The Influence of Co-Precipitation Technique on the Structure, Morphology and Dual-Modal Proton Relaxivity of GdFeO3 Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Potentiometric Titrations
2.1.1. Direct Titration
2.1.2. Reverse Titration
2.2. Synthesis
2.2.1. Co-precipitation of Gadolinium and Iron(III) Hydroxides
Direct Precipitation
Reverse Precipitation
Microreactor Precipitation
2.2.2. Heat Treatment of the Co-precipitated Hydroxides
2.3. Characterization
2.3.1. Powder X-ray Diffraction
2.3.2. Fourier-Transform Infrared Spectroscopy
2.3.3. Low-Temperature Nitrogen Adsorption-Desorption Isotherm Measurements
2.3.4. High-Resolution Transmission Electron Microscopy and Selected Area Electron Diffraction
2.4. Functional Properties
2.4.1. Diffuse Reflectance Spectroscopy
2.4.2. Vibration Magnetometry
2.4.3. Proton Nuclear Magnetic Resonance
Preparation of Samples
Measurement of T1 and T2 Relaxation Times
3. Results and Discussion
3.1. Potentiometric Titrations
3.1.1. Direct Titration
3.1.2. Reverse Titration
3.2. Characterization
3.2.1. Powder X-ray Diffraction
3.2.2. Fourier-Transform Infrared Spectroscopy
3.2.3. Low-Temperature Nitrogen Adsorption-Desorption Isotherm Measurements
3.2.4. High-Resolution Transmission Electron Microscopy and Selected Area Electron Diffraction
3.3. Functional Properties
3.3.1. Diffuse Reflectance Spectroscopy
3.3.2. Vibration Magnetometry
3.3.3. T1 and T2 Proton Relaxation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Guleria, A.; Priyatharchini, K.; Kumar, D. Biomedical Applications of Magnetic Nanomaterials. In Applications of Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 345–389. [Google Scholar]
- Laurent, S.; Henoumont, C.; Stanicki, D.; Boutry, S.; Lipani, E.; Belaid, S.; Muller, R.N.; Vander Elst, L. MRI Contrast Agents: From Molecules to Particles; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 9789811025297. [Google Scholar]
- Xiao, Y.-D.; Paudel, R.; Liu, J.; Ma, C.; Zhang, Z.-S.; Zhou, S.-K. MRI contrast agents: Classification and application (Review). Int. J. Mol. Med. 2016, 38, 1319–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busquets, M.A.; Estelrich, J.; Sánchez-Martín, M.J. Nanoparticles in magnetic resonance imaging: From simple to dual contrast agents. Int. J. Nanomed. 2015, 10, 1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geraldes, C.F.G.C.; Laurent, S. Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol. Imaging 2009, 4, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Szpak, A.; Fiejdasz, S.; Prendota, W.; Strączek, T.; Kapusta, C.; Szmyd, J.; Nowakowska, M.; Zapotoczny, S. T1–T2 Dual-modal MRI contrast agents based on superparamagnetic iron oxide nanoparticles with surface attached gadolinium complexes. J. Nanopart. Res. 2014, 16, 2678. [Google Scholar] [CrossRef] [Green Version]
- De, M.; Chou, S.S.; Joshi, H.M.; Dravid, V.P. Hybrid magnetic nanostructures (MNS) for magnetic resonance imaging applications. Adv. Drug Deliv. Rev. 2011, 63, 1282–1299. [Google Scholar] [CrossRef] [Green Version]
- Caravan, P.; Ellison, J.J.; McMurry, T.J.; Lauffer, R.B. Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem. Rev. 1999, 99, 2293–2352. [Google Scholar] [CrossRef]
