekiari V, Escuer A, Stamatatos TC. Rare Nuclearities in Ni(II) Cluster Chemistry: An Unprecedented {Ni12} Nanosized Cage from the Use of N-Naphthalidene-2-Amino-5-Chlorobenzoic Acid. Inorganics. 2020; 8(5):32. https://doi.org/10.3390/inorganics8050032
Chicago/Turabian StylePerlepe, Panagiota S., Konstantinos N. Pantelis, Luís Cunha-Silva, Vlasoula Bekiari, Albert Escuer, and Theocharis C. Stamatatos. 2020. "Rare Nuclearities in Ni(II) Cluster Chemistry: An Unprecedented {Ni12} Nanosized Cage from the Use of N-Naphthalidene-2-Amino-5-Chlorobenzoic Acid" Inorganics 8, no. 5: 32. https://doi.org/10.3390/inorganics8050032
APA StylePerlepe, P. S., Pantelis, K. N., Cunha-Silva, L., Bekiari, V., Escuer, A., & Stamatatos, T. C. (2020). Rare Nuclearities in Ni(II) Cluster Chemistry: An Unprecedented {Ni12} Nanosized Cage from the Use of N-Naphthalidene-2-Amino-5-Chlorobenzoic Acid. Inorganics, 8(5), 32. https://doi.org/10.3390/inorganics8050032