CO2 Derivatives of Molecular Tin Compounds. Part 1: Hemicarbonato and Carbonato Complexes †
Abstract
:1. Introduction
2. Hemicarbonato Tin Complexes
3. Carbonato Tin Complexes
3.1. Triorganotin Derivatives
3.2. Diorganotin Derivatives
3.3. Monoorganotin Derivatives
3.4. C,N-Chelated Derivatives
3.5. Heteronuclear Cluster
4. Conclusions
Funding
Conflicts of Interest
References
- Vol’pin, M.E.; Kolomnikov, I.S.; Lobeeva, T.S. Rhodium complex of carbon dioxide. Izv. Akad. Nauk SSSR Ser. Khim. 1969, 2084. [Google Scholar] [CrossRef]
- Aresta, M.; Nobile, C.F.; Albano, V.G.; Forni, E.; Manassero, M. New nickel-carbon dioxide complex. Synthesis, properties, and crystallographic characterization of (carbon dioxide)bis(tricyclohexylphosphine)nickel. J. Chem. Soc. Chem. Commun. 1975, 636–637. [Google Scholar] [CrossRef]
- Gibson, D.H. The organometallic chemistry of carbon dioxide. Chem. Rev. 1996, 96, 2063–2095. [Google Scholar] [CrossRef] [PubMed]
- Mascetti, J. Carbon dioxide coordination chemistry and reactivity of coordinated CO2. In Carbon Dioxide as Chemical Feedstock; Aresta, M., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010; pp. 55–88. [Google Scholar]
- Paparo, A.; Okuda, J. Carbon dioxide complexes: Bonding modes and synthetic methods. Coord. Chem. Rev. 2017, 334, 136–149. [Google Scholar] [CrossRef]
- Looney, A.; Han, R.; McNeill, K.; Parkin, G. Tris(pyrazolyl)hydroboratozinc hydroxide complexes as functional models for carbonic anhydrase: On the nature of the bicarbonate intermediate. J. Am. Chem. Soc. 1993, 115, 4690–4697. [Google Scholar] [CrossRef]
- Wang, H.; Gao, P.; Zhao, T.; Wei, W.; Sun, Y. Recent advances in the catalytic conversion of CO2 to value added compounds. Sci. China Chem. 2015, 58, 79–92. [Google Scholar] [CrossRef]
- Dibenedetto, A.; Angelini, A.; Stufano, P. Use of carbon dioxide as feedstock for chemicals and fuels: Homogeneous and heterogeneous catalysis. J. Chem. Technol. Biotechnol. 2014, 89, 334–353. [Google Scholar] [CrossRef]
- Holscher, M.; Gurtler, C.; Keim, W.; Muller, T.E.; Peters, M.; Leitner, W. Carbon dioxide as a carbon resource—Recent trends and perspectives. Zeitschrift Für Naturforschung 2012, 67b, 961–975. [Google Scholar] [CrossRef]
- Ghanbari, T.; Abnisa, F.; Wan Daud, W.M.A. A review on production of metal organic frameworks (MOF) for CO2 adsorption. Sci. Total Environ. 2020, 707, 135090:1–135090:28. [Google Scholar] [CrossRef]
- Shi, Y.; Hou, S.; Qiu, X.; Zhao, B. MOFs-based catalysts supported chemical conversion of CO2. Top. Curr. Chem. 2020, 378, 11:1–11:54. [Google Scholar] [CrossRef]
- Thomas, I.R.; Bruno, I.J.; Cole, J.C.; Macrae, C.F.; Pidcock, E.; Wood, P.A. WebCSD: The online portal to the Cambridge Structural Database. J. Appl. Cryst. 2010, 43, 362–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaikh, A.-A.G.; Sivaram, S. Organic carbonates. Chem. Rev. 1996, 96, 951–976. [Google Scholar] [CrossRef] [PubMed]
