Diverse Coordination Numbers and Geometries in Pyridyl Adducts of Lanthanide(III) Complexes Based on β-Diketonate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthetic Aspects and IR Spectra of the Complexes
2.2. Description of the Crystal Structures 1–10
2.3. Luminescence Emission of Terbium (9) and Europium (10) Complexes
3. Experimental Section
3.1. Materials and Physical Measurements
3.2. Syntheses of the Complexes
3.3. Single Crystal X-ray Diffraction Analysis
3.4. Luminescence Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bünzli, J.-C.G. Lanthanide Photonics: Shaping the Nanoworld. Trends Chem. 2019, 1, 751–762. [Google Scholar] [CrossRef]
- Bünzli, J.-C.G.; McGill, I. Rare Earth Elements, in Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2018; pp. 1–53. [Google Scholar]
- Bünzli, J.-C.G. Lanthanides, Kirk-Othmer Encyclopedia of Chemical Technology; Wiley Online Library: New York, NY, USA, 2013; pp. 1–43. [Google Scholar]
- Cotton, S. Lanthanide and Actinide Chemistry; John Wiley & Sons Ltd.: Chichester, UK, 2006. [Google Scholar]
- Mattocks, J.A.; Ho, J.V.; Cotruvo, J.A., Jr. A selective, protein-based fluorescent sensor with picomolar affinity for rare earth elements. J. Am. Chem. Soc. 2019, 141, 2857–2861. [Google Scholar] [CrossRef]
- Martinez-Gomez, N.C.; Vu, H.N.; Skovran, E. Lanthanide chemistry: From coordination in chemical complexes shaping our technology to coordination in enzymes shaping bacterial metabolism. Inorg. Chem. 2016, 55, 10083–10089. [Google Scholar] [CrossRef] [PubMed]
- Harrowfield, J.M.; Silber, H.B.; Paquette, S.J. Metal Ions in Biological Systems; Sigel, A., Sigel, H., Eds.; Marcel Dekker: New York, NY, USA, 2003. [Google Scholar]
- Écija, D.; Urgel, J.I.; Seitsonen, A.P.; Auwärter, W.; Barth, J.V. Lanthanide-directed assembly of interfacial coordination architectures-from complex networks to functional nanosystems. Acc. Chem. Res. 2018, 51, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.-F.; Huang, L.-Q.; Zhong, L.; Lai, B.-L.; Yang, M.; Chen, W.-B.; Zhang, Y.-Q.; Dong, W. Structures, single-molecule magnets, and fluorescent properties of four dinuclear lanthanide complexes based on 4-azotriazolyl-3-hydroxy-2-naphthoic acid. Inorg. Chem. 2019, 58, 5914–5921. [Google Scholar] [CrossRef] [PubMed]
- Greenspon, A.S.; Marceaux, B.L.; Hu, E.L. Robust lanthanide emitters in polyelectrolyte thin films for photonic applications. Nanotechnology 2018, 29, 075302. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Yin, H.-Y.; Ning, Y.; Wang, J.; Meng, Y.-S.; Huang, X.; Zhang, W.; Kang, L.; Zhang, J.-L. Strong fluorescent lanthanide salen complexes: Photophysical properties, excited-state dynamics, and bioimaging. Inorg. Chem. 2019, 58, 1806–1814. [Google Scholar] [CrossRef]
- Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent functional metal-organic frameworks. Chem. Rev. 2012, 112, 1126–1162. [Google Scholar] [CrossRef]
- Staszak, K.; Wieszczycka, K.; Marturano, V.; Tylkowski, B. Lanthanides complexes—Chiral sensing of biomolecules. Coord. Chem. Rev. 2019, 397, 76–90. [Google Scholar] [CrossRef]
- Brayshaw, L.L.; Smith, R.C.G.; Badaoui, M.; James, A.; Irving, J.A.; Price, S.R. Lanthanides compete with calcium for binding to cadherins and inhibit cadherin-mediated cell adhesion. Metallomics 2019, 11, 914–924. [Google Scholar] [CrossRef] [Green Version]
- Allen, K.N.; Imperiali, B. Lanthanide-tagged proteins—an illuminating partnership. Curr. Opin. Chem. Biol. 2010, 14, 247–254. [Google Scholar] [CrossRef]