- Hermann, P.; Kotek, J.; Kubíček, V.; Lukeš, I. Gadolinium(iii) complexes as MRI contrast agents: Ligand design and properties of the complexes. Dalton Trans. 2008, 9226, 3027. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, H.; Chen, Z.; Lan, M. Ultrasmall Superparamagnetic Iron Oxide Nanoparticles for Magnetic Resonance Imaging Contrast Agent. J. Nanosci. Nanotechnol. 2014, 14, 210–220. [Google Scholar] [CrossRef]
- Dulińska-Litewka, J.; Łazarczyk, A.; Hałubiec, P.; Szafrański, O.; Karnas, K.; Karewicz, A. Superparamagnetic Iron Oxide Nanoparticles—Current and Prospective Medical Applications. Materials 2019, 12, 617. [Google Scholar] [CrossRef] [Green Version]
- Söderlind, F.; Fortin, M.A.; Petoral, R.M., Jr.; Klasson, A.; Veres, T.; Engström, M.; Uvdal, K.; Käll, P.-O. Colloidal synthesis and characterization of ultrasmall perovskite GdFeO3 nanocrystals. Nanotechnology 2008, 19, 085608. [Google Scholar] [CrossRef]
- Pinho, S.L.C.; Amaral, J.S.; Wattiaux, A.; Duttine, M.; Delville, M.-H.; Geraldes, C.F.G.C. Synthesis and Characterization of Rare-Earth Orthoferrite LnFeO3 Nanoparticles for Bioimaging. Eur. J. Inorg. Chem. 2018, 2018, 3570–3578. [Google Scholar] [CrossRef]
- Athar, T.; Vishwakarma, S.K.; Bardia, A.; Khan, A.A. Super paramagnetic iron oxide and gadolinium (FeGdO3) nanopowder synthesized by hydrolytic approach passes high level of biocompatibility and MRI-based dual contrast property for competent molecular imaging and therapeutic interventions. Biomed. Phys. Eng. Express 2016, 2, 025010. [Google Scholar] [CrossRef]
- Deka, S.; Saxena, V.; Hasan, A.; Chandra, P.; Pandey, L.M. Synthesis, characterization and in vitro analysis of α-Fe2O3-GdFeO3 biphasic materials as therapeutic agent for magnetic hyperthermia applications. Mater. Sci. Eng. C 2018, 92, 932–941. [Google Scholar] [CrossRef]
- Albadi, Y.; Martinson, K.D.; Shvidchenko, A.V.; Buryanenko, I.V.; Semenov, V.G.; Popkov, V.I. Synthesis of GdFeO3 nanoparticles via low-temperature reverse co-precipitation: The effect of strong agglomeration on the magnetic behavior. Nanosyst. Phys. Chem. Math. 2020, 11, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Tugova, E.A.; Zvereva, I.A. Formation mechanism of GdFeO3 nanoparticles under the hydrothermal conditions. Nanosyst. Phys. Chem. Math. 2013, 4, 851–856. [Google Scholar]
- Gimaztdinova, M.M.; Tugova, E.A.; Tomkovich, M.V.; Popkov, V.I. Synthesis of GdFeO3 nanocrystals via glycine-nitrate combustion. Condens. Phases Interfaces 2016, 18, 422–431. [Google Scholar]
- Li, L.; Wang, X.; Lan, Y.; Gu, W.; Zhang, S. Synthesis, Photocatalytic and Electrocatalytic Activities of Wormlike GdFeO3 Nanoparticles by a Glycol-Assisted Sol–Gel Process. Ind. Eng. Chem. Res. 2013, 52, 9130–9136. [Google Scholar] [CrossRef]
- Tang, P.; Hu, Y.; Lin, T.; Jiang, Z.; Tang, C. Preparation of Nanocrystalline GdFeO3 by Microwave Method and Its Visible-light Photocatalytic Activity. Integr. Ferroelectr. 2014, 153, 73–78. [Google Scholar] [CrossRef]
- Sivakumar, M.; Gedanken, A.; Bhattacharya, D.; Brukental, I.; Yeshurun, Y.; Zhong, W.; Du, Y.W.; Felner, I.; Nowik, I. Sonochemical Synthesis of Nanocrystalline Rare Earth Orthoferrites Using Fe(CO)5 Precursor. Chem. Mater. 2004, 16, 3623–3632. [Google Scholar] [CrossRef]
- Mathur, S.; Shen, H.; Lecerf, N.; Kjekshus, A.; Fjellvåg, H.; Goya, G.F. Nanocrystalline Orthoferrite GdFeO3 from a Novel Heterobimetallic Precursor. Adv. Mater. 2002, 14, 1405–1409. [Google Scholar] [CrossRef]