- Fiorani, G.; Perosa, A.; Selva, M. Dimethyl carbonate: A versatile reagent for a sustainable valorization of renewables. Green Chem. 2018, 20, 288–322. [Google Scholar] [CrossRef]
- Esan, A.O.; Adeyemi, A.D.; Ganesan, S. A review on the recent application of dimethyl carbonate in sustainable biodiesel production. J. Clean. Prod. 2020, 257, 120561:1–120561:21. [Google Scholar] [CrossRef]
- Tamboli, A.H.; Chaugule, A.A.; Kim, H. Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol. Chem. Eng. J. 2017, 323, 530–544. [Google Scholar] [CrossRef]
- Kizlink, J. Synthesis of dimethyl carbonate from carbon dioxide and methanol in the presence of organotin compounds. Collect. Czecholsov. Chem. Commun. 1993, 48, 1399–1402. [Google Scholar] [CrossRef]
- Kizlink, J.; Pastucha, I. Preparation of dimethyl carbonate from methanol and carbon dioxide in the presence of organotin compounds. Collect. Czecholsov. Chem. Commun. 1994, 59, 2116–2118. [Google Scholar] [CrossRef]
- Kizlink, J.; Pastucha, I. Preparation of dimethyl carbonate from methanol and carbon dioxide in the presence of Sn(IV) and Ti(IV) alkoxides and metal acetates. Collect. Czech. Chem. Commun. 1995, 60, 687–692. [Google Scholar] [CrossRef]
- Bloodworth, A.J.; Davies, A.G.; Vasishtha, S.C. Organometallic reactions. Part VII. Further addition reactions of Tributyltin Methoxide and of Bistributyltin oxide. J. Chem. Soc. C 1967, 1309–1313. [Google Scholar] [CrossRef]
- Blunden, S.J.; Hill, R.; Ruddick, J.N. The structure of bis(trialkyltin) carbonates: Evidence for two non-equivalent tin sites. J. Organomet. Chem. 1984, 267, C5–C8. [Google Scholar] [CrossRef]
- Ballivet-Tkatchenko, D.; Douteau, O.; Stutzmann, S. Reactivity of carbon dioxide with n-Butyl(phenoxy)-, (alkoxy)-, and (oxo)stannanes: Insight into dimethyl carbonate synthesis. Organometallics 2000, 19, 4563–4567. [Google Scholar] [CrossRef]
- Choi, J.-C.; Sakakura, T.; Sako, T. Reaction of dialkyltin methoxide with carbon dioxide relevant to the mechanism of catalytic carbonate synthesis. J. Am. Chem. Soc. 1999, 121, 3793–3794. [Google Scholar] [CrossRef]
- Chambrey, S. Valorisation Chimique du Dioxyde de Carbone–Synthon et Solvant en Catalyse Moléculaire Pour la Synthèse de Carbonates de Dialkyle. Ph.D. Thesis, University of Burgundy, Dijon, France, 2007. [Google Scholar]
- Ballivet-Tkatchenko, D.; Chermette, H.; Plasseraud, L.; Walter, O. Insertion reaction of carbon dioxide into Sn–OR bond. Synthesis, structure and DFT calculations of di- and tetranuclear isopropylcarbonato tin(IV) complexes. Dalton Trans. 2006, 43, 5167–5175. [Google Scholar] [CrossRef] [PubMed]