- Pałasz, A.; Segovia, Y.; Skowronek, R.; Worthington, J.J. Molecular neurochemistry of the lanthanides. Synapse 2019, 73, e22119. [Google Scholar] [CrossRef] [PubMed]
- Jastrza, R.; Nowak, M.; Skroban´ska, M.; Tolin´ska, A.; Zabiszak, M.; Gabryel, M.; Marciniak, Ł.; Kaczmarek, M.T. DNA as a target for lanthanide(III) complexes influence. Coord. Chem. Rev. 2019, 382, 145–159. [Google Scholar] [CrossRef]
- Campello, M.P.C.; Palma, E.; Correia, I.; Paulo, P.M.R.; Matos, A.; Rino, J.; Coimbra, J.; Pessoa, J.C.; Gambino, D.; Paulo, A.; et al. Lanthanide complexes with phenanthroline-based ligands: Insights into cell death mechanisms obtained by microscopy techniques. Dalton Trans. 2019, 48, 4611–4624. [Google Scholar] [CrossRef] [PubMed]
- Palizban, A.A.; Sadeghi-aliabadi, H.; Abdollahpour, F. Effect of cerium lanthanide on Hela and MCF-7 cancer cell growth in the presence of transferring. Res Pharm Sci. 2010, 5, 119–125. [Google Scholar] [PubMed]
- Qin, Q.P.; Wang, Z.F.; Tan, M.X.; Huang, X.L.; Zou, H.H.; Zou, B.Q.; Shi, B.B.; Zhang, S.H. Complexes of lanthanides(iii) with mixed 2,2′-bipyridyl and 5,7-dibromo-8-quinolinoline chelating ligands as a new class of promising anti-cancer agents. Metallomics 2019, 11, 1005–1015. [Google Scholar] [CrossRef]
- Chang, Y.-X.; Gao, N.; Wang, M.-Y.; Wang, W.-T.; Fan, Z.-W.; Ren, D.-D.; Wu, Z.-L.; Wang, W.-M. Two phenoxo-O bridged dinuclear Dy(III) complexes exhibiting distinct slow magnetic relaxation induced by different b-diketonate ligands. Inorg. Chim. Acta 2020, 505, 119499. [Google Scholar] [CrossRef]
- Hyre, A.S.; Doerrer, L.H. A structural and spectroscopic overview of molecular lanthanide complexes with fluorinated O-donor ligands. Coord. Chem. Rev. 2020, 404, 213098. [Google Scholar] [CrossRef]
- Gao, H.-L.; Wang, N.-N.; Wang, W.-M.; Shen, H.-Y.; Zhou, X.-P.; Chang, Y.-X.; Zhang, R.X.; Cui, J.-Z. Fine-tuning the magnetocaloric effect and SMMs behaviors of coplanar RE4 complexes by β-diketonate coligands. Inorg. Chem. Front. 2017, 4, 860–867. [Google Scholar] [CrossRef]
- Vicente, R.; Tubau, À.; Speed, S.; Mautner, F.A.; Bierbaumer, F.; Fischer, R.C.; Massoud, S.S. Slow magnetic relaxation and luminescence properties in neodymium(III)-4,4,4-Trifluoro-1-(2-naphthyl)butane-1,3-dionato complexes incorporating bipyridyl ligands. New J. Chem. 2021, 45, 14713–14723. [Google Scholar] [CrossRef]
- Mautner, F.A.; Bierbaumer, F.; Fischer, R.C.; Vicente, R.; Tubau, À.; Ferran, A.; Massoud, S.S. Structural characterization, magnetic and luminescent properties of praseodymium(III)-4,4,4-trifluoro-1-(2-Naphthyl)butane-1,3-dionato(1-) complexes. Crystals 2021, 11, 179. [Google Scholar] [CrossRef]
- Mautner, F.A.; Bierbaumer, F.; Gyurkac, M.; Fischer, R.C.; Torvisco, A.; Massoud, S.S.; Vicente, R. Synthesis, and characterization of lanthanum(III) complexes containing 4,4,4-trifluoro-1-(2-naphthalen-yl)-butane-1,3-dionate. Polyhedron 2020, 179, 114384. [Google Scholar] [CrossRef]
- Wu, D.-F.; Liu, Z.; Ren, P.; Liu, X.-H.; Wang, N.; Cui, J.-Z.; Gao, H.-L. A new family of dinuclear lanthanide complexes constructed from an 8-hydroxyquinoline Schiff base and β-diketone: Magnetic properties and near-infrared luminescence. Dalton Trans. 2019, 48, 1392–1403. [Google Scholar] [CrossRef]