- Liu, J.; He, F.; Chen, L.; Qin, X.; Zhao, N.; Huang, Y.; Peng, Y. Novel hexagonal-YFeO3/α-Fe2O3 heterojunction composite nanowires with enhanced visible light photocatalytic activity. Mater. Lett. 2016, 165, 263–266. [Google Scholar] [CrossRef]
- Wojdyr, M. Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 2010, 43, 1126–1128. [Google Scholar] [CrossRef]
- Ilhan, S.; Izotova, S.G.; Komlev, A.A. Synthesis and characterization of MgFe2O4 nanoparticles prepared by hydrothermal decomposition of co-precipitated magnesium and iron hydroxides. Ceram. Int. 2015, 41, 577–585. [Google Scholar] [CrossRef]
- Vandana, C.S.; Rudramadevi, B.H. Effect of Cu2+ substitution on the structural, magnetic and electrical properties of gadolinium orthoferrite. Mater. Res. Express 2018, 5, 046101. [Google Scholar] [CrossRef]
- Prakash, B.J.; Rudramadevi, B.H.; Buddhudu, S. Analysis of Ferroelectric, Dielectric and Magnetic Properties of GdFeO3 Nanoparticles. Ferroelectr. Lett. Sect. 2014, 41, 110–122. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Naseri, M.G.; Ara, M.H.M.; Saion, E.B.; Shaari, A.H. Superparamagnetic magnesium ferrite nanoparticles fabricated by a simple, thermal-treatment method. J. Magn. Magn. Mater. 2014, 350, 141–147. [Google Scholar] [CrossRef]
- Abbasian, A.R.; Lorfasaei, Z.; Shayesteh, M.; Afarani, M.S. Synthesis of cobalt ferrite colloidal nanoparticle clusters by ultrasonic-assisted solvothermal process. J. Aust. Ceram. Soc. 2020, 56, 1119–1126. [Google Scholar] [CrossRef]
- Xu, W.-H.; Wang, L.; Wang, J.; Sheng, G.-P.; Liu, J.-H.; Yu, H.-Q.; Huang, X.-J. Superparamagnetic mesoporous ferrite nanocrystal clusters for efficient removal of arsenite from water. CrystEngComm 2013, 15, 7895. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, L.; Chen, H.; Hu, K.; Delahunty, I.; Gao, S.; Xie, J. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents. Theranostics 2018, 8, 2521–2548. [Google Scholar] [CrossRef]
Wavenumber (cm−1) | Assignment | |||||
---|---|---|---|---|---|---|
Experimental | Obtained Using Fityk | |||||
CPH-D | CPH-R | CPH-M | CPH-D | CPH-R | CPH-M | |
458 s | 458 s | 469 s | 465 s | 478 s | 469 s | ν(M-O), M = Fe3+ or Gd3+, in amorphous CPHs |
689 br m | 677 br m | 672 br m | ν(M-OH), M = Fe3+ or Gd3+, in amorphous CPHs | |||
745 vw | 756 vw | 748 vw | δas(CO32−, NO3−), in plane bending, HOH libration | |||
815 w | 819 w | δs(NO3−), out of plane bending, coordinated to Fe3+ or Gd3+ or in free state | ||||
833 w | 833 w | 833 w | 838 w | 840 w | 839 w | |
840 w | 840 w | 840 w | 842 w | 845 w | 853 w | δs(HCO3−), δs(CO32−), out of plane bending, coordinated to Fe3+ or Gd3+ |
881 w | 877 w | |||||
1043 w | 1047 w | 1043 w | 1043 w | 1044 w | 1044 w | νs(NO3−), IR-active due to coordination to Fe3+ or Gd3+ |
1078 w | 1076 w | 1078 w | 1076 w | 1079 w | 1080 w | νs(CO32−), IR-active due to coordination to Fe3+ or Gd3+ |
1102 vw | 1114 vw | 1119 vw | ν’as(CO32−), synchronous, splitted, polydentate coordinated to Fe3+ or Gd3+ | |||
1162 vw | 1161 vw | 1162 vw | ν’as(CO32−), synchronous, splitted, polydentate coordinated to Fe3+ or Gd3+ | |||
1354 sh | 1355 sh | 1353 sh | 1324 s | 1366 s | 1341 s | ν’as(CO32−), synchronous, splitted, bidentate coordinated to Fe3+ or Gd3+ |
1385 s sharp | 1385 s sharp | 1385 s sharp | 1384 m sharp | 1384 m sharp | 1384 m sharp | νas(NO3−), in free state/incoordinated |