- Plasseraud, L.; Cattey, H.; Richard, P.; Ballivet-Tkatchenko, D. A novel two-dimensional organostannoxane coordination network promoted by phenazine: Synthesis, characterization and X-ray structure of 2∞{[n-Bu2(µ-OH)SnOSn(µ-ƞ2-O3SCF3)n-Bu2]2[n-Bu2(ƞ1-O3SCF3)SnOSn(µ-OH)n-Bu2]2. J. Organomet. Chem. 2009, 694, 2386–2394. [Google Scholar] [CrossRef]
- Laurenczy, G.; Dalebrook, A.F.; Picquet, M.; Plasseraud, L. High-pressure NMR spectroscopy: An in situ tool to study tin-catalyzed synthesis of organic carbonates from carbon dioxide and alcohols. Part 2. J. Organomet. Chem. 2015, 796, 53–58. [Google Scholar] [CrossRef]
- Ballivet-Tkatchenko, D.; Jerphagnon, T.; Ligabue, R.; Plasseraud, L.; Poinsot, D. The role of distannoxanes in the synthesis of dimethyl carbonate from carbon dioxide. Appl. Catal. Gen. 2003, 255, 93–99. [Google Scholar] [CrossRef]
- Wakamatsu, K.; Orita, A.; Otera, J. DFT Study on activation of carbon dioxide by dimethytin dimethoxide for synthesis of dimethyl carbonate. Organometallics 2010, 29, 1290–1295. [Google Scholar] [CrossRef]
- Poor Kalhor, M.; Chermette, H.; Chambrey, S.; Ballivet-Tkatchenko, D. From CO2 to dimethyl carbonate with dialkyldimethoxystannanes: The key role of monomeric species. Phys. Chem. Chem. Phys. 2011, 13, 2401–2408. [Google Scholar] [CrossRef]
- Poor Kalhor, M.; Chermette, H.; Ballivet-Tkatchenko, D. Reactivity of dialkoxydibutylstannanes toward carbon dioxide: A DFT study of electronic and steric effects. Polyhedron 2012, 32, 73–77. [Google Scholar] [CrossRef]
- Ballivet-Tkatchenko, D.; Bernard, F.; Demoisson, F.; Plasseraud, L.; Sanapureddy, S.R. Tin-Based mesoporous silica for the conversion of CO2 into dimethyl carbonate. ChemSusChem 2011, 4, 1316–1322. [Google Scholar] [CrossRef]
- Kulmiz, P.J. Ueber Methstannäthyloxyd und dessen Verbindungen. Prakt. Chem. 1860, 80, 60–101. [Google Scholar] [CrossRef]
- Lohmann, D.H. The infrared spectra of ethyltin compounds in the region 2–45 µ. J. Organomet. Chem. 1965, 4, 382–391. [Google Scholar] [CrossRef]
- Sato, H. A Bridge-type Sn···O Coordination of Bis(trialkyltin) Carbonates. Bull. Chem. Soc. Jpn. 1967, 40, 410–411. [Google Scholar] [CrossRef] [Green Version]
- Lockhart, T.P. Steric effects in neophyltin(IV) chemistry. J. Organomet. Chem. 1985, 287, 179–186. [Google Scholar] [CrossRef]
- Tiekink, E.R.T. The crystal structure of bis(trimethyltin)carbonate). J. Organomet. Chem. 1986, 302, C1–C3. [Google Scholar] [CrossRef]
- Kümmerlen, J.; Sebald, A.; Reuter, H. The structure of (iBu3Sn)2CO3 and (Me3Sn)2CO3 in solution and in the solid state studied by 13C/119Sn NMR spectroscopy and X-ray diffraction. J. Organomet. Chem. 1992, 427, 309–323. [Google Scholar] [CrossRef]
- Li, S.-L.; Ping, G.-J.; Liu, J.; Ma, J.-F.; Su, Z.-M. A novel chiral 3D supramolecular framework based on organooxotin cluster. Inorg. Chem. Commun. 2008, 11, 220–224. [Google Scholar] [CrossRef]