- Gao, H.-L.; Huang, S.-X.; Zhou, X.-P.; Liu, Z.; Cui, J.-Z. Magnetic properties and structure of tetranuclear lanthanide complexes based on 8-hydroxylquinoline Schiff base derivative and β-diketone coligand. Dalton Trans. 2018, 47, 3503–3511. [Google Scholar] [CrossRef]
- Gao, H.-L.; Zhou, X.-P.; Bi, Y.-X.; Shen, H.-Y.; Wang, W.-M.; Wang, N.-N.; Chang, Y.-X.; Zhang, R.-X.; Cui, J.-Z. A Dy4 single-molecule magnet and its Gd(iii), Tb(iii), Ho(iii), and Er(iii) analogues encapsulated by an 8-hydroxyquinoline Schiff base derivative and β-diketonate coligand. Dalton Trans. 2017, 46, 4669–4677. [Google Scholar] [CrossRef]
- Wang, W.-M.; Zhang, H.-X.; Wang, S.-Y.; Shen, H.-Y.; Gao, H.-L.; Cui, J.-Z.; Zhao, B. Ligand field affected single-molecule magnet behavior of lanthanide(III) dinuclear complexes with an 8-hydroxyquinoline Schiff Base derivative as bridging ligand. Inorg. Chem. 2015, 54, 10610–10622. [Google Scholar] [CrossRef]
- Lippy, F.; Marques, L.F.; Santos, H.P.; D’Oliveira, K.A.; Botezine, N.P.; Freitas, M.C.F.; Freire, R.O.; Dutra, J.D.L.; Martins, J.S.; Legnani, C.; et al. New photo/electroluminescent europium(III) b-diketonate complex containing a p,p’ -disubstituted bipyridine ligand: Synthesis, solid state characterization, theoretical and experimental spectroscopic studies. Inorg. Chim. Acta 2017, 458, 28–38. [Google Scholar]
- Biju, S.; Freire, R.O.; Eom, Y.K.; Scopelliti, R.; Bünzli, J.-C.; Kim, H.K. A EuIII tetrakis(β-diketonate) dimeric complex: Photophysical properties, structural elucidation by Sparkle/AM1 calculations, and doping into PMMA films and nanowires. Inorg. Chem. 2014, 53, 8407–8417. [Google Scholar] [CrossRef] [PubMed]
- Rheingold, A.L.; Sweeting, L. CSD Commun, 2015.
- Alvarez, S.; Alemany, P.; Casanova, D.; Cirera, J.; Llunell, M.; Avnir, D. Shape maps and polyhedral interconversion paths in transition metal chemistry. Chem. Soc. Rev. 2005, 249, 1693–1708. [Google Scholar] [CrossRef]
- Cirera, J.; Alvarez, S. Stereospinomers of pentacoordinate iron porphyrin complexes: The case of the [Fe(porphyrinato)(CN)]− anions. Dalton Trans. 2013, 42, 7002–7008. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Luo, Z.; Liu, Z.; Wang, D.; Fan, L.; Yin, G. Synthesis and photoluminescent properties of Eu(III) complexes with fluorinated β-diketone and nitrogen heterocyclic ligands. Dye. Pigment. 2016, 132, 398–404. [Google Scholar] [CrossRef]
- Song, X.Q.; Cheng, G.Q.; Liu, Y.A. Enhanced Tb(III) luminescence by d10 transition metal coordination. Inorg. Chim. Acta 2016, 450, 386–394. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhao, X.; Wang, Y.; Wu, B.; Shen, J.; Li, L.; Li, Q. Eu(III) and Tb(III) complexes with the nonsteroidal anti-inflammatory drug carprofen: Synthesis, crystal structure, and photophysical properties. Inorg. Chem. 2014, 53, 12275–12282. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, T.; Wu, J. Luminescence of europium(III) and terbium(III) complexes incorporated in poly(vinylpyrrolidone) matrix. J. Phys. Chem. B 2001, 105, 12293–12296. [Google Scholar] [CrossRef]
- Binnemans, K. Interpretation of europium(III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Daumann, L.J.; Tatum, D.S.; Andolina, C.M.; Pacold, J.I.; D’Aléo, A.; Law, G.-L.; Xu, J.; Raymond, K.N. Effects of ligand geometry on the photophysical properties of photoluminescent Eu(III) and Sm(III) 1-hydroxypyridin-2-one complexes in aqueous Solution. Inorg. Chem. 2016, 55, 114–124. [Google Scholar] [CrossRef]