1390 m | 1393 m | 1396 m | νas(NO3−), monodentate coordinated to Fe3+ or Gd3+ | |||
1492 s | 1506 s | 1498 s | 1499 s | 1510 s | 1502 s | ν”as(CO32−), ν”as(HCO3−), asynchronous, splitted, bidentate coordinated to Fe3+ or Gd3+ |
1636 m | 1632 m | 1630 m | 1622 w | 1625 w | 1624 w | ν”as(CO32−), ν”as(HCO3−), asynchronous, splitted, polydentate coordinated to Fe3+ or Gd3+ or δ(H2O) in adsorbed water |
1652 m | 1653 m | 1654 m | δ(H2O), in H-bonded or adsorbed water | |||
1768 w | 1768 w | 1768 w | 1768 w | 1768 w | 1767 w | ν(C = O), coordinated to Fe3+ or Gd3+ |
1785 w | ||||||
2361 w | νas(CO2), from atmosphere | |||||
2426 sharp w | 2427 sharp w | 2427 sharp w | NO3− groups | |||
3370 br s | 3413 br s | 3402 br s | 3201 m | 3221 m | 3188 m | νs(H2O), in H-bonded or adsorbed water |
3370 s | 3397 s | 3361 s | νas(H2O), in H-bonded or adsorbed water | |||
3498 s | 3518 s | 3480 s | ν(OH−) | |||
3568 s | 3588 s | 3552 s |
Wavenumber (cm−1) | Assignment | |||||
---|---|---|---|---|---|---|
Experimental | Obtained Using Fityk | |||||
HTP-D | HTP-R | HTP-M | HTP-D | HTP-R | HTP-M | |
436 s | 432 s | 434 s | 441 s | 442 s | 443 s | δ(O-Fe-O), in o-GdFeO3 |
561 vs | 559 vs | 561 vs | 556 s | 554 s | 554 s | ν(Gd-O), in o-GdFeO3 |
597 s | 593 s | 594 s | ν(Fe-O), in o-GdFeO3 | |||
- | 1643 w | 1636 w | 1655 vw | 1640 w | 1637 w | δ(H2O), in H-bonded or adsorbed water |
3435 br m | 3470 br m | 3260 -m | νs(H2O), in H-bonded or adsorbed water | |||
3443 -m | 3402 -m | 3436 -m | νas(H2O), in H-bonded or adsorbed water |
Sample | Crystallite Size, nm | Aggregate Size, nm | Specific Surface Area, m2/g | Bandgap Value, eV | Remanence, emu/g | Coercivity, Oe |
---|---|---|---|---|---|---|
GFO-D | 34.7 | 188.2 | 4.4 | 2.337 | 0.069 | 503 |
GFO-R | 43.9 | 137.4 | 6.0 | 2.474 | 0.052 | 570 |
GFO-M | 44.3 | 78.5 | 10.5 | 2.467 | 0.013 | 179 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albadi, Y.; Ivanova, M.S.; Grunin, L.Y.; Martinson, K.D.; Chebanenko, M.I.; Izotova, S.G.; Nevedomskiy, V.N.; Abiev, R.S.; Popkov, V.I. The Influence of Co-Precipitation Technique on the Structure, Morphology and Dual-Modal Proton Relaxivity of GdFeO3 Nanoparticles. Inorganics 2021, 9, 39. https://doi.org/10.3390/inorganics9050039
Albadi Y, Ivanova MS, Grunin LY, Martinson KD, Chebanenko MI, Izotova SG, Nevedomskiy VN, Abiev RS, Popkov VI. The Influence of Co-Precipitation Technique on the Structure, Morphology and Dual-Modal Proton Relaxivity of GdFeO3 Nanoparticles. Inorganics. 2021; 9(5):39. https://doi.org/10.3390/inorganics9050039
Chicago/Turabian StyleAlbadi, Yamen, Maria S. Ivanova, Leonid Y. Grunin, Kirill D. Martinson, Maria I. Chebanenko, Svetlana G. Izotova, Vladimir N. Nevedomskiy, Rufat S. Abiev, and Vadim I. Popkov. 2021. "The Influence of Co-Precipitation Technique on the Structure, Morphology and Dual-Modal Proton Relaxivity of GdFeO3 Nanoparticles" Inorganics 9, no. 5: 39. https://doi.org/10.3390/inorganics9050039
APA StyleAlbadi, Y., Ivanova, M. S., Grunin, L. Y., Martinson, K. D., Chebanenko, M. I., Izotova, S. G., Nevedomskiy, V. N., Abiev, R. S., & Popkov, V. I. (2021). The Influence of Co-Precipitation Technique on the Structure, Morphology and Dual-Modal Proton Relaxivity of GdFeO3 Nanoparticles. Inorganics, 9(5), 39. https://doi.org/10.3390/inorganics9050039