- Ghionoiu, A.-E.; Popescu, D.-L.; Maxim, C.; Madalan, A.M.; Haiduc, I.; Andruh, M. Atmospheric CO2 capture by a triphenyltin–1,2-bis(4-pyridyl)ethane system with formation of a rare trinuclear carbonato-centered core. Inorg. Chem. Commun. 2015, 58, 71–73. [Google Scholar] [CrossRef]
- Goel, R.G.; Prasad, H.S.; Bancroft, G.M.; Sham, T.K. Preparation, Mössbauer and vibrational spectra of diorganotin chromates and carbonates. Can. J. Chem. 1976, 54, 711–717. [Google Scholar] [CrossRef]
- Smith, P.J.; Hill, R.; Nicolaides, A.; Donaldson, J.D. Preparation and spectroscopic studies of diorganotin oxycarbonates. J. Organomet. Chem. 1983, 252, 149–152. [Google Scholar] [CrossRef]
- Knoll, S.; Tschwatschalb, F.; Ristaub, T.; Gelbrichb, T.; Borsdorf, R. Diorganotin(IV) derivatives of tridentate dithiocarbazones—Structure determination in the solid and liquid state. Z. Anorg. Allg. Chem. 1997, 623, 141–146. [Google Scholar] [CrossRef]
- Holmes, R.R. Organotin cluster chemistry. Acc. Chem. Res. 1989, 22, 190–197. [Google Scholar] [CrossRef]
- Chandrasekhar, V.; Nagendran, S.; Baskar, V. Organotin assemblies containing Sn–O bonds. Coord. Chem. Rev. 2002, 235, 1–52. [Google Scholar] [CrossRef]
- Zheng, G.-L.; Ma, J.-F.; Yang, J.; Li, Y.-Y.; Hao, X.-R. New system in organooxotin cluster chemistry incorporating inorganic and organic spacers between two ladders each containing five tin atoms. Chem. Eur. J. 2004, 10, 3761–3768. [Google Scholar] [CrossRef] [PubMed]
- Plasseraud, L.; Cattey, H.; Richard, P. Unprecedented Hexa- and undecanuclear frameworks of two new Tin(IV) oxo clusters resulting from partial Debenzylation reactions. Z. Naturforsch. B 2010, 65, 1293–1300. [Google Scholar] [CrossRef]
- Ballivet-Tkatchenko, D.; Chambrey, S.; Keiski, R.; Ligabue, R.; Plasseraud, L.; Richard, P.; Turunen, H. Direct synthesis of dimethyl carbonate with supercritical carbon dioxide: Characterization of a key organotin oxide intermediate. Catal. Today 2006, 115, 80–87. [Google Scholar] [CrossRef]
- Sanapureddy, S.R.; Plasseraud, L. (n-Bu2Sn)2O(CO3): An active, robust and recyclable organotin(IV) for the direct synthesis of linear organic carbonates from carbon dioxide and alcohols. Appl. Organomet. Chem. 2017, 31, e3807:1–e3807:8. [Google Scholar] [CrossRef]
- Plasseraud, L.; Ballivet-Tkatchenko, D.; Cattey, H.; Chambrey, S.; Ligabue, R.; Richard, P.; Willem, R.; Biesemans, M. Di-n-butyltin oxide as a chemical carbon dioxide capturer. J. Organomet. Chem. 2010, 695, 1618–1626. [Google Scholar] [CrossRef]
- Reuter, H.; Wilberts, H. On the structural diversity anions coordinate to the butterfly-shaped [(R2Sn)3O(OH)2]2+ cations and vice versa. Can. J. Chem. 2014, 92, 496–507. [Google Scholar] [CrossRef]