- Rajamouli, B.; Sivakumar, V. Eu(III) complexes for LEDs based on carbazole- and fluorene-functionalized phenanthro-imidazole ancillary ligands: Detailed photophysical and theoretical study. ChemistrySelect 2017, 2, 4138–4149. [Google Scholar] [CrossRef]
- Bala, M.; Kumar, S.; Taxak, V.B.; Boora, P.; Khatkar, S.P. Optical features of efficient europium(III) complexes with β-diketonato and auxiliary ligands and mechanistic investigation of energy transfer process. J. Fluoresc. 2016, 26, 1813–1823. [Google Scholar] [CrossRef]
- Aebischer, A.; Gumy, F.; Bünzli, J.C.G. Intrinsic quantum yields and radiative lifetimes of lanthanide tris(dipicolinates). Phys. Chem. Chem. Phys. 2009, 11, 1346–1353. [Google Scholar] [CrossRef]
- De Silva, C.R.; Li, J.; Zheng, Z.; Corrales, L.R. Correlation of calculated excited-state energies and experimental quantum yields of luminescent Tb(III) β-diketonates. J. Phys. Chem. A 2008, 112, 4527–4530. [Google Scholar] [CrossRef]
- Sato, S.; Wada, M. Relations between intramolecular energy transfer efficiencies and triplet state energies in rare earth β-diketone chelates. Bull. Chem. Soc. Jpn. 1970, 43, 1955–1962. [Google Scholar] [CrossRef] [Green Version]
- Werts, M.H.V.; Jukes, R.T.F.; Verhoeven, J.W. The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys. Chem. Chem. Phys. 2002, 4, 1542–1548. [Google Scholar] [CrossRef]
- Batista, H.J.; de Andrade, A.V.M.; Longo, R.L.; Simas, A.M.; de Sá, G.F.; Nao, K.; Ito, N.K.; Thompson, L.C. Synthesis, X-ray structure, spectroscopic characterization, and theoretical prediction of the structure and electronic spectrum of Eu(btfa)3·bipy and an assessment of the effect of fluorine as a β-diketone substituent on the ligand-metal energy transfer. Inorg. Chem. 1998, 37, 3542–3547. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Li, S.; Li, J.; Chen, X.; Tang, R. Synthesis, fluorescence properties of Tb(III) complexes with novel mono-substituted β-diketone ligands. J. Rare Earths 2010, 28, 671–675. [Google Scholar] [CrossRef]
- Jiu, H.; Liu, G.; Zhang, Z.; Fu, Y.; Chen, J.; Fan, T.; Zhang, L. Fluorescence enhancement of Tb(III) complex with a new β-diketone ligand by 1,10-phenanthroline. J. Rare Earths 2011, 29, 741–745. [Google Scholar] [CrossRef]
- Bruker APEX, SAINT version 8.37A; Bruker AXS Inc.: Madison, WI, USA, 2015.
- Sheldrick, G.M. SADABS, version 2; University of Goettingen: Goettingen, Germany, 2001.
- Sheldrick, G.M. A Short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Macrae, C.F.; Edington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, T.; van de Streek, J.J. Mercury: Visualization and analysis of crystal structures. Appl. Cryst. 2006, 39, 453–457. [Google Scholar] [CrossRef] [Green Version]
- Speck, A.L. PLATON, a Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands, 2001. [Google Scholar]
- Dar, W.A.; Ahmed, Z.; Iftikhar, K. Cool white eligent emission from the yellow and blue emission bands of the Dy(III) compounds under UV-excitation. J. Photochem. Photobiol. A Chem. 2018, 356, 502–511. [Google Scholar] [CrossRef]
- Ansari, A.A.; Ganaie, A.B.; Iftikhar, K. Synthesis and 4f-4f absorption studies of tris(acetylacetonato)praseodymium(III) and holmium(III) complexes with imidazole and pyrazole in non-aqueous solvents. Structure elucidation by sparkle/PM7. J. Mol. Struct. 2019, 1198, 126826. [Google Scholar] [CrossRef]