- Ballivet-Tkatchenko, D.; Burgat, R.; Chambrey, S.; Plasseraud, L.; Richard, P. Reactivity of ditert-butyldimethoxystannane with carbon dioxide and methanol: X-ray structure of the resulting complex. J. Organomet. Chem. 2006, 691, 1498–1504. [Google Scholar] [CrossRef]
- Ahmad, S.U.; Beckmann, J.; Duthie, A. New insights into the formation and reactivity of molecular organostannonic acids. Chem. Asian J. 2010, 5, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Švec, P.; Cattey, H.; Růžičková, Z.; Holub, J.; Růžička, A.; Plasseraud, L. Triorganotin(IV) cation-promoted dimethyl carbonate synthesis from CO2 and methanol:solution and solid-state characterization of an unexpected diorganotin(IV)-oxo cluster. New J. Chem. 2018, 42, 8253–8260. [Google Scholar] [CrossRef]
- Beckmann, J.; Dakternieks, D.; Duthie, A.; Lewcenko, N.A.; Mitchell, C. Carbon dioxide fixation by the cooperative. effect of organotin and organotellurium oxides. Angew. Chem. Int. Ed. 2004, 43, 6683–6685. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, J.; Dakternieks, D.; Duthie, A.; Mitchell, C. A dimeric tellurastannoxane carbonate cluster, tetra-tert-butyl-di-µ3-carbonato-tetrakis-[4-(N,N-dimethylamino)phenyl]di-µ-oxo-ditelluriumditin chloroform tetrasolvate. Acta Cryst. 2004, E60, m1978–m1979. [Google Scholar]
- Ahmad, S.U.; Beckmann, J.; Duthie, A. Hexameric methylstannoxyl carbonate ion [MeSn(O)CO3]66− a missing link with a drum-type structure. Organometallics 2009, 28, 7053–7054. [Google Scholar] [CrossRef]
- Yoshida, M.; Ueki, T.; Yasuoka, N.; Kasai, N.; Kakudo, M.; Omae, I.; Kikkawa, S.; Matsuda, S. The crystal and molecular structure of an isomer of Bis-(1,2-diethoxycarbonyl-ethyl)tin dibromide. Bull. Chem. Soc. Jpn. 1968, 41, 1113–1119. [Google Scholar] [CrossRef] [Green Version]
- Jastrzebski, J.T.B.H.; van Koten, G. Intramolecular coordination in organotin Chemistry. Adv. Organomet. Chem. 1993, 35, 241–294. [Google Scholar]
- Padĕlková, Z.; Weidlich, T.; Kolářová, L.; Eisner, A.; Císařová, I.; Zevaco, T.A.; Růžička, A. Products of hydrolysis of C,N-chelated triorganotin(IV) chlorides and use of products as catalysts in transesterification reactions. J. Organomet. Chem. 2007, 692, 5633–5645. [Google Scholar] [CrossRef]
- Švec, P.; Olejník, R.; Padĕlková, Z.; Růžička, A.; Plasseraud, L.; Olejník, R.; Padĕlková, Z.; Růžička, A.; Plasseraud, L. C,N-chelated organotin(IV) trifluoromethanesulfonates: Synthesis, characterization and preliminary studies of its catalytic activity in the direct synthesis of dimethyl carbonate from methanol and CO2. J. Organomet. Chem. 2012, 7087–09, 82–87. [Google Scholar]
- Padĕlková, Z.; Vaňkátová, H.; Císařová, I.; Nechaev, M.S.; Zevaco, T.A.; Walter, O.; Růžička, A. Reactivity of a C,N-chelated stannoxane. Organometallics 2009, 28, 2629–2632. [Google Scholar] [CrossRef]
- Mairychová, B.; Dostál, L.; Růžička, A.; Beneš, L.; Jambor, R. Reversible CO2 fixation by intramolecularly coordinated diorganotin(IV) oxides. J. Organomet. Chem. 2012, 699, 1–4. [Google Scholar] [CrossRef]
- Simón-Manso, E.; Kubiak, C.P. A trihydroxy tin group that resists oligomerization in the trinuclear nickel cluster [Ni3(µ-P,P’-PPh2CH2PPh2)3(µ3-L)-(µ3-Sn(OH)3)]. Angew. Chem. 2005, 117, 1149–1152. [Google Scholar] [CrossRef]
Compounds | Sn–O(C) (Å) | C–O(Sn) (Å) | C=O (Å) | O–C–O (deg) | O–C=O (deg) | CSD Entry Deposition Number | Ref. |
---|---|---|---|---|---|---|---|
[(CH3)2Sn(OCH3)(OCO2CH3)]2 (2) | 2.192(2) | 1.292(4) 1.353(4) | 1.201(4) | 115.9(3) | 125.9(3) | FATVOL 119276 | [23] |
[(n-Bu)2Sn(OPr-i)(OCO2Pr-i)]2 (4) | 2.1696(12) | 1.290(2) 1.350(2) | 1.224(2) | 117.27(15) | 125.19(16) 117.53(16) | MEPJAT 614750 | [25] |
[(n-Bu)2(i-PrO)SnOSn(OCO2Pr-i)(n-Bu)]2 (5) | 2.159(4) | 1.293(6) 1.336(7) | 1.233(6) | 111.6(6) | 125.1(5) 123.3(5) | MEPJEX 614751 | [25] |
Compounds | 119Sn{1H} NMR (δ, ppm) | 13C{1H} NMR (δ, ppm) | IR υ(CO3) cm−1 | Ref. |
---|---|---|---|---|
(n-Bu)3Sn(OMe)(OCO2Me) (1) | −27.0 a | 158.4 b | 1600 | [20,21,22] |
[(CH3)2Sn(OCH3)(OCO2CH3)]2 (2) | −170.91 b (s, −50 °C) −171.91 b (br, +25 °C) | 159.19 b | 1682 | [23] |
[(n-Bu)2Sn(OMe)(OCO2Me)]2 (3) | −213.0 b | 156.0 b | 1655 1303 | [24] |
[(n-Bu)2Sn(OPr-i)(OCO2Pr-i)]2 (4) | −209.5 b (br) | 158.24 b | 1668–1615 1284 | [25] |
[(n-Bu)2(i-PrO)SnOSn(OCO2Pr-i)(n-Bu)]2 (5) | −185.9 b −209.6 b | 156.95 b | 1647–1627 1286 | [25] |
{[n-Bu2Sn(OCO2Pr-i)2]2O}2 (6) | −218.0 c −229.0 c | 157.0 c | 1678–1591 | [25] |
[(n-Bu)2(MeO)SnOSn(OCO2Me)(n-Bu)]2 (7) | −176.6 b −208.5 b | 157.99 b | 1715, 1670, and 1629 1300 | [28] |
Compounds | Sn–O(C) (Å) | C–O (Å) | O–C–O (deg) | CSD Entry Deposition Number | Ref. |
---|---|---|---|---|---|
(Me3Sn)2CO3(8) | 2.247(6) 2.261(6) 2.031(7) | 1.264(12) 1.267(12) 1.315(11) | 118.1(8) 119.1(8) 122.9(8) | DOKDOW 1143774 | [37] |
2.031(5) 2.258(4) 2.248(4) | 1.263(7) 1.301(7) 1.289(7) | 117.4(5) 120.1(5) 122.8(16) | DOKDOW01 1143775 | [38] | |
(i-Bu3Sn)2CO3 (10) | 2.014(12) 2.063(12) 2.253(11) 2.258(13) 2.261(12) 2.272(13) | 1.247(23) 1.227(21) 1.300(22) 1.300(23) 1.311(22) 1.321(22) | 115.4(15) 117.3(16) 118.8(15) 120.2(17) 122.5(17) 125.8(16) | YACKUI 1298365 | [39] |
[(Ph3Sn)3(CO3)(EtOH)3]·(ntb)·Cl·H20 (11) | 2.164(5) | 1.26(1) | 120.0(8) | TIWROH 656567 | [40] |
[(Ph3SnCl)2(μ3-CO3)(Ph3Sn)(Hbpa)]·H2O (12) | 2.133(5) 2.251(5) 2.137(5) | 1.273(9) 1.278(8) 1.294(8) | 120.3(6) 118.9(6) 120.9(6) | QUKMIU 1052912 | [41] |
1∞[(Ph3SnCl)(Ph3Sn)2(μ3-CO3)(bpa)]·H2O (13) | 2.142(3) 2.234(4) 2.135(3) | 1.277(6) 1.277(7) 1.289(7) | 120.0(5) 119.6(5) 120.5(5) | QUKMOA 1052913 | [42] |
Compounds | 119Sn{1H} NMR (δ, ppm) | 119Sn MAS NMR (δiso, ppm) | 13C{1H} NMR (δ, ppm) | 13C MAS NMR (δiso ppm) | IR υ(CO3) cm−1 | Ref. |
---|---|---|---|---|---|---|