- Ansari, A.A.; Ilmi, R.; Iftikhar, K. Hypersensitivity in the 4f–4f absorption spectra of tris(acetylacetonato)neodymium(III) complexes with imidazole and pyrazole in non-aqueous solutions. Effect of environment on hypersensitive transitions. J. Lumin. 2012, 132, 51–60. [Google Scholar] [CrossRef]
- Mara, D.; Artizzu, F.; Laforce, B.; Vincze, L.; Van Hecke, K.; Van Deun, R.; Kaczmarek, A.M. Novel tetrakis lanthanide β-diketonate complexes: Structural study, luminescence properties and temperature sensing. J. Lumin. 2019, 213, 343–355. [Google Scholar] [CrossRef]
- Yao, X.; An, G.; Li, Y.; Yan, P.; Li, W.; Li, G. Effect of nuclearity and symmetry on the single-molecule magnets behavior of seven-coordinated β-diketonate Dy(III) complexes. J. Solid State Chem. 2019, 274, 295–302. [Google Scholar] [CrossRef]
- Bünzli, J.-C.G. On the design of highly luminescent lanthanide complexes. Coord. Chem. Rev. 2015, 293–294, 19–47. [Google Scholar] [CrossRef]
- Podyachev, S.N.; Zairov, R.R.; Mustafina, A.R. 1,3-Diketone Calix[4]arene derivatives—A new type of versatile ligands for metal complexes and nanoparticles. Molecules 2021, 26, 1214. [Google Scholar] [CrossRef]
- Zairov, R.; Pizzanelli, S.; Dovzhenko, A.P.; Nizameev, I.; Orekhov, A.; Arkharova, N.; Podyachev, S.N.; Sudakova, S.; Mustafina, A.R.; Calucc, L. Paramagnetic relaxation enhancement in hydrophilic colloids based on Gd(III) complexes with tetrathia- and Calix[4]arenes. J. Phys. Chem. C 2020, 124, 4320–4329. [Google Scholar] [CrossRef]
D-H…A *) | Symmetry Code | D…A (Å) | D-H…A (°) |
---|---|---|---|
Compound 1 | |||
O7-H7A…O5 | [−1/2 + x, 3/2 − y, 1 − z] | 2.871 (3) | 118 |
O7-H7B…O8 | 2.771 (3) | 102 | |
O8-H8A…O1 | [1/2 + x, 3/2 − y, 1 − z] | 2.710 (4) | 158 |
O8-H8B…O3 | [1/2 + x, 3/2 − y, 1 − z] | 2.732 (4) | 156 |
Compound 6 | |||
O7-H7A…F5 | [1 − x, −y, 1 − z] | 3.027 (3) | 103 |
Compound 7 | |||
O7-H7A…O6 | 2.741 (3) | 103 | |
Compound 8 | |||
N3-H3…O3 | [2 − x, 2 − y, −z] | 2.856 (3) | 162 |
O7-H7…O2 | 2.657 (3) | 108 |
Compound | λex (nm) | τobs (ms) | ϕTOT (%) | ϕLn (%) | ηsens (%) | τrad (ms) |
---|---|---|---|---|---|---|
[Tb(btfa)3(4,4′-Me2bipy)] (9) | 371 | 0.144 | 1.05 | - | - | - |
Hpy[Eu(Btfa)4] (10) | 371 | 0.985 | 34.56 | 44.19 | 78.2 | 2.229 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mautner, F.A.; Bierbaumer, F.; Fischer, R.C.; Torvisco, A.; Vicente, R.; Font-Bardía, M.; Tubau, À.; Speed, S.; Massoud, S.S. Diverse Coordination Numbers and Geometries in Pyridyl Adducts of Lanthanide(III) Complexes Based on β-Diketonate. Inorganics 2021, 9, 74. https://doi.org/10.3390/inorganics9100074
Mautner FA, Bierbaumer F, Fischer RC, Torvisco A, Vicente R, Font-Bardía M, Tubau À, Speed S, Massoud SS. Diverse Coordination Numbers and Geometries in Pyridyl Adducts of Lanthanide(III) Complexes Based on β-Diketonate. Inorganics. 2021; 9(10):74. https://doi.org/10.3390/inorganics9100074
Chicago/Turabian StyleMautner, Franz A., Florian Bierbaumer, Roland C. Fischer, Ana Torvisco, Ramon Vicente, Mercè Font-Bardía, Ànnia Tubau, Saskia Speed, and Salah S. Massoud. 2021. "Diverse Coordination Numbers and Geometries in Pyridyl Adducts of Lanthanide(III) Complexes Based on β-Diketonate" Inorganics 9, no. 10: 74. https://doi.org/10.3390/inorganics9100074
APA StyleMautner, F. A., Bierbaumer, F., Fischer, R. C., Torvisco, A., Vicente, R., Font-Bardía, M., Tubau, À., Speed, S., & Massoud, S. S. (2021). Diverse Coordination Numbers and Geometries in Pyridyl Adducts of Lanthanide(III) Complexes Based on β-Diketonate. Inorganics, 9(10), 74. https://doi.org/10.3390/inorganics9100074