(Me3Sn)2CO3(8) | n/a | +123.5 −62.2 | n/a | 163.8 | 1553, 1534 1379, 1072 | [35,38] |
(n-Bu3Sn)2CO3 (9) | +82.0 a −66.7 a | n/a | n/a | n/a | n/a | [21] |
(i-Bu3Sn)2CO3 (10) | +101.7 b | +86.5 −75.1 −96.4 | 162.2b | 163.3 | n/a | [38] |
[(Ph3Sn)3(CO3)(EtOH)3]·(ntb)·Cl·H20 (11) | n/a | n/a | n/a | n/a | 1455 | [39] |
[(Ph3SnCl)2(μ3-CO3)(Ph3Sn)(Hbpa)]·H2O (12) | n/a | n/a | n/a | n/a | 1428 829 | [40] |
1∞[(Ph3SnCl)(Ph3Sn)2(μ3-CO3)(bpa)]·H2O (13) | n/a | n/a | n/a | n/a | 1428 896 | [40] |
Compounds | Sn–O(C) (Å) | C–O (Å) | C=O (Å) | O–C–O (9) | O–C=O (deg) | CSD Entry Deposition Number | Ref. |
---|---|---|---|---|---|---|---|
[(n-Bu2Sn-Pyr)2(CO3)] (14) | 2.506(6) 2.229(7) 2.195(6) | 1.326(11) 1.284(11) | 1.260(11) | 118.4(9) | 122.9(9) 118.7(9) | RACXIC 106460 | [43] |
[(R2SnO)3(R2SnOH)2(CO3)]2 (15) (R = –CH2C6H5) | 2.094(2) 2.113(2) | 1.304(4) 1.315(4) | 1.237(4) | 114.5(3) | 125.5(3) 122.0(3) | MADDOL 232628 MAHQIX 763719 | [46] [47] |
[(R2SnO)3(R2SnOH)(R2SnOC2H5)(CO3)]2 (16) (R = –CH2C6H5) | 2.095(4) 2.116(4) | 1.298(7) 1.302(7) | 1.240(8) | 116.4(6) | 121.8(6) 121.8(6) | MADFUT 232628 | [46] |
[(R2SnO)3(R2SnOCH3)2(CO3)]2 (17) (R = –n-Bu) | 2.111(6) 2.110(6) | 1.291(11) 1.277(10 | 1.243(10) | 115.0(7) | 123.2(8) 121.6(8) | DIFLAG 1140489 | [48] |
[(t-Bu2Sn)3O(OH)2]CO3·3MeOH (19) | 2.140(4) 2.119(4) | 1.280(7) 1.310(7) | 1.266(7) | 120.6(7) | 120.3(6) 119.0(5) | JELZAC 278211 JELZAC01 968891 | [51] [52] |
[(t-Bu2Sn)3O(OH)2]CO3·3H2O·acetone (20) | 2.125(2) 2.128(2) | 1.295(3) 1.295(3) | 1.250(3) | 120.0(2) | 120.0(2) 120.0(2) | YONZOS 968892 | [51] |
[t-Bu2Sn(OH)OSnR(OH)2OC(OSnt-Bu2OH)2(O)SnR(OH)(H2O)]2 (21) | 2.11(1) 2.18(1) 2.270(9) | 1.25(2) 1.27(2) 1.28(2) | 117(1) 119(1) 124(1) | SUMXUU 749950 | [53] | ||
[(n-Bu)20Sn10O2(OMe)6(CO3)2]2+·2[CB11H12]− (22) | 2.11(1) 2.158(9) 2.18(1) | 1.24(2) 1.29(2) 1.28(2) | 125(1) 121(1) 115(1) | TEWXUR 1590299 | [54] | ||
[(p-MeOC6H4)2TeOSn(t-Bu2)CO3}2] (23) | 2.307(2) 2.094(2) 2.481(2) a | 1.278(3) 1.329(3) 1.259(3)a | 124.7(2) 120.9(2) 114.4(2) | FERVAA 233184 | [55] | ||
[(p-Me2NC6H4)2TeOSn(t-Bu2)CO3}2] (24) | 2.313(3) 2.085(3) | 1.282(6) 1.326(6) 1.252(6)a | 123.7(5) 122.0(5) 114.3(5) | GAKNOW 259086 | [56] |
Compounds | 119Sn{1H} NMR (δ, ppm) | 119Sn MAS NMR (δiso, ppm) | 13C{1H} NMR (δ, ppm) | 13C MAS NMR (δiso ppm) | IR υ(CO3) cm−1 | Number Ref. |
---|---|---|---|---|---|---|
[(n-Bu2Sn-Pyr)2(CO3)] (14) | −374.9 a | n/a | 167.9 a | n/a | 1420 885 | [43] |
[(R2SnO)3(R2SnOH)2(CO3)]2 (15) (R = –CH2C6H5) | −304.7 a −244.5 a −242.6 a | n/a | 164.0 | n/a | 1537 1363 | [46,47] |
[(R2SnO)3(R2SnOCH3)2(CO3)]2 (17) (R = –n-Bu) | −233.9 a −177.7 a −171.2 a | −235 c −181 c −174 c | 163.7 a | 164 | 1539 1373 | [48,50] |
[(R2SnO)3(R2SnOC2H5)2(CO3)]2 (18) (R = –n-Bu) | −234 b −178 b −173 b | n/a | n/a | n/a | 1535 1374 | [50] |
[(t-Bu2Sn)3O(OH)2]CO3·3MeOH (19) | −297 a −265 a | n/a | n/a | n/a | 1500 (1549 e) 1354 (1291 e) | [24,52] |
[(n-Bu)20Sn10O2(OMe)6(CO3)2]2+·2[CB11H12]− (22) | −211.8 d −207.6 d −177.2 d −164.3 d | n/a | 163.5 | n/a | [54] | |
[(p-MeOC6H4)2TeOSn(t-Bu2)CO3}2] (23) | −258.3 a | −262.4 | 165.4 a | 165.6 | n/a | [55] |
[(p-Me2NC6H4)2TeOSn(t-Bu2)CO3}2] (24) | −257.9 a | −267.5 | 165.4 a | n/a | n/a | [56] |
Compound | Sn–O(C) (Å) | C–O(Sn) (Å) | C=O (Å) | O–C–O (deg) | O–C=O (deg) | CSD Entry Deposition Number | Ref. |
---|---|---|---|---|---|---|---|
K6[MeSn(O)CO3]6·14H2O (25) | 2.167(8) 2.129(6) 2.106(7) 2.140(8) 2.107(9) 2.122(7) | 1.30(1) 1.29(1) 1.32(2) 1.32(2) 1.28(2) 1.25(1) 1.30(1) | 1.24(1) 1.24(2) 1.25(1) | 121(1) 122(1) | 120(1) 119(1) 119(1) 119(1) | ZELPEN 751878 | [57] |
Compounds | Sn–O(C) (Å) | C–O(Sn) (Å) | C=O (Å) | O–C–O (deg) | O−C=O (deg) | CSD Entry Deposition Number | Ref. |
---|---|---|---|---|---|---|---|
{{2-[(CH3)2NCH2]2C6H4}2Sn(μ-O)(μ-CO3) (26) | 2.079(4) 2.080(4) | 1.312(2) 1.322(2) | 1.215(8) | 116.5(5) | 121.4(5) 122.1(5) | YUMVEI 119276 | [62] |
L(n-Bu)SnCO3 (27) (L = 2,6-(Me2NCH2)2C6H3) | 2.110(2) 2.125(2) | 1.333(4) 1.325(4) | 1.223(4) | 111.6(3) | 124.2(3) 124.2(3) | PAJMEU 835513 | [63] |
L(Ph)SnCO3 (28) (L = 2,6-(Me2NCH2)2C6H3) | 2.099(3) 2.107(3) | 1.331(6) 1.322(6) | 1.221(5) | 110.6(4) | 124.4(4) 125.0(4) | PAJMOE 835515 | [63] |
Compounds | 119Sn{1H} NMR (δ, ppm) | 13C{1H} NMR (δ, ppm) | IR υ(CO3) cm−1 | Ref. |
---|---|---|---|---|
{{2-[(CH3)2NCH2]2C6H4}2Sn(μ-O)(μ-CO3) (26) | −309.2 a,b −315.8 a,c | 161.9 d,e | 1587 | [62] |
L(n-Bu)SnCO3 (27) (L = 2,6-(Me2NCH2)2C6H3) | −314.0 d,e | 163.9 d,e | n/a | [63] |
L(Ph)SnCO3 (28) (L = 2,6-(Me2NCH2)2C6H3) | −379.2 d,e | 163.5 d,e | n/a | [63] |
Compound | Sn–O(C) (Å) | C–O(Sn) (Å) | C=O (Å) | O–C–O (deg) | O–C=O (deg) | CSD Entry Deposition Number | Ref. |
---|---|---|---|---|---|---|---|
[Ni3(μ-dppm)3(μ3-Cl)(μ3-Sn(OH)(η2-CO3)] (29) | 2.121(3) 2.148(3) | 1.325(6) 1.323(5) | 1.223(6) | 111.8(4) | 123.9(4) 124.3(4) | FIXWEP 250077 | [64] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plasseraud, L. CO2 Derivatives of Molecular Tin Compounds. Part 1: Hemicarbonato and Carbonato Complexes. Inorganics 2020, 8, 31. https://doi.org/10.3390/inorganics8050031
Plasseraud L. CO2 Derivatives of Molecular Tin Compounds. Part 1: Hemicarbonato and Carbonato Complexes. Inorganics. 2020; 8(5):31. https://doi.org/10.3390/inorganics8050031
Chicago/Turabian StylePlasseraud, Laurent. 2020. "CO2 Derivatives of Molecular Tin Compounds. Part 1: Hemicarbonato and Carbonato Complexes" Inorganics 8, no. 5: 31. https://doi.org/10.3390/inorganics8050031
APA StylePlasseraud, L. (2020). CO2 Derivatives of Molecular Tin Compounds. Part 1: Hemicarbonato and Carbonato Complexes. Inorganics, 8(5), 31. https://doi.org/10.3390/inorganics8